
Document Number: MCF5251RM
Rev. 1

01/16/2008

MCF5251
Reference Manual

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor iii

Chapter 1
MCF5251 Introduction

1.1 MCF5251 Overview . 1-1
1.2 MCF5251 Feature Introduction . 1-1
1.3 MCF5251 Block Diagram . 1-2
1.4 MCF5251 Feature Details. 1-4
1.5 MCF5251 Functional Overview . 1-7
1.5.1 ColdFire CF2 Core . 1-7
1.5.2 DMA Controller . 1-7
1.5.3 Enhanced Multiply and Accumulate Module (eMAC). 1-7
1.5.4 Instruction Cache . 1-8
1.5.5 Internal 128-Kbyte SRAM . 1-8
1.5.6 DRAM Controller . 1-8
1.5.7 System Interface . 1-8
1.5.8 External Bus Interface . 1-8
1.5.9 USB 2.0 High-Speed On-The-Go. 1-8
1.5.10 ATA Controller. 1-9
1.5.11 Two Controller Area Network (CAN) 2.0B Communication Unit 1-9
1.5.12 Real-Time Clock. 1-9
1.5.13 Serial Audio Interfaces . 1-9
1.5.14 IEC958 Digital Audio Interfaces . 1-9
1.5.15 Audio Bus . 1-9
1.5.16 CD-ROM Encoder/Decoder . 1-10
1.5.17 Three UART Modules . 1-10
1.5.18 Queued Serial Peripheral Interface QSPI . 1-10
1.5.19 Timer Module . 1-11
1.5.20 IDE Interface. 1-11
1.5.21 Analog/Digital Converter (ADC) . 1-11
1.5.22 Flash Memory Card Interface . 1-11
1.5.23 I2C Module . 1-11
1.5.24 Chip-Selects . 1-11
1.5.25 GPIO Interface . 1-12
1.5.26 Interrupt Controller . 1-12
1.5.27 JTAG. 1-12
1.5.28 System Debug Interface . 1-12
1.5.29 System Oscillator and PLL . 1-12
1.5.30 Sleep and Wake-Up Modes . 1-13
1.5.31 Bootloader. 1-13
1.5.32 Internal Voltage Regulator . 1-13

Chapter 2
Signal Description

2.1 Overview. 2-1

Contents

MCF5251 Reference Manual, Rev. 1

iv Freescale Semiconductor

2.2 GPIO . 2-5
2.3 MCF5251 Bus Signals . 2-5
2.3.1 Address Bus . 2-6
2.3.2 Read-Write Control. 2-6
2.3.3 Output Enable . 2-6
2.3.4 Data Bus . 2-6
2.3.5 Transfer Acknowledge . 2-6
2.4 SDRAM Controller Signals . 2-6
2.5 Chip Selects . 2-7
2.6 ISA Bus. 2-7
2.7 Bus Buffer Signals . 2-7
2.8 I2C Module Signals . 2-7
2.9 Serial Module Signals . 2-8
2.10 Timer Module Signals . 2-8
2.11 Serial Audio Interface Signals . 2-8
2.12 Digital Audio Interface Signals . 2-9
2.13 Subcode Interface . 2-10
2.14 Analog to Digital Converter (ADC) . 2-10
2.15 Secure Digital / Memory Stick Card Interface . 2-10
2.16 Queued Serial Peripheral Interface (QSPI). 2-11
2.17 ATA Interface . 2-11
2.18 Two Controller Area Network (CAN) Communication Modules . 2-11
2.19 USB Controller . 2-12
2.19.1 USB PHY Interface Including Oscillator . 2-12
2.20 Real-Time Clock. 2-12
2.21 Crystal Trim . 2-12
2.22 Clock Out . 2-12
2.23 Debug and Test Signals . 2-12
2.23.1 Test Mode . 2-13
2.23.2 High Impedance . 2-13
2.23.3 Processor Clock Output . 2-13
2.23.4 Debug Data . 2-13
2.23.5 Processor Status . 2-13
2.24 BDM/JTAG Signals . 2-14
2.25 Clock and Reset Signals . 2-14
2.25.1 Reset In . 2-14
2.25.2 System Bus Input . 2-14
2.26 Wake-Up Signal . 2-14
2.27 On-Chip Linear Regulator . 2-15

Chapter 3
ColdFire Core

3.1 Processor Pipelines . 3-1
3.2 ColdFire Processor Memory Map and Register Definitions . 3-2

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor v

3.2.1 User Memory Map and Register Description . 3-2
3.2.1.1 Data Registers (D0–D7) . 3-2
3.2.1.2 Address Registers (A0–A6) . 3-3
3.2.1.3 Stack Pointer (A7, SP) . 3-3
3.2.1.4 Program Counter (PC) . 3-3
3.2.1.5 Condition Code Register (CCR) . 3-3
3.2.2 Enhanced Multiply Accumulate Module (eMAC) User Memory Map and Register

Description . 3-4
3.2.2.1 eMAC Instruction Set Summary. 3-4
3.2.3 Supervisor Memory Map and Register Description . 3-5
3.2.3.1 Status Register (SR) . 3-5
3.2.3.2 Vector Base Register (VBR). 3-6
3.3 Exception Processing Overview . 3-6
3.4 Exception Stack Frame Definition . 3-8
3.5 Processor Exceptions . 3-9
3.5.1 Access Error Exception . 3-9
3.5.2 Address Error Exception. 3-10
3.5.3 Illegal Instruction Exception. 3-10
3.5.4 Divide By Zero . 3-10
3.5.5 Privilege Violation . 3-10
3.5.6 Trace Exception . 3-10
3.5.7 Debug Interrupt. 3-11
3.5.8 RTE and Format Error Exceptions . 3-11
3.5.9 TRAP Instruction Exceptions . 3-11
3.5.10 Interrupt Exception . 3-11
3.5.11 Fault-on-Fault Halt . 3-12
3.5.12 Reset Exception . 3-12
3.6 Instruction Execution Timing . 3-12
3.6.1 Timing Assumptions. 3-12
3.6.2 MOVE Instruction Execution Times . 3-13
3.7 Standard One Operand Instruction Execution Times . 3-15
3.8 Standard Two Operand Instruction Execution Times. 3-15
3.9 Miscellaneous Instruction Execution Times. 3-17
3.10 Branch Instruction Execution Times . 3-18

Chapter 4
Phase-Locked Loop and Clock Dividers

4.1 PLL Features. 4-1
4.2 PLL Memory Map and Register Definitions . 4-2
4.2.1 PLL Operation . 4-5
4.2.2 PLL Lock-In Time . 4-5
4.2.3 PLL Electrical Limits . 4-5
4.3 Dynamic Clock Switching . 4-6
4.4 Audio Clock Generation . 4-6

MCF5251 Reference Manual, Rev. 1

vi Freescale Semiconductor

4.5 Reduced Power Mode. 4-7
4.6 Sleep / Wake-up Mode . 4-7
4.6.1 Enter Sleep Mode . 4-8
4.6.2 Exit Sleep Mode . 4-8
4.7 Selecting Audio_clock Input . 4-8
4.8 Recommended Settings. 4-8

Chapter 5
Instruction Cache

5.1 Instruction Cache Features . 5-1
5.2 Block Diagram . 5-1
5.3 Instruction Cache Physical Organization . 5-2
5.4 Instruction Cache Operation . 5-2
5.4.1 Interaction with Other Modules . 5-2
5.4.2 Memory Reference Attributes . 5-3
5.4.3 Cache Coherency and Invalidation . 5-3
5.4.4 Reset . 5-3
5.4.5 Cache Miss Fetch Algorithm/Line Fills . 5-3
5.5 Instruction Cache Memory Map and Register Definitions . 5-5
5.5.1 Instruction Cache Registers Memory Map . 5-5
5.5.2 Instruction Cache Register . 5-6
5.5.2.1 Cache Control Register . 5-6
5.5.2.2 Access Control Registers . 5-8

Chapter 6
Static RAM (SRAM)

6.1 SRAM Features. 6-1
6.2 SRAM Operation . 6-1
6.3 SRAM Memory Map and Register Definitions . 6-1
6.3.1 SRAM Base Address Register . 6-1
6.3.2 SRAM Initialization . 6-4
6.3.3 SRAM Initialization Code . 6-4
6.3.4 Power Management . 6-4

Chapter 7
Synchronous DRAM Controller Module

7.1 SDRAM Features . 7-1
7.1.1 Block Diagram . 7-1
7.2 Synchronous Operation. 7-2
7.2.1 DRAM Controller Signals in Synchronous Mode . 7-3
7.3 SDRAM Memory Map and Register Definitions . 7-3
7.3.1 DRAM Controller Registers . 7-4
7.3.1.1 DRAM Control Register (DCR) (Synchronous Mode) . 7-4

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor vii

7.3.1.2 DRAM Address and Control (DACR0) (Synchronous Mode). 7-5
7.3.1.3 DRAM Controller Mask Registers (DMR0) . 7-7
7.4 General Synchronous Operation Guidelines. 7-8
7.4.1 Address Multiplexing . 7-8
7.4.2 Interfacing Example . 7-10
7.4.3 Burst Page Mode. 7-10
7.4.4 Continuous Page Mode. 7-12
7.4.5 Auto-Refresh Operation . 7-14
7.4.6 Self-Refresh Operation . 7-15
7.5 Initialization Sequence . 7-16
7.5.1 Mode Register Settings . 7-16
7.6 SDRAM Example . 7-17
7.6.1 SDRAM Interface Configuration . 7-18
7.6.2 DCR Initialization. 7-18
7.6.3 DACR Initialization . 7-19
7.6.4 DMR Initialization . 7-20
7.6.5 Mode Register Initialization . 7-21
7.6.6 Initialization Code. 7-22

Chapter 8
Bus Operation

8.1 Bus Features . 8-1
8.2 Bus and Control Signals . 8-1
8.2.1 Address Bus . 8-2
8.2.2 Read/Write Control. 8-2
8.2.3 Transfer Acknowledge (TA). 8-2
8.2.4 Data Bus . 8-2
8.2.5 Chip Selects . 8-3
8.2.6 Output Enable . 8-3
8.3 Clock and Reset Signals . 8-3
8.3.1 Reset In . 8-4
8.3.2 System Bus Clock Output. 8-4
8.4 Bus Characteristics . 8-4
8.5 Data Transfer Operation . 8-4
8.5.1 Bus Cycle Execution. 8-5
8.5.2 Read Cycle . 8-6
8.5.3 Write Cycle . 8-8
8.5.4 Back-to-Back Bus Cycles . 8-9
8.5.5 Burst Cycles . 8-10
8.5.5.1 Line Transfers . 8-10
8.5.5.2 Line Read Bus Cycles. 8-10
8.6 Misaligned Operands . 8-13
8.7 Reset Operation. 8-14
8.7.1 Software Watchdog Reset. 8-15

MCF5251 Reference Manual, Rev. 1

viii Freescale Semiconductor

Chapter 9
System Integration Module (SIM)

9.1 SIM Overview. 9-1
9.1.1 SIM Features. 9-1
9.2 SIM Memory Map and Register Definitions . 9-1
9.2.1 SIM Register Memory Map . 9-2
9.3 SIM Module Programming Registers . 9-3
9.3.1 Module Base Address Registers . 9-3
9.3.2 Device ID Register . 9-6
9.4 Interrupt Interface Registers . 9-6
9.4.1 Primary Interrupt Controller Registers . 9-7
9.4.1.1 Interrupt Mask Register . 9-10
9.4.1.2 Interrupt Pending Register . 9-10
9.4.2 Secondary Interrupt Controller Registers . 9-11
9.4.2.1 Interrupt Level Selection . 9-12
9.4.2.2 Interrupt Vector Generation Register . 9-12
9.4.2.3 Spurious Vector Register . 9-13
9.4.2.4 Secondary Interrupt Sources . 9-13
9.4.3 Software Interrupts . 9-16
9.4.4 Interrupt Monitor . 9-16
9.5 System Protection and Reset Status Registers . 9-17
9.5.1 Reset Status Register . 9-17
9.5.2 Software Watchdog Timer . 9-17
9.5.2.1 System Protection Control Register . 9-19
9.5.2.2 Software Watchdog Interrupt Vector Register . 9-20
9.5.2.3 Software Watchdog Service Register . 9-21
9.6 CPU HALT Instruction. 9-21
9.7 MCF5251 Bus Arbitration Control Registers . 9-21
9.7.1 Default Bus Master Park Register . 9-21
9.7.1.1 Internal Arbitration Operation . 9-22
9.7.1.2 PARK Register Bit Configuration . 9-23
9.8 General Purpose I/Os . 9-24
9.8.1 General Purpose Inputs . 9-25
9.8.1.1 General Purpose Input Interrupts . 9-26
9.8.2 General Purpose Outputs . 9-27
9.9 Multiplexed Pin Configuration . 9-29

Chapter 10
Chip Select Module

10.1 Chip Select Features . 10-1
10.2 Chip Select Signals . 10-1
10.2.1 CS0/CS4 . 10-1
10.2.2 CS1/QSPI_CS3/GPIO28 . 10-2
10.2.3 CS2 — IDE_DIOR/GPIO31 and IDE_DIOW/GPIO32. 10-2

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor ix

10.2.4 CS3 . 10-2
10.2.5 Output Enable Signal OE . 10-2
10.2.6 Buffer Enable – BUFENB1 and BUFENB2 Signals . 10-2
10.2.7 Bus Termination Signal – IDE_IORDY. 10-2
10.3 Chip Select Operation. 10-3
10.3.1 General-Purpose Chip Select Operation . 10-3
10.3.2 Port Sizing. 10-3
10.3.3 Global Chip-Select Operation. 10-4
10.4 Chip Select Memory Map and Register Definitions. 10-4
10.4.1 Chip Select Register Memory Map . 10-4
10.4.2 Chip Select Module Registers. 10-5
10.4.2.1 Chip Select Address Register . 10-5
10.4.2.2 Chip Select Mask Register . 10-6
10.4.2.3 Chip Select Control Register . 10-8
10.4.2.4 Code Example. 10-10

Chapter 11
General Purpose Timer Modules

11.1 Timer Module Overview . 11-1
11.2 Timer Features . 11-1
11.3 Block Diagram . 11-1
11.4 Timer Signal Output . 11-2
11.5 Timer Operation . 11-2
11.5.1 Selecting the Prescaler . 11-2
11.5.2 Configuring the Timer for Reference Compare . 11-2
11.5.3 Configuring the Timer for Output Mode (TIMER0) . 11-3
11.6 General-Purpose Timer Memory Map and Register Definitions . 11-3
11.6.1 Timer Mode Registers (TMR0, TMR1) . 11-3
11.6.2 Timer Reference Registers (TRR0, TRR1) . 11-4
11.6.3 Timer Counters (TCN0, TCN1) . 11-5
11.6.4 Timer Event Registers (TER0, TER1) . 11-5
11.6.5 Timer Initialization Example Code. 11-6
11.6.5.1 Timer0 (Timer Mode Register). 11-6
11.6.5.2 Timer0 (Timer Reference Register0) . 11-6

Chapter 12
Analog to Digital Converter (ADC)

12.1 Overview. 12-1
12.1.1 Block Diagram . 12-1
12.2 External Signal Description . 12-1
12.3 ADC Memory Map and Register Definitions. 12-2
12.3.1 AD Configuration Register (ADconfig) . 12-2
12.3.2 AD Value Register (ADvalue) . 12-3
12.4 Functional Description . 12-4

MCF5251 Reference Manual, Rev. 1

x Freescale Semiconductor

12.4.1 Recommendations to Set-up of ADC and External Components. 12-4

Chapter 13
IDE and Flash Media Interface

13.1 IDE and SmartMedia Overview . 13-1
13.1.1 Buffer Enables BUFENB1, BUFENB2, and Associated Logic . 13-3
13.1.2 Generation of IDE_DIOR and IDE_DIOW . 13-5
13.1.3 Cycle Termination on CS2 (IDE_DIOR, IDE_DIOW) . 13-6
13.2 SmartMedia Interface Setup . 13-7
13.2.1 SmartMedia Timing . 13-8
13.3 Setting Up The IDE Interface . 13-9
13.3.1 IDE Timing Diagram . 13-10
13.4 Flash Media Interface . 13-11
13.5 Flash Media Interface Memory Map and Register Definitions . 13-12
13.5.1 Flash Media Clock Generation and Configuration . 13-12
13.5.2 Flash Media Interface Operation . 13-13
13.5.2.1 Flash Media Command Registers in Memory Stick Mode. 13-15
13.5.2.2 Flash Media Command Register 1 in Secure Digital Mode . 13-15
13.5.2.3 Flash Media Command Register 2 in Secure Digital Mode . 13-16
13.5.3 Flash Media Data Registers . 13-17
13.5.3.1 Flash Media Status Register . 13-18
13.5.4 Flash Media Interrupt Register . 13-18
13.5.5 Flash Media Interface Operation in Memory Stick Mode . 13-20
13.5.5.1 Reading Data from the Memory Stick . 13-21
13.5.5.2 Writing Data to the Memory Stick . 13-22
13.5.5.3 Interrupt from Memory Stick . 13-23
13.5.6 Flash Media Interface Operation in Secure Digital (SD) Mode . 13-23
13.5.6.1 Send Command to Card . 13-24
13.5.6.2 Write Data to Card . 13-25
13.5.7 Commonly Used Commands in SD Mode . 13-27
13.5.7.1 Send Command to Card (No Data). 13-27
13.5.7.2 Send Command to Card (Receive Multiple Data Blocks and Status) 13-28
13.5.7.3 Send Command to Card (Write Multiple Data Blocks) . 13-29

Chapter 14
DMA Controller

14.1 DMA Features. 14-1
14.2 DMA Signal Description . 14-1
14.2.1 DMA Request . 14-2
14.3 DMA Module Overview. 14-3
14.4 DMA Memory Map and Register Definitions . 14-4
14.4.1 REQUEST Source Selection . 14-4
14.4.2 Source Address Register . 14-5
14.4.3 Destination Address Register . 14-6

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor xi

14.4.4 Byte Count Register . 14-7
14.4.5 DMA Control Register . 14-8
14.4.6 DMA Status Register . 14-11
14.4.7 DMA Interrupt Vector Register . 14-12
14.5 Transfer Request Generation . 14-13
14.5.1 Cycle-Steal Mode . 14-13
14.5.2 Continuous Mode . 14-13
14.6 Data Transfer Modes . 14-13
14.6.1 Dual-Address Transaction . 14-13
14.6.1.1 Dual-Address Read . 14-13
14.6.1.2 Dual-Address Write . 14-14
14.7 DMA Transfer Functional Description. 14-14
14.7.1 Channel Initialization and Startup . 14-14
14.7.1.1 Channel Prioritization . 14-15
14.7.1.2 Programming the DMA . 14-15
14.7.2 Data Transfer . 14-16
14.7.2.1 Periphery Request Operation . 14-16
14.7.2.2 Auto Alignment . 14-16
14.7.2.3 Bandwidth Control . 14-16
14.7.3 Channel Termination . 14-17
14.7.3.1 Error Conditions . 14-17
14.7.3.2 Interrupts . 14-17

Chapter 15
UART Modules

15.1 UART Module Features . 15-1
15.1.1 Serial Communication Channel . 15-2
15.1.2 Baud-Rate Generator/Timer . 15-2
15.1.3 Interrupt Control Logic . 15-2
15.2 UART Module Signal Definitions . 15-3
15.2.1 Transmitter Serial Data Output. 15-3
15.2.2 Receiver Serial Data Input . 15-3
15.2.3 Request-To-Send . 15-4
15.2.4 Clear-To-Send. 15-4
15.3 Operation . 15-4
15.3.1 Baud-Rate Generator/Timer . 15-5
15.3.1.1 Calculating Baud Rates. 15-5
15.3.2 Transmitter and Receiver Operating Modes . 15-5
15.3.2.1 Transmitter . 15-6
15.3.2.2 Receiver . 15-8
15.3.2.3 Receiver FIFO. 15-9
15.3.3 Looping Modes . 15-10
15.3.3.1 Automatic Echo Mode . 15-10
15.3.3.2 Local Loopback Mode . 15-11

MCF5251 Reference Manual, Rev. 1

xii Freescale Semiconductor

15.3.3.Remote Loopback Mode . 15-11
15.3.4 Multidrop Mode . 15-12
15.3.5 Bus Operation . 15-13
15.3.5.1 Read Cycles . 15-13
15.3.5.2 Write Cycles . 15-13
15.3.5.3 Interrupt Acknowledge Cycles . 15-13
15.4 UART Memory Map and Register Definitions . 15-13
15.4.1 Mode Register 1 (UMR1n) . 15-14
15.4.2 Mode Register 2 (UMR2n) . 15-16
15.4.3 Status Registers (USRn) . 15-17
15.4.4 Clock-Select Registers (USCRn) . 15-19
15.4.5 Command Registers (UCRn) . 15-20
15.4.5.1 Miscellaneous Commands . 15-20
15.4.5.1.1 Reset Mode Register Pointer . 15-20
15.4.5.1.2 Reset Receiver . 15-20
15.4.5.1.3 Reset Transmitter . 15-21
15.4.5.1.4 Reset Error Status . 15-21
15.4.5.1.5 Reset Break-Change Interrupt . 15-21
15.4.5.1.6 Start Break . 15-21
15.4.5.1.7 Stop Break. 15-21
15.4.5.2 Transmitter Commands. 15-21
15.4.5.2.1 No Action Taken. 15-21
15.4.5.2.2 Transmitter Enable . 15-22
15.4.5.2.3 Transmitter Disable. 15-22
15.4.5.2.4 Do Not Use . 15-22
15.4.5.3 Receiver Commands . 15-22
15.4.5.3.1 No Action Taken. 15-22
15.4.5.3.2 Receiver Enable . 15-22
15.4.5.3.3 Receiver Disable . 15-22
15.4.5.3.4 Do Not Use . 15-22
15.4.6 Receiver Buffer Registers (UBRn) . 15-23
15.4.7 Transmitter Buffer Registers (UTBn). 15-23
15.4.8 Input Port Change Registers (UIPCRn) . 15-24
15.4.9 Auxiliary Control Registers (UACRn) . 15-24
15.4.10 Interrupt Status Registers (UISRn) . 15-25
15.4.11 Interrupt Mask Registers (UIMRn). 15-26
15.4.12 Baud Rate Generator (MSB) Register (UBG1n) . 15-27
15.4.13 Baud Rate Generator (LSB) Register (UBG2n) . 15-27
15.4.14 Interrupt Vector Registers (UIVRn) . 15-27
15.4.15 Input Port Registers (UIPn) . 15-27
15.4.16 Output Port Data Registers (UOP1n) . 15-28
15.4.17 Programming . 15-29
15.4.17.1 UART Module Initialization. 15-29
15.4.17.2 I/O Driver Example . 15-29
15.4.17.3 Interrupt Handling. 15-29

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor xiii

15.5 UART Module Initialization Sequence . 15-30

Chapter 16
Queued Serial Peripheral Interface (QSPI) Module

16.1 Features . 16-1
16.2 QSPI Module Overview . 16-1
16.2.1 Interface and Pins . 16-1
16.2.2 Internal Bus Interface . 16-2
16.3 Operation . 16-2
16.3.1 QSPI RAM . 16-3
16.3.1.1 Transmit RAM . 16-5
16.3.1.2 Receive RAM . 16-5
16.3.1.3 Command RAM . 16-5
16.3.2 Baud Rate Selection . 16-6
16.3.3 Transfer Delays. 16-6
16.3.4 Transfer Length. 16-7
16.3.5 Data Transfer . 16-7
16.4 QSPI Memory Map and Register Definitions. 16-8
16.4.1 QSPI Mode Register (QMR) . 16-8
16.4.2 QSPI Delay Register (QDLYR) . 16-10
16.4.3 QSPI Wrap Register (QWR). 16-10
16.4.4 QSPI Interrupt Register (QIR) . 16-11
16.4.5 QSPI Address Register (QAR) . 16-12
16.4.6 QSPI Data Register (QDR). 16-12
16.4.7 Command RAM Registers (QCR0–QCR15) . 16-13
16.4.8 Programming Example . 16-14

Chapter 17
Audio Interface Module (AIM)

17.1 Audio Interface Overview . 17-1
17.1.1 Audio Interface Block Diagram . 17-2
17.1.2 Audio Interface Structure . 17-3
17.2 Audio Interface Memory Map and Register Definitions . 17-4
17.3 Audio Interface Memory Map . 17-4
17.4 Audio Interrupt Mask and Status Register Descriptions . 17-6
17.5 Serial Audio Interface (I2S/EIAJ) Register Descriptions . 17-8
17.5.1 IIS/EIAJ Transmitter Descriptions . 17-11
17.5.2 IIS/EIAJ Transmitter Interrupts . 17-12
17.5.3 IIS/EIAJ Receiver Descriptions . 17-12
17.6 Digital Audio Interface (EBU/SPDIF) Register Descriptions . 17-13
17.6.1 IEC958 Receive Interface . 17-16
17.6.1.1 Audio Data Reception. 17-16
17.6.1.2 Control Channel Reception Register Descriptions . 17-16
17.6.1.3 Control Channel Interrupt (IEC958 “C” Channel New Frame) 17-17

MCF5251 Reference Manual, Rev. 1

xiv Freescale Semiconductor

17.6.1.4 Validity Flag Reception . 17-17
17.6.1.5 IEC958 Exception Definition . 17-17
17.6.1.6 EBU Extracted Clock . 17-18
17.6.1.7 Reception of User Channel and CD-Subcode Over IEC958 Receiver 17-18
17.6.1.8 U Channel Receive and Q Channel Receive Register Descriptions 17-18
17.6.1.9 U and Q Receive Register Interrupts . 17-20
17.6.1.10 Behavior of User Channel Receive Interface (CD Data) . 17-20
17.6.1.11 Behavior of User Channel Receive Interface (non-CD data) 17-22
17.6.2 IEC958 (SPDIF) Transmit Interface. 17-22
17.6.2.1 Transmit “C” Channel . 17-23
17.6.2.2 IEC958 Transmitter Interrupt Conditions. 17-23
17.6.2.3 IEC958-3 Ed2 and Tech 3250-E Standards Compliance . 17-23
17.6.2.4 Transmission of U-Channel and CD Subcode Data . 17-23
17.6.3 CD Subcode Interrupts . 17-24
17.6.3.1 Free Running Counter Synchronization . 17-26
17.6.3.2 Controlling the SFSY Sync Position . 17-26
17.6.4 Inserting CD User Channel Data Into IEC958 Transmit Data . 17-26
17.7 Processor Interface Overview. 17-26
17.7.1 Data Exchange Register Descriptions. 17-27
17.7.2 Data Exchange Register Overview . 17-28
17.7.2.1 Data In Selection. 17-29
17.7.3 PDIR and PDOR Field Formatting. 17-31
17.7.4 Overrun and Underrun with PDIR and PDOR Registers . 17-32
17.7.5 Automatic Resynchronization of FIFOs . 17-32
17.7.6 audioGlob Register Descriptions . 17-33
17.7.7 Audio Interrupts . 17-34
17.7.7.1 AudioTick Interrupts. 17-34
17.7.7.2 PDIR1, PDIR2, and PDIR3, Interrupts. 17-34
17.7.7.3 PDOR1, PDOR2, and PDOR3 Interrupts . 17-35
17.7.7.4 Audio Interrupt Routines and Timing. 17-37
17.7.8 CD-ROM Block Encoder and Decoder Register Descriptions. 17-38
17.7.8.1 CD-ROM Decoder Interrupts . 17-40
17.7.8.2 CD-ROM Encoder Interrupts . 17-41
17.8 DMA Channel Interaction . 17-41
17.9 Phase/Frequency Determination and XTRIM Function . 17-42
17.9.1 Incoming Source Frequency Measurement . 17-42
17.9.1.1 Filtering for the Discrete Time Oscillator. 17-44
17.9.2 XTRIM Option - Locking Xtal Clock to Incoming Signal. 17-44
17.9.3 XTRIM Internal Logic . 17-45

Chapter 18
I2C Modules

18.1 I2C Interface Features. 18-1
18.2 I2C Overview . 18-2

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor xv

18.3 I2C System Configuration. 18-3
18.4 I2C Protocol . 18-3
18.4.1 START Signal. 18-4
18.4.2 Slave Address Transmission . 18-4
18.4.3 Data Transfer . 18-4
18.4.4 Repeated START Signal. 18-5
18.4.5 STOP Signal . 18-5
18.4.6 Arbitration Procedure . 18-5
18.4.7 Clock Synchronization . 18-5
18.4.8 Handshaking . 18-6
18.4.9 Clock Stretching . 18-6
18.5 I2C Memory Map and Register Descriptions . 18-6
18.5.1 I2C Address Registers (MADR) . 18-7
18.5.2 I2C Frequency Divider Registers (MFDR). 18-7
18.5.3 I2C Control Registers (MBCR). 18-9
18.5.4 I2C Status Registers (MBSR) . 18-10
18.5.5 I2C Data I/O Registers (MBDR). 18-12
18.6 I2C Programming Examples . 18-12
18.6.1 Initialization Sequence . 18-12
18.6.2 Generation of START. 18-13
18.6.3 Post-Transfer Software Response . 18-14
18.6.4 Generation of STOP . 18-14
18.6.5 Generation of Repeated START. 18-15
18.6.6 Slave Mode . 18-15
18.6.7 Arbitration Lost. 18-16

Chapter 19
Boot ROM

19.1 Overview. 19-1
19.1.1 Boot Modes. 19-1
19.2 Boot ROM Operation . 19-2
19.2.1 Initialization . 19-2
19.2.1.1 Boot ROM Memory map . 19-2
19.2.1.2 Internal SRAM usage . 19-2
19.2.2 Boot Type Detection. 19-3
19.2.3 Serial Boot Data Format . 19-4
19.2.3.1 Command Encoding/Size Encoding . 19-4
19.2.3.2 Supported Commands. 19-5
19.2.4 IDE Boot Data Format . 19-5
19.2.5 Boot Modes. 19-5
19.2.5.1 Boot From I2C / SPI – Master Mode . 19-5
19.2.5.2 Boot from I2C - Slave Mode. 19-6
19.2.5.3 Boot from UART . 19-6
19.2.5.3.1 UART Protocol . 19-6

MCF5251 Reference Manual, Rev. 1

xvi Freescale Semiconductor

19.2.5.4 Boot from IDE Device . 19-6
19.3 Creating Appropriate Boot Record Files . 19-7

Chapter 20
Background Debug Mode (BDM) Interface

20.1 Debug Support Signals . 20-1
20.1.1 Breakpoint (BKPT) . 20-2
20.1.2 Debug Data (DDATA[3:0]) . 20-2
20.1.3 Development Serial Clock (DSCLK) . 20-2
20.1.4 Development Serial Input (DSI) . 20-2
20.1.5 Development Serial Output (DSO). 20-2
20.1.6 Processor Status (PST[3:0]) . 20-2
20.1.7 Processor Status Clock (PSTCLK) . 20-3
20.2 Real-Time Trace Support . 20-3
20.2.1 Processor Status Signal Encoding. 20-4
20.2.1.1 Continue Execution (PST = $0) . 20-4
20.2.1.2 Begin Execution of an Instruction (PST = $1) . 20-4
20.2.1.3 Entry into User Mode (PST = $3). 20-4
20.2.1.4 Begin Execution of PULSE or WDDATA instructions (PST = $4). 20-4
20.2.1.5 Begin Execution of Taken Branch (PST = $5) . 20-5
20.2.1.6 Begin Execution of RTE Instruction (PST = $7) . 20-6
20.2.1.7 Begin Data Transfer (PST = $8–$B) . 20-6
20.2.1.8 Exception Processing (PST = $C) . 20-6
20.2.1.9 Emulator Mode Exception Processing (PST = $D) . 20-6
20.2.1.10 Processor Stopped (PST = $E) . 20-6
20.2.1.11 Processor Halted (PST = $F) . 20-6
20.3 Background-Debug Mode (BDM) . 20-6
20.3.1 CPU Halt. 20-7
20.3.2 BDM Serial Interface . 20-8
20.3.2.1 Receive Packet Format . 20-9
20.3.2.2 Transmit Packet Format . 20-9
20.3.3 BDM Command Set . 20-10
20.3.3.1 BDM Command Set Summary . 20-10
20.3.4 Command Sequence Diagram . 20-12
20.3.4.1 Command Set Descriptions . 20-13
20.3.4.1.1 Read Address/Data Register (RAREG/RDREG) . 20-13
20.3.4.1.2 Write Address/Data Register (WAREG and WDREG) . 20-14
20.3.4.1.3 Read Memory Location (READ) . 20-14
20.3.4.1.4 Write Memory Location (WRITE) . 20-16
20.3.4.1.5 Dump Memory Block (DUMP) . 20-17
20.3.4.1.6 Fill Memory Block (FILL) . 20-19
20.3.4.1.7 Resume Execution (GO). 20-21
20.3.4.1.8 No Operation (NOP) . 20-21
20.3.4.1.9 Read Control Register (RCREG) . 20-22

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor xvii

20.3.4.1.10 Write Control Register (WCREG) . 20-23
20.3.4.1.11 Read Debug Module Register (RDMREG) . 20-24
20.3.4.1.12 Write Debug Module Register (WDMREG) . 20-24
20.3.4.1.13 Unassigned Opcodes. 20-25
20.3.4.2 BDM Accesses of the eMAC Registers . 20-26
20.4 Real-Time Debug Support . 20-26
20.4.1 Theory of Operation . 20-27
20.4.1.1 Emulator Mode . 20-28
20.4.1.2 Debug Module Hardware . 20-29
20.4.1.2.1 Reuse of Debug Module Hardware (Rev. A) . 20-29
20.5 Debug Module Memory Map and Register Definitions . 20-29
20.5.1 Address Breakpoint Registers. 20-30
20.5.2 Address Attribute Trigger Register. 20-31
20.5.3 Program Counter Breakpoint Register (PBR, PBMR) . 20-32
20.5.4 Data Breakpoint Registers (DBR, DBMR). 20-33
20.5.5 Trigger Definition Register (TDR) . 20-35
20.5.6 Configuration/Status Register (CSR) . 20-36
20.5.7 BDM Address Attribute Register (BAAR). 20-39
20.5.8 Concurrent BDM and Processor Operation . 20-39
20.5.9 Freescale-Recommended BDM Pinout . 20-40

Chapter 21
IEEE 1149.1 Test Access Port (JTAG)

21.1 Features . 21-1
21.2 Block Diagram . 21-1
21.3 JTAG Signal Descriptions . 21-2
21.3.1 Test Clock (TCK) . 21-3
21.3.2 Test Reset/Development Serial Clock (TRST/DSCLK) . 21-3
21.3.3 Test Mode Select/ Breakpoint (TMS/BKPT) . 21-3
21.3.4 Test Data Input/Development Serial Input (TDI/DSI) . 21-4
21.3.5 Test Data Output/Development Serial Output (TDO/DSO). 21-4
21.4 TAP Controller . 21-4
21.5 JTAG Register Definitions . 21-6
21.5.1 JTAG Instruction Shift Register . 21-6
21.5.1.1 EXTEST Instruction . 21-6
21.5.1.2 IDCODE . 21-6
21.5.1.3 SAMPLE/PRELOAD Instruction. 21-7
21.5.1.4 CLAMP Instruction . 21-7
21.5.1.5 HIGHZ Instruction . 21-7
21.5.1.6 BYPASS Instruction . 21-8
21.5.2 ID Code Register . 21-8
21.5.3 JTAG Boundary Scan Register. 21-9
21.5.4 JTAG Bypass Register . 21-9
21.6 Restrictions . 21-9

MCF5251 Reference Manual, Rev. 1

xviii Freescale Semiconductor

21.7 Disabling IEEE 1149.1A Standard Operation . 21-9
21.8 Obtaining the IEEE 1149.1A Standard. 21-10

Chapter 22
USB, ATA DMA, and Clock Integration Module

22.1 Introduction. 22-1
22.2 Memory Map and Register Definitions . 22-1
22.2.1 Miscellaneous Configuration Register (MISCCR). 22-1
22.2.2 ATA DMA Address Register (ATA_DADDR) . 22-3
22.2.3 ATA DMA Count Register (ATA_DCOUNT) . 22-3
22.2.4 RTC Time Register (RTC_TIME) . 22-3
22.2.5 USB/FlexCAN Clock Register (USBCANCLK) . 22-4
22.3 Functional Description . 22-4
22.3.1 ATA/USB Cache Memory . 22-4
22.3.1.1 Endianness Issues . 22-5
22.3.1.2 DMA Transfer between ATA and Cache RAM . 22-5

Chapter 23
Advanced Technology Attachment Controller (ATA)

23.1 Features . 23-1
23.2 Block Diagram . 23-1
23.3 Overview. 23-2
23.3.1 Modes of Operation . 23-3
23.4 External Signal Description . 23-4
23.4.1 Detailed Signal Descriptions . 23-4
23.4.1.1 ATA_RST (Out) . 23-4
23.4.1.2 ATA_DIOR (Out). 23-5
23.4.1.3 ATA_DIOW (Out) . 23-5
23.4.1.4 ATA_CS0, ATA_CS1, ATA_A0, ATA_A1, ATA_A2 (Out) 23-5
23.4.1.5 ATA_DMARQ (In) . 23-5
23.4.1.6 ATA_DMACK (Out) . 23-5
23.4.1.7 ATA_INTRQ (In) . 23-5
23.4.1.8 ATA_IORDY (In). 23-5
23.4.1.9 ATA_D[15:0] (In/Out/Tri-state). 23-5
23.4.2 Electrical Spec on the ATA Bus, Bus Buffers . 23-5
23.4.3 Timing on ATA Bus . 23-6
23.4.3.1 Timing Parameters . 23-6
23.4.3.2 PIO Mode Timing. 23-7
23.4.3.3 Timing in Multiword DMA Mode . 23-8
23.4.3.4 UDMA In Timing Diagrams. 23-10
23.4.3.5 UDMA Out Timing Diagrams . 23-12
23.5 Memory Map and Register Definitions . 23-14
23.5.1 Memory Map . 23-15
23.5.2 Register Descriptions . 23-18

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor xix

23.5.2.1 Endianness . 23-18
23.5.2.2 Timing Registers. 23-19
23.5.2.2.1 TIME_OFF Register . 23-19
23.5.2.2.2 TIME_ON Register. 23-19
23.5.2.2.3 TIME_1 Register . 23-20
23.5.2.2.4 TIME_2W Register. 23-20
23.5.2.2.5 TIME_2R Register . 23-20
23.5.2.2.6 TIME_AX Register. 23-21
23.5.2.2.7 TIME_PIO_RDX Register . 23-21
23.5.2.2.8 TIME_4 Register . 23-21
23.5.2.2.9 TIME_9 Register . 23-21
23.5.2.2.10 TIME_M Register. 23-22
23.5.2.2.11 TIME_JN Register . 23-22
23.5.2.2.12 TIME_D Register . 23-22
23.5.2.2.13 TIME_K Register . 23-23
23.5.2.2.14 TIME_ACK Register . 23-23
23.5.2.2.15 TIME_ENV Register . 23-23
23.5.2.2.16 TIME_RPX Register. 23-23
23.5.2.2.17 TIME_ZAH Register . 23-24
23.5.2.2.18 TIME_MLIX Register . 23-24
23.5.2.2.19 TIME_DVH Register . 23-24
23.5.2.2.20 TIME_DZFS Register. 23-25
23.5.2.2.21 TIME_DVS Register . 23-25
23.5.2.2.22 Time_CVH Register . 23-25
23.5.2.2.23 TIME_SS Register . 23-25
23.5.2.2.24 TIME_CYC Register . 23-26
23.5.2.3 FIFO Data Registers . 23-26
23.5.2.3.1 FIFO_Data Register in 16-Bit Mode . 23-26
23.5.2.3.2 FIFO_Data Register in 32-Bit Mode . 23-26
23.5.2.3.3 FIFO_FILL Register . 23-27
23.5.2.4 ATA_CONTROL Register . 23-27
23.5.2.5 Interrupt Registers. 23-28
23.5.2.5.1 Interrupt_Pending Register . 23-29
23.5.2.5.2 Interrupt_Enable Register . 23-30
23.5.2.5.3 Interrupt_Clear Register . 23-31
23.5.2.6 FIFO Alarm Register . 23-31
23.5.2.7 Drive Registers Connected to ATA Bus. 23-32
23.6 Functional Description . 23-33
23.6.1 Resetting ATA Bus. 23-33
23.6.2 Programming ATA Bus Timing and iordy_en . 23-33
23.6.3 Access to ATA Bus in PIO Mode. 23-33
23.6.4 Using DMA Mode to Receive Data from ATA Bus . 23-34
23.6.5 Using DMA Mode to Transmit Data to ATA Bus . 23-35

MCF5251 Reference Manual, Rev. 1

xx Freescale Semiconductor

Chapter 24
Universal Serial Bus Interface

24.1 Features . 24-1
24.2 Block Diagram . 24-2
24.3 Overview. 24-2
24.4 Modes of Operation . 24-3
24.5 External Signals . 24-3
24.5.1 On-Chip Transceiver. 24-3
24.5.2 PHY Clocks . 24-3
24.5.3 System Clock . 24-4
24.6 Memory Map and Register Definitions . 24-4
24.6.1 Module Identification Registers . 24-5
24.6.1.1 Identification (ID) Register. 24-5
24.6.1.2 General Hardware Parameters (HWGENERAL) Register . 24-7
24.6.1.3 Host Hardware Parameters (HWHOST) Register . 24-8
24.6.1.4 Device Hardware Parameters (HWDEVICE) Register—Non-EHCI. 24-8
24.6.1.5 Transmit Buffer Hardware Parameters (HWTXBUF) Register 24-9
24.6.1.6 Receive Buffer Hardware Parameters (HWRXBUF) Register. 24-10
24.6.2 Capability Registers . 24-11
24.6.2.1 Capability Registers Length (CAPLENGTH) . 24-11
24.6.2.2 Host Controller Interface Version (HCIVERSION). 24-11
24.6.2.3 Host Controller Structural Parameters (HCSPARAMS) . 24-12
24.6.2.4 Host Controller Capability Parameters (HCCPARAMS). 24-12
24.6.2.5 Device Controller Interface Version (DCIVERSION) . 24-14
24.6.2.6 Device Controller Capability Parameters (DCCPARAMS) Non-EHCI 24-14
24.6.3 Operational Registers . 24-15
24.6.3.1 USB Command Register (USBCMD) . 24-15
24.6.3.2 USB Status Register (USBSTS) . 24-18
24.6.3.3 USB Interrupt Enable Register (USBINTR) . 24-20
24.6.3.4 Frame Index Register (FRINDEX). 24-21
24.6.3.5 Control Data Structure Segment Register (CTRLDSSEGMENT). 24-23
24.6.3.6 Periodic Frame List Base Address Register (PERIODICLISTBASE). 24-23
24.6.3.7 Device Address Register (DEVICEADDR), Non-EHCI . 24-24
24.6.3.8 Current Asynchronous List Address Register (ASYNCLISTADDR) 24-24
24.6.3.9 Endpoint List Address Register (ENDPOINTLISTADDR), Non-EHCI 24-25
24.6.3.10 Master Interface Data Burst Size Register (BURSTSIZE)—Non-EHCI 24-26
24.6.3.11 Transmit FIFO Tuning Controls Register (TXFILLTUNING)—Non-EHCI 24-27
24.6.3.12 Configure Flag Register (CONFIGFLAG). 24-29
24.6.3.13 Port Status and Control Registers (PORTSC) . 24-29
24.6.3.14 On-The-Go Status and Control (OTGSC), Non-EHCI. 24-34
24.6.3.15 USB Mode Register (USBMODE)—Non-EHCI . 24-37
24.6.3.16 Endpoint Setup Status Register (ENDPTSETUPSTAT)—Non-EHCI 24-38
24.6.3.17 Endpoint Initialization Register (ENDPTPRIME)—Non-EHCI 24-39
24.6.3.18 Endpoint Flush Register (ENDPTFLUSH), Non-EHCI. 24-40

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor xxi

24.6.3.19 Endpoint Status Register (ENDPTSTATUS), Non-EHCI . 24-41
24.6.3.20 Endpoint Complete Register (ENDPTCOMPLETE), Non-EHCI 24-42
24.6.3.21 Endpoint Control Register 0 (ENDPTCTRL0), Non-EHCI. 24-42
24.6.3.22 Endpoint Control Register n (ENDPTCTRLn), Non-EHCI. 24-44
24.7 Functional Description . 24-45
24.7.1 DMA Engine. 24-45
24.7.2 FIFO RAM Controller . 24-46
24.7.3 PHY Interface . 24-46
24.8 Host Data Structures . 24-46
24.8.1 Periodic Frame List. 24-47
24.8.2 Asynchronous List Queue Head Pointer. 24-48
24.8.3 Isochronous (High-Speed) Transfer Descriptor (iTD) . 24-49
24.8.3.1 Next Link Pointer . 24-49
24.8.3.2 iTD Transaction Status and Control List . 24-50
24.8.3.3 iTD Buffer Page Pointer List (Plus) . 24-51
24.8.4 Split Transaction Isochronous Transfer Descriptor (siTD) . 24-52
24.8.4.1 Next Link Pointer . 24-52
24.8.4.2 siTD Endpoint Capabilities/Characteristics . 24-53
24.8.4.3 siTD Transfer State . 24-54
24.8.4.4 siTD Buffer Pointer List (Plus). 24-55
24.8.4.5 siTD Back Link Pointer . 24-56
24.8.5 Queue Element Transfer Descriptor (qTD) . 24-56
24.8.5.1 Next qTD Pointer . 24-57
24.8.5.2 Alternate Next qTD Pointer . 24-57
24.8.5.3 qTD Token . 24-58
24.8.5.4 qTD Buffer Page Pointer List . 24-61
24.8.6 Queue Head. 24-61
24.8.6.1 Queue Head Horizontal Link Pointer . 24-62
24.8.6.2 Endpoint Capabilities/Characteristics. 24-62
24.8.6.3 Transfer Overlay . 24-64
24.8.7 Periodic Frame Span Traversal Node (FSTN) . 24-65
24.8.7.1 FTSN Normal Path Pointer. 24-66
24.8.7.2 FSTN Back Path Link Pointer . 24-66
24.9 Host Operations . 24-66
24.9.1 Host Controller Initialization . 24-67
24.9.2 Power Port. 24-68
24.9.3 Reporting Over-Current . 24-68
24.9.4 Suspend/Resume. 24-68
24.9.4.1 Port Suspend/Resume . 24-69
24.9.5 Schedule Traversal Rules . 24-70
24.9.6 Periodic Schedule Frame Boundaries vs. Bus Frame Boundaries 24-72
24.9.7 Periodic Schedule . 24-74
24.9.8 Managing Isochronous Transfers Using iTDs . 24-75
24.9.8.1 Host Controller Operational Model for iTDs . 24-75
24.9.8.2 Software Operational Model for iTDs . 24-77

MCF5251 Reference Manual, Rev. 1

xxii Freescale Semiconductor

24.9.8.2.1 Periodic Scheduling Threshold . 24-78
24.9.9 Asynchronous Schedule . 24-79
24.9.9.1 Adding Queue Heads to Asynchronous Schedule . 24-80
24.9.9.2 Removing Queue Heads from Asynchronous Schedule. 24-81
24.9.9.3 Empty Asynchronous Schedule Detection . 24-83
24.9.9.4 Asynchronous Schedule Traversal: Start Event . 24-84
24.9.9.5 Reclamation Status Bit (USBSTS Register) . 24-84
24.9.10 Managing Control/Bulk/Interrupt Transfers via Queue Heads. 24-84
24.9.10.1 Buffer Pointer List Use for Data Streaming with qTDs . 24-85
24.9.10.2 Adding Interrupt Queue Heads to the Periodic Schedule . 24-87
24.9.10.3 Managing Transfer Complete Interrupts from Queue Heads 24-87
24.9.11 Ping Control . 24-88
24.9.12 Split Transactions . 24-89
24.9.12.1 Split Transactions for Asynchronous Transfers . 24-89
24.9.12.1.1 Asynchronous—Do-Start-Split. 24-90
24.9.12.1.2 Asynchronous—Do-Complete-Split. 24-90
24.9.12.2 Split Transaction Interrupt . 24-91
24.9.12.2.1 Split Transaction Scheduling Mechanisms for Interrupt 24-91
24.9.12.2.2 Host Controller Operational Model for FSTNs . 24-94
24.9.12.2.3 Software Operational Model for FSTNs. 24-96
24.9.12.2.4 Tracking Split Transaction Progress for Interrupt Transfers 24-97
24.9.12.2.5 Split Transaction Execution State Machine for Interrupt 24-97
24.9.12.2.6 Periodic Interrupt—Do-Start-Split . 24-98
24.9.12.2.7 Periodic Interrupt—Do-Complete-Split . 24-99
24.9.12.2.8 Managing the QH[FrameTag] Field . 24-102
24.9.12.2.9 Rebalancing the Periodic Schedule. 24-103
24.9.12.3 Split Transaction Isochronous . 24-103
24.9.12.3.1 Split Transaction Scheduling Mechanisms for Isochronous. 24-104
24.9.12.3.2 Tracking Split Transaction Progress for Isochronous Transfers 24-107
24.9.12.3.3 Split Transaction Execution State Machine for Isochronous 24-109
24.9.12.3.4 Periodic Isochronous—Do-Start-Split . 24-109
24.9.12.3.5 Periodic Isochronous—Do Complete Split. 24-111
24.9.12.3.6 Complete-Split for Scheduling Boundary Cases 2a, 2b 24-114
24.9.12.3.7 Split Transaction for Isochronous—Processing Examples. 24-115
24.9.13 Port Test Modes . 24-116
24.9.14 Interrupts . 24-117
24.9.14.1 Transfer/Transaction Based Interrupts . 24-118
24.9.14.1.1 Transaction Error . 24-118
24.9.14.1.2 Serial Bus Babble . 24-118
24.9.14.1.3 Data Buffer Error . 24-119
24.9.14.1.4 USB Interrupt (Interrupt on Completion (IOC)). 24-120
24.9.14.1.5 Short Packet . 24-120
24.9.14.2 Host Controller Event Interrupts. 24-120
24.9.14.2.1 Port Change Events. 24-120
24.9.14.2.2 Frame List Rollover . 24-120

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor xxiii

24.9.14.2.3 Interrupt on Async Advance . 24-120
24.9.14.2.4 Host System Error. 24-121
24.10 Device Data Structures . 24-121
24.10.1 Endpoint Queue Head. 24-122
24.10.1.1 Endpoint Capabilities/Characteristics. 24-123
24.10.1.2 Transfer Overlay . 24-124
24.10.1.3 Current dTD Pointer . 24-124
24.10.1.4 Set-Up Buffer . 24-124
24.10.2 Endpoint Transfer Descriptor (dTD) . 24-125
24.11 Device Operational Model . 24-127
24.11.1 Device Controller Initialization . 24-127
24.11.2 Port State and Control. 24-128
24.11.2.1 Bus Reset . 24-130
24.11.2.2 Suspend/Resume. 24-131
24.11.2.2.1 Suspend Description . 24-131
24.11.2.2.2 Suspend Operational Model . 24-131
24.11.2.2.3 Resume . 24-131
24.11.3 Managing Endpoints . 24-132
24.11.3.1 Endpoint Initialization . 24-132
24.11.3.1.1 Stalling . 24-133
24.11.3.2 Data Toggle. 24-133
24.11.3.2.1 Data Toggle Reset. 24-133
24.11.3.2.2 Data Toggle Inhibit . 24-134
24.11.3.3 Device Operational Model For Packet Transfers . 24-134
24.11.3.3.1 Priming Transmit Endpoints . 24-134
24.11.3.3.2 Priming Receive Endpoints . 24-135
24.11.3.4 Interrupt/Bulk Endpoint Operational Model. 24-135
24.11.3.4.1 Interrupt/Bulk Endpoint Bus Response Matrix . 24-136
24.11.3.5 Control Endpoint Operation Model . 24-137
24.11.3.5.1 Setup Phase . 24-137
24.11.3.5.2 Data Phase. 24-137
24.11.3.5.3 Status Phase . 24-138
24.11.3.5.4 Control Endpoint Bus Response Matrix . 24-138
24.11.3.6 Isochronous Endpoint Operational Model . 24-139
24.11.3.6.1 Isochronous Pipe Synchronization . 24-140
24.11.3.6.2 Isochronous Endpoint Bus Response Matrix . 24-140
24.11.4 Managing Queue Heads . 24-141
24.11.4.1 Queue Head Initialization . 24-142
24.11.4.2 Operational Model For Setup Transfers . 24-143
24.11.5 Managing Transfers with Transfer Descriptors . 24-143
24.11.5.1 Software Link Pointers . 24-143
24.11.5.2 Building a Transfer Descriptor . 24-144
24.11.5.3 Executing A Transfer Descriptor . 24-144
24.11.5.4 Transfer Completion . 24-145
24.11.5.5 Flushing/De-Priming an Endpoint . 24-146

MCF5251 Reference Manual, Rev. 1

xxiv Freescale Semiconductor

24.11.5.6 Device Error Matrix . 24-146
24.11.6 Servicing Interrupts. 24-147
24.11.6.1 High-Frequency Interrupts . 24-147
24.11.6.2 Low-Frequency Interrupts . 24-147
24.11.6.3 Error Interrupts . 24-147
24.12 Deviations from the EHCI Specifications . 24-148
24.12.1 Embedded Transaction Translator Function. 24-148
24.12.1.1 Capability Registers . 24-148
24.12.1.2 Operational Registers . 24-148
24.12.1.3 Discovery . 24-149
24.12.1.4 Data Structures . 24-149
24.12.1.5 Operational Model . 24-150
24.12.1.5.1 Microframe Pipeline . 24-150
24.12.1.5.2 Split State Machines . 24-150
24.12.1.5.3 Asynchronous Transaction Scheduling and Buffer Management 24-151
24.12.1.5.4 Periodic Transaction Scheduling and Buffer Management 24-151
24.12.1.5.5 Multiple Transaction Translators . 24-152
24.12.2 Device Operation . 24-152
24.12.3 Non-Zero Fields the Register File . 24-152
24.12.4 SOF Interrupt . 24-152
24.12.5 Embedded Design . 24-153
24.12.5.1 Frame Adjust Register . 24-153
24.12.6 Miscellaneous Variations from EHCI. 24-153
24.12.6.1 Programmable Physical Interface Behavior . 24-153
24.12.6.2 Discovery . 24-153
24.12.6.2.1 Port Reset . 24-153
24.12.6.2.2 Port Speed Detection . 24-154

Chapter 25
FlexCAN Module

25.1 Features . 25-1
25.2 Block Diagram . 25-1
25.3 Overview. 25-2
25.3.1 The CAN System . 25-3
25.3.2 Modes of Operation . 25-3
25.3.2.1 Normal Mode . 25-3
25.3.2.2 Freeze Mode . 25-3
25.3.2.3 Module Disabled Mode . 25-4
25.3.2.4 Loop-back Mode. 25-4
25.3.2.5 Listen-only Mode . 25-5
25.4 External Signal Description . 25-5
25.5 Memory Map and Register Definitions . 25-5
25.5.1 FlexCAN Configuration Register (CANMCRn) . 25-6
25.5.2 FlexCAN Control Register (CANCTRLn) . 25-8

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor xxv

25.5.3 FlexCAN Free Running Timer Register (TIMERn). 25-11
25.5.4 Rx Mask Registers (RXGMASKn, RX14MASKn, RX15MASKn) 25-11
25.5.5 FlexCAN Error Counter Register (ERRCNTn) . 25-13
25.5.6 FlexCAN Error and Status Register (ERRSTATn) . 25-14
25.5.7 Interrupt Mask Register (IMASKn) . 25-16
25.5.8 Interrupt Flag Register (IFLAGn). 25-16
25.5.9 Message Buffer Structure . 25-17
25.6 Functional Overview. 25-21
25.6.1 Transmit Process. 25-21
25.6.2 Arbitration Process . 25-22
25.6.3 Receive Process . 25-22
25.6.3.1 Self-Received Frames . 25-23
25.6.4 Matching Process . 25-24
25.6.5 Message Buffer Handling . 25-24
25.6.5.1 Serial Message Buffers (SMBs) . 25-24
25.6.5.2 Message Buffer Deactivation . 25-24
25.6.5.3 Locking and Releasing Message Buffers . 25-25
25.6.6 CAN Protocol Related Frames . 25-26
25.6.6.1 Remote Frames . 25-26
25.6.6.2 Overload Frames. 25-26
25.6.7 Time Stamp. 25-27
25.6.8 Bit Timing. 25-27
25.7 FlexCAN Initialization Sequence . 25-29
25.7.1 Interrupts . 25-30

Chapter 26
Real-Time Clock

26.1 Block Diagram . 26-1
26.2 External Signal Description . 26-1
26.3 Memory Map and Register Definitions . 26-1
26.3.1 Miscellaneous Configuration Register (MISCCR). 26-2
26.3.2 RTC Time Register (RTC_TIME) . 26-2
26.4 Functional Description . 26-2
26.4.1 Battery Removal Detection. 26-2

MCF5251 Reference Manual, Rev. 1

xxvi Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor xxvii

About This Book
The MCF5251 is designed as a system controller/decoder for compressed audio music players addressing
both portable and automotive solutions supporting CD, HDD and USB based systems. The 32-bit
ColdFire® core with an enhanced multiply and accumulate (eMAC) unit provides optimum performance
and code density for the combination of control code and signal processing required for compressed audio
decode, file management, and system control.

Audience
The MCF5251 Reference Manual is intended to provide a design engineer with the necessary data to
successfully integrate the MCF5251 into a wide variety of applications. It is assumed that the reader
understands operating systems, microprocessor system design, basic principles of software and hardware,
and basic details of the ColdFire architecture.

Organization
The MCF5251 Reference Manual is organized into 26 chapters that cover the operation and programming
of the MCF5251 device. Summaries of the chapters follow.

Chapter 1, “MCF5251 Introduction”: This chapter provides an overview of the MCF5251 ColdFire®
processor and general descriptions of the MCF5251 features and modules.

Chapter 2, “Signal Description”: This chapter describes the MCF5251 input and output signals, organized
into functional groups.

Chapter 3, “ColdFire Core”: This chapter provides an overview of the MCF5251 microprocessor core. The
chapter describes the CFV2 memory map and register definitions as implemented
on the MCF5251. It also includes a full description of exception handling, data
formats, an instruction set summary, and a table of instruction timings.

Chapter 4, “Phase-Locked Loop and Clock Dividers”: This chapter provides detailed information about
the operation and programming of the clock generation module as well as the
recommended circuit settings. It also describes the audio clock generation and the
system power states.

Chapter 5, “Instruction Cache”: This chapter describes the physical organization, operation, memory map,
and register definitions for the MCF5251 instruction cache.

Chapter 6, “Static RAM (SRAM)”: This chapter describes the SRAM operation, memory map, register
definitions, initialization, and SRAM power management.

Chapter 7, “Synchronous DRAM Controller Module”: This chapter discusses the operation, memory
map, register definitions, signal and command descriptions, and an interface
example for the SDRAM controller.

Chapter 8, “Bus Operation”:This chapter describes bus functionality, the bus control signals, and the bus
cycles provided for data-transfer operations. Bus operation is defined for transfers
initiated by the MCF5251 as a bus master and for transfers initiated by an alternate
bus master. This chapter includes descriptions of the error conditions, bus
arbitration, and the reset operation.

MCF5251 Reference Manual, Rev. 1

xxviii Freescale Semiconductor

Chapter 9, “System Integration Module (SIM)”:This chapter describes the operation, memory map, and
register definitions of the System Integration Module (SIM) registers, including
the interrupt controller and system-protection functions for the MCF5251. The
SIM provides overall control of the internal and external buses and serves as the
interface between the ColdFire® core and the internal peripherals or external
devices. The SIM also configures the general purpose input/output and enables the
CPU HALT instruction.

Chapter 10, “Chip Select Module”:The Chip Select Module provides user-programmable control of the
three chip select outputs, two buffer enable outputs and one output-enable signal.
This chapter describes the operation, memory map, and register definitions of the
chip-select registers, including the chip select address, mask, and control registers.

Chapter 11, “General Purpose Timer Modules”: This chapter describes the configuration and operation of
the two general purpose timer modules (Timer0 and Timer1). Also provided are
the memory map and register definitions as well as example initialization code.

Chapter 12, “Analog to Digital Converter (ADC)”: This chapter explains the ADC operation, memory
map, register definitions, and setup recommendations of external components.

Chapter 13, “IDE and Flash Media Interface”:This chapter describes the operation of the bus interface to
IDE and Flash Media, the interface setup, timing and operation are provided as
well as commonly used commands.

Chapter 14, “DMA Controller”: This chapter provides the DMA signal descriptions, memory map,
register definitions, as well as discussing transfer generation, transfer modes, and
the transfer function.

Chapter 15, “UART Modules”: This chapter provides signal descriptions, operation, memory map,
register definitions, and initialization sequence of the three UART modules.

Chapter 16, “Queued Serial Peripheral Interface (QSPI) Module”: This chapter describes the operation of
the Queued Serial Peripheral interface module and provides its memory map and
register definitions. The QSPI module provides a serial peripheral interface with
queued transfer capability. It allows users to queue up to 16 transfers at once,
eliminating CPU intervention between transfers.

Chapter 17, “Audio Interface Module (AIM)”:This chapter discusses the audio interface structure,
memory map, and register definitions, as well as transmit and receive interfaces.
The audio interface module provides the necessary input and output features to
receive and transmit digital audio signals over serial audio interfaces (IIS/EIAJ)
and over digital audio interfaces (IEC958).

Chapter 18, “I2C Modules”: This chapter provides the system configuration and protocol of the I2C
module, the memory map and register definitions, and a programming example.

Chapter 19, “Boot ROM”: This chapter describes the BootROM operation, the boot modes, and creation
of record files.

Chapter 20, “Background Debug Mode (BDM) Interface”: This chapter details the MCF5251 hardware
debug support. The topics discussed are real-time trace support, background
debug mode (BDM), and real-time debug support. The memory map, register
definitions, and Debug support operation are provided.

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor xxix

Chapter 21, “IEEE 1149.1 Test Access Port (JTAG)”: This chapter discussed the JTAG signal
descriptions, TAP controller, memory map, register definitions, and how to disable
the standard operation.

Chapter 22, “USB, ATA DMA, and Clock Integration Module”:This chapter includes the memory map,
register definitions, and functional description of the integration module.

Chapter 23, “Advanced Technology Attachment Controller (ATA)”:This chapter discusses the modes of
operation, signal descriptions, memory map, register definitions, timing
parameters and functional description of the ATA interface.

Chapter 24, “Universal Serial Bus Interface”: This chapter describes the universal serial bus (USB)
interface of the MCF5251. The content includes the operation, signal descriptions,
host data structures, and host operations. Also provided is the device operational
model and deviations from the host mode of operation.

Chapter 25, “FlexCAN Module”:This chapter discusses the modes of operation, signals, memory map,
register definitions, and the functional and initialization sequence of the FlexCAN
controller.

Chapter 26, “Real-Time Clock”: This chapter provides the external signal descriptions, memory map,
register definitions, and functional descriptions of the Real-Time Clock.

Revision History
Table 1 summarizes revisions to this document since the previous release (Rev. 0).

Suggested Reading
Provide the full title, name of author, edition, and year of publication for any book you suggest as a
supplement to this one.

PowerPC AIX Version 4 Application Binary Interface, 1st ed., April 1992.

Table 1. Revision History

Rev
Number

Date of
Release

Substantive Changes

Rev 1 1/2008 • Added USBMODE[ES] bit.
 • Added ADC max sampling frequency to section 12.4.1
 • Clarified ADValue[OF] bit description.
 • 12.4.1 Added to paragraph "For a correct measurement..." that this applies only for the first conversion

or when switching channels.
 • Reserved CSCRx[PS]=01 in table 10-5, since 8-bit port size is not possible on this device.
 • Added WIDESHIFT bit to FLASHMEDIACMD1 at location 22 for SD mode. Not present in MemoryStick

mode.
 • Added missing overbar to HI_Z signal throughout.
 • Fixed errors in 3 UART register diagrams.

UMR2n register addresses are the same as UMR1n.
UIVR2 was wrongly named UVR2
UOP12 was wrongly named UOP22

 • Added buad rate calculation example, section 15.3.1.1.

MCF5251 Reference Manual, Rev. 1

xxx Freescale Semiconductor

The KornShell Command and Programming Language, Morris Bolsky and David Korn (Prentice Hall:
1989).

Conventions
This document uses the following notational conventions:

• Courier monospaced type indicate commands, command parameters, code examples, expressions,
data types, and directives.

• Italic type indicates replaceable command parameters.

• All source code examples are in C.

Definitions, Acronyms, and Abbreviations
The following list defines the acronyms and abbreviations used in this document.

DSP digital signal processor

JTAG joint test access group

OnCE™ On-Chip Emulation

MIPS million instructions per second

SRAM static RAM

SDRAM block DRAM memory selected by SD_CS0/GPIO60 signals. The base address of the
block is programmed in the DRAM address and control register (DACR0).

SDRAM RAMs that operate like asynchronous DRAMs but with a synchronous clock, a
pipelined, multiple-bank architecture, and faster speed.

SDRAM bank An internal partition in an SDRAM device. For example, a 64-MBIT SDRAM
component might be configured as four 512K x 32 banks. Banks are selected
through the SDRAM component’s bank select lines.

References
The following sources were referenced to produce this book:

1. Low-Level Software Design Document for the PowerPC Architectural Simulator (delivery date to
be determined)

2. Requirements Chapter of the Software Project Management Plan for the PowerPC
Microarchitectural Timing Simulator (delivery date to be determined)

3. PowerPC User Instruction Set Architecture, Book I, Version 1.00, 5/19/92 (subtitled “Work in
Progress”)

4. PowerPC Virtual Environment Architecture, Book II, Version 1.00, 5/19/92 (subtitled “Work in
Progress”)

Register Summary
Figure 1 shows the key to the register fields and Table 2 shows the register figure conventions.

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor xxxi

Figure 2. Key to Register Fields

Always
reads 1

1 Always
reads 0

0 R/W
bit

BIT Read-
only bit

BIT Write-
only bit

Write 1
to clear

BIT Self-clear
bit

0 N/A

BIT w1c BIT

Table 3. Register Figure Conventions

Convention Description

Depending on its placement in the read or write row, indicates that the bit is not readable or not writable.

FIELDNAME Identifies the field. Its presence in the read or write row indicates that it can be read or written.

Register Field Types

r Read only. Writing this bit has no effect.

w Write only.

rw Standard read/write bit. Only software can change the bit’s value (other than a hardware reset).

rwm A read/write bit modified by a hardware in some fashion other than by a reset.

w1c Write one to clear. A status bit that can be read, and is cleared by writing a one.

slfclr Self-clearing bit. Writing a one has some effect on the module, but it always reads as zero.

Reset Values

0 Resets to zero.

1 Resets to one.

— Undefined at reset.

u Unaffected by reset.

[signal_name] Reset value is determined by polarity of indicated signal.

MCF5251 Reference Manual, Rev. 1

xxxii Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 1-1

Chapter 1
MCF5251 Introduction

1.1 MCF5251 Overview
This chapter provides an overview of the MCF5251 ColdFire® processor and general descriptions of the
MCF5251 features and modules.

The MCF5251 was designed as a system controller/decoder for compressed audio music players
addressing both portable and automotive solutions supporting CD, HDD and USB based systems. The
32-bit ColdFire core with enhanced multiply and accumulate (eMAC) unit provides optimum performance
and code density for the combination of control code and signal processing required for compressed audio
decode, file management, and system control.

The MCF5251 is also an excellent general purpose system controller with over 125 Dhrystone 2.1 MIPS
@ 140 MHz performance at a very competitive price. The integrated peripherals and eMAC allow the
MCF5251 to replace both the microcontroller and the DSP in certain applications. Most peripheral pins
can also be remapped as general purpose I/O pins.

Low power features include flexible PLL (with power-down mode) with dynamic clock switching, a
hardwired CD ROM decoder, advanced 0.13um CMOS process technology, 1.2 V core power supply, and
on-chip 128 Kbyte SRAM.

MP3 decode requires less than 20 MHz CPU bandwidth and runs in on-chip SRAM.

For additional information regarding software drivers and applications, refer to the MCF5251 website,
http://www.freescale.com/coldfire.

1.2 MCF5251 Feature Introduction
The MCF5251 integrated microprocessor combines a Version 2 ColdFire processor core operating at
140 MHz with the following modules.

• USB 2.0 high-speed on-the-go (OTG) with integrated PHY
• Dedicated ATA hard disc interface
• Dedicated USB and ATA 16k SRAM with DMA support
• SmartMedia interface (including IDE and compact flash)
• Dual I2C1 controller
• Three UARTs
• NOR flash interface
• Supports 16-wide SDRAM memories

1. I2C is a Philips proprietary bus

http://www.freescale.com/coldfire

MCF5251 Introduction

MCF5251 Reference Manual, Rev. 1

1-2 Freescale Semiconductor

• Flash Memory Card Interface
• Serial Audio Interface which supports IIS and EIAJ audio protocols
• Digital audio transmitter (SPDIF) and two receivers compliant with IEC958 audio protocol
• Queued serial peripheral interface (QSPI) (master only)
• CD-ROM and CD-ROM XA block decoding and encoding function
• Two controller area network modules (FlexCAN)
• Embedded BDM debug port
• Integrated enhanced multiply and accumulate unit (eMAC)
• Unified cache system, 32-bits wide (8 Kbyte cache)
• 128 Kbytes zero-wait states SRAM, usable for code and data
• Interrupt controller with programmable interrupt priority
• DMA controller with 4 DMA channels
• On-chip real-time clock works with 32.768 kHz X-tal. Real-time clock has tamper detection

functionality.
• Operates from crystal oscillator or external clock source
• Two timers
• 6-channel Analog/Digital Converter
• General Purpose I/O pins shared with other functions
• 1.2 V core, 3.3 V I/O
• Internal 1.2 V Linear regulator to power the core (configuration is optional)
• 225 pin MAPBGA package

1.3 MCF5251 Block Diagram
Figure 1-1 provides the block diagram of the MCF5251 device.

MCF5251 Introduction

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 1-3

Figure 1-1. MCF5251 Block Diagram

Debug
Module

with JTAG

ColdFire
CF2 Core
140 MHzKRAM1

KRAM0

Instruction
Cache

5x08
DMA

5x08
Arbiter

2x FlexCAN
Controller

Clock
PLL

XTAL
Oscillator

Real-Time
Clock

Interrupt
Controller

8K

64K

64K

“Backdoor” Interface

Translator

16 Kbyte
SRAM

SPI
Interface

Audio
Interfaces

AD
Logic

ARB
DMA

Memory Stick/SD
Interface

USB 2.0
OTG Controller

ATA
Controller

Timer

5x08
Interrupt

E-bus

SDRAM
Interface

E-bus

I2C

UART (3)

SmartMedia

Timer Pins

I2C Pins

UART Pins

MUX

SDRAM
SRAM
IDE

BUFENB1

SPI Pins

Audio Interface
Pins

AD IN Pins

IDE_DIOR

IDE_DIOW

IDE_IORDY

FlashMedia
Pins

USB Analog

USB XTAL Pins

ATA Pins

USB XTAL
Oscillator

USB
PHY

Standard ColdFire Peripheral Blocks

BUFENB2

FlexCAN Pins

CRIN/CROUT Pins

RTC Pins

MCF5251 Introduction

MCF5251 Reference Manual, Rev. 1

1-4 Freescale Semiconductor

1.4 MCF5251 Feature Details
The primary features of the MCF5251 integrated processor include the following:

• ColdFire CF2 Processor Core operating at 140 MHz
— Clock-doubled Version 2 microprocessor core
— 32-bit internal data bus, 16 bit external data bus
— 16 user-visible, 32-bit general-purpose registers
— Supervisor/user modes for system protection
— Vector base register to relocate exception-vector table
— Optimized for high-level language constructs

• DMA controller
— Four fully programmable channels: Two dedicated to the audio interface module and two

dedicated to the UART module. Any of the four channels can be associated to the ATA interface
(External requests are not supported.)

— Supports dual- and single-address transfers with 32-bit data capability
— Two address pointers that can increment or remain constant
— 16-/24-bit transfer counter
— Operand packing and unpacking support
— Auto-alignment transfers supported for efficient block movement
— Supports bursting and cycle stealing
— All channels support memory to memory transfers
— Interrupt capability
— Provides two clock cycle internal access

• Enhanced Multiply-accumulate Unit
— Single-cycle multiply-accumulate operations for 32 x 32 bit and 16 x 16 bit operands
— Support for signed, unsigned, integer, and fixed-point fractional input operands
— Four 48-bit accumulators to allow the use of a 40-bit product
— The addition of 8 extension bits to increase the dynamic number range
— Fast signed and unsigned integer multiplies

• 8-Kbyte Direct Mapped Instruction Cache
— Clocked at core clock frequency
— Flush capability
— Non-blocking cache provides fast access to critical code and data

• 128-Kbyte SRAM
— Provides one-cycle access to critical code and data
— Split into two banks, SRAM0 (64K), and SRAM1 (64K)
— DMA requests to/from internal SRAM1 supported

• Crystal Trim

MCF5251 Introduction

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 1-5

— The XTRIM output can be used to trim an external crystal oscillator circuit which would allow
lock with an incoming IEC958 or serial audio signal

• USB 2.0 high-speed on-the-go (OTG)
— Compliant with OTG supplement to the USB 2.0 specification
— Operates as high speed, full speed and low speed host, and as high speed and full speed device
— Host negotiation protocol and session request protocol are implemented with software support,

but also controllable by software.
— On-chip USB 2.0 High-speed compatible PHY

• ATA Controller
— Main use of this block is to interface with IDE hard disc drives and ATAPI optical disc drives.
— Supports ATA6 pio modes 0, 1, 2, 3, and 4; multiword DMA modes 0, 1, and 2; ultra DMA

modes 0, 1, 2, and 3.
• Twin Controller Area Network (CAN) 2.0B Communication Unit

— The controller is a full implementation of the Bosch CAN protocol specification 2.0B, which
supports both standard and extended message frames.

• Real-time Clock
— Works with 32.768 kHz X-tal
— Anti-tamper feature detects if clock was stopped by removing battery

• Audio Interfaces
— SPDIF (IEC958) inputs and output
— Three serial Philips IIS/Sony EIAJ interfaces

– One with input and output, one with output only and one with input only (Two inputs, two
outputs)

– Master and Slave operation
• CD Text Interface

— Allows the interface of CD subcode (transmitter only)
• Three Universal Asynchronous Receivers/Transmitters (UARTn)

— Full duplex operation
— Baud-rate generator
— Modem control signals: clear-to-send (CTS) and request-to-send (RTS) for UART0/1 only.
— DMA interrupt capability
— Processor-interrupt capability

• Queued Serial Peripheral Interface (QSPI)
— Programmable queue to support up to 16 transfers without user intervention
— Supports transfer sizes of 8 to 16 bits in 1-bit increments
— Four peripheral chip-select lines for control of up to 15 devices
— Supports Baud rates up to 17.5 Mbps at 140 MHz
— Programmable delays before and after transfers

MCF5251 Introduction

MCF5251 Reference Manual, Rev. 1

1-6 Freescale Semiconductor

— Programmable clock phase and polarity
— Supports wraparound mode for continuous transfers
— Master mode only

• Dual 16-bit General-purpose Multimode Timers
— Clock source selectable from external, CPU clock/2 and CPU clock/32.
— 8-bit programmable prescaler
— 1 output
— Processor-interrupt capability
— 14.3 nS resolution with CPU clock at 140 MHz

• SmartMedia Interface
• Analog/Digital Converter

— 12-Bit Resolution
— 6 Muxed inputs

• Flash Memory Card Interface
— Allows connection to Sony MemoryStick compatible devices
— Support Secure Digital (SD) cards and other types of flash media (Multi-Media Card).

• Dual I2C Interfaces
— Interchip communication bus interface for EEPROMs, LCD controllers, A/D converters,

keypads, CD-DSP’s
— Master and slave modes, support for multiple masters
— Automatic interrupt generation with programmable level

• System debug support
— Real-time instruction trace for determining dynamic execution path
— Background debug mode (BDM) for debug features while halted
— Debug exception processing capability
— Real-time debug support

• System Interface
— Glueless bus interface and DRAMC support for interfacing to 16-bit DRAM, SRAM, ROM,

FLASH, and I/O devices
— Three programmable chip-select signals for static memories or peripherals with programmable

wait states and port sizes.
— One dedicated chip select for 16-bit wide DRAM/SDRAM.
— The device can boot from external memory or from its own internal boot ROM. If selected to

boot from external memory (Flash / ROM) then CS0 is active after reset.
— Programmable interrupt controller (low interrupt latency, seven external interrupt requests,

programmable autovector generator)
— Up to 57 programmable general-purpose outputs
— Up to 60 programmable general-purpose inputs

MCF5251 Introduction

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 1-7

— IEEE 1149.1A Test (JTAG) Module
• Clocking

— Clock-multiplied PLL, programmable frequency
• 1.2 V Core, 3.3 V I/O
• 225 pin BGA package (140 MHz)

1.5 MCF5251 Functional Overview

1.5.1 ColdFire CF2 Core

The ColdFire processor Version 2 (CF2) core consists of two independent, decoupled pipeline structures
to maximize performance while minimizing core size.The instruction fetch pipeline (IFP) is a two-stage
pipeline for prefetching instructions. The prefetched instruction stream is then gated into the two-stage
operand execution pipeline (OEP), which decodes the instruction, fetches the required operands, and then
executes the required function. Because the IFP and OEP pipelines are decoupled by an instruction buffer
that serves as a FIFO queue, the IFP can prefetch instructions in advance of their actual use by the OEP,
which minimizes time stalled waiting for instructions. The OEP is implemented in a two-stage pipeline
featuring a traditional RISC data path with a dual-read-ported register feeding an arithmetic/logic unit
(ALU).

1.5.2 DMA Controller

The MCF5251 provides four fully programmable DMA channels for quick data transfer. Single and dual
address mode is supported with the ability to program bursting and cycle stealing. Data transfer is
selectable as 8-, 16-, 32-, or 128-bits. Packing and unpacking is supported.

Two internal audio channels and two UART’s can be used with the DMA channels. Any DMA channel
can be used with the ATA interface. All channels can perform memory to memory transfers. The DMA
controller has a user-selectable, 24- or 16-bit counter and a programmable DMA exception handler.

External requests are not supported.

1.5.3 Enhanced Multiply and Accumulate Module (eMAC)

The integrated eMAC unit provides a common set of DSP operations and enhances the integer multiply
instructions in the ColdFire architecture. The eMAC provides functionality in three related areas:

1. Faster signed and unsigned integer multiplies
2. Multiply-accumulate operations supporting signed and unsigned operands
3. Miscellaneous register operations

Multiplies of 16x16 and 32x32 with 48-bit accumulates are supported in addition to a full set of extensions
for signed and unsigned integers plus signed, fixed-point fractional input operands. The eMAC has a
single-clock issue for 32x32-bit multiplication instructions and implements a four-stage execution
pipeline.

MCF5251 Introduction

MCF5251 Reference Manual, Rev. 1

1-8 Freescale Semiconductor

1.5.4 Instruction Cache

The instruction cache improves system performance by providing cached instructions to the execution unit
in a single clock cycle. The MCF5251 processor uses an 8K-byte, direct-mapped instruction cache to
achieve 125 MIPS at 140 MHz. The cache is accessed by physical addresses, where each 16-byte line
consists of an address tag and a valid bit. The instruction cache also includes a bursting interface for 16-bit
and 8-bit port sizes to quickly fill cache lines.

1.5.5 Internal 128-Kbyte SRAM

The 128-Kbyte on-chip SRAM is split over two banks, SRAM0 (64K) and SRAM1 (64K). It provides
single clock-cycle access for the ColdFire core. This SRAM can store processor stack and critical code or
data segments to maximize performance. Memory in the second bank (SRAM1) can be accessed under
DMA.

1.5.6 DRAM Controller

The MCF5251 DRAM controller provides a glueless interface for one bank of DRAM, and can address up
to 32MB. The controller supports a 16-bit data bus. The controller operates in page mode, non-page mode,
and burst-page mode and supports SDRAMs.

1.5.7 System Interface

The MCF5251 provides a glueless interface to 16-bit port size SRAM, ROM, and peripheral devices with
independent programmable control of the assertion and negation of chip-select and write-enable signals.

The MCF5251 also supports bursting ROMs.

1.5.8 External Bus Interface

The bus interface controller transfers data between the ColdFire core or DMA and memory, peripherals,
or other devices on the external bus. The external bus interface provides 23 address lines, a 16-bit data bus,
Output Enable, and Read/Write signals. This interface implements an extended synchronous protocol that
supports bursting operations.

1.5.9 USB 2.0 High-Speed On-The-Go

The USB module in the MCF5251 is used for communication to a PC or communication to slave devices,
e.g. to download data from a hard disc player to a flash player, to a photo printer and so on. The USB
supports full Host mode functionality. The USB supports the OTG supplement to the USB 2.0
specification. It operates as high speed, full speed and low speed host, and as high speed and full speed
device. Host negotiation protocol (HNP) and session request protocol (SRP) are implemented with
software support.

A USB 2.0 high-speed compatible PHY is integrated on-chip.

MCF5251 Introduction

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 1-9

1.5.10 ATA Controller

The ATA block is an AT attachment host interface. Its main use is to interface with IDE hard disc drives
and ATAPI optical disc drives. It interfaces with the ATA device over a number of ATA signals. The ATA
interface is compliant to the ATA-6 standard, and supports PIO mode 0 to 4, multiword DMA mode 0, 1
and 2, and ultra DMA mode 0 to 3.

1.5.11 Two Controller Area Network (CAN) 2.0B Communication Unit

The two FlexCan modules are full implementation of the Bosch CAN protocol specification 2.0B, which
supports both standard and extended message frames. The 32 message buffers that are supported, are
stored in an embedded RAM.

1.5.12 Real-Time Clock

There is an on-chip real-time clock. The real-time clock needs an external 32.768 kHz crystal, and an
external keep-alive battery. The real-time clock has an anti-tamper feature that will detect when the battery
is removed.

1.5.13 Serial Audio Interfaces

The MCF5251 digital audio interface provides three serial Philips IIS/Sony EIAJ interfaces. One interface
is a 4-pin (1 bit clock, 1 word clock, 1 data in, 1 data out), the other two interfaces are 3-pin (1 bit clock,
1 word clock, 1 data in or 1 data out). The serial interfaces have no limit on minimum sampling frequency.
Maximum sampling frequency is determined by the maximum frequency on the bit clock input. (1/3 the
frequency of the internal system clock.)

1.5.14 IEC958 Digital Audio Interfaces

The MCF5251 has two digital audio input interfaces, and one digital audio output interface. There are four
digital audio input pins and two digital audio output pins. An internal multiplexer selects one of the four
inputs to one of the two digital audio inputs.

One digital audio output carries the consumer “c” channel, the other carries the professional “c” channel.

The IEC958 outputs can take the output from the internal IEC958 generator, or multiplex out one of the
four IEC958 inputs.

1.5.15 Audio Bus

The audio interfaces connect to an internal bus that carries all audio data. Each receiver places its received
data on the audio bus and each transmitter takes data from the audio bus for transmission. Each transmitter
has a source select register.

In addition to the audio interfaces, there are six CPU accessible registers connected to the audio bus. Three
of these registers allow data reads from the audio bus and allow selection of the audio source. The other

MCF5251 Introduction

MCF5251 Reference Manual, Rev. 1

1-10 Freescale Semiconductor

three registers provide a write path to the audio bus and can be selected by transmitters as the audio source.
Through these registers, the CPU has access to the audio samples for processing.

Audio can be routed from a receiver to a transmitter without the data being processed by the core so the
audio bus can be used as a digital audio data switch. The audio bus can also be used for audio format
conversion.

1.5.16 CD-ROM Encoder/Decoder

The MCF5251 is capable of processing CD-ROM sectors in hardware. Processing is compliant with
CD-ROM and CD-ROM XA standards.

The CD-ROM decoder performs the following functions in hardware:
• Sector sync recognition
• Descrambling of sectors
• Verification of the CRC checksum for Mode 1, Mode 2 Form 1, and Mode 2 Form 2 sectors
• Third-layer error correction (ECC) is not performed in hardware. It is not essential to do

Third-layer error correction but should it be determined for a particular application then a s/w
Third-layer error correction is available.

The CD-ROM encoder performs the following functions in hardware:
• Sector sync recognition
• Scrambling of sectors
• Insertion of the CRC checksum for Mode 1, Mode 2 Form 1, and Mode 2 Form 2 sectors.
• Third-layer error encoding needs to be done in software. This can use approximately 5-10 MHz of

performance for single-speed.

1.5.17 Three UART Modules

Three full-duplex UARTs with independent receive and transmit buffers are in this module. Data formats
can be 5, 6, 7, or 8 bits with even, odd, or no parity, and up to 2 stop bits in 1/16 increments. Four-byte
receive buffers and two-byte transmit buffers minimize CPU service calls. The Triple UART module also
provides several error-detection and maskable-interrupt capabilities. Modem support includes
request-to-send (RTS) and clear-to-send (CTS) lines for UART0/1. The third UART lacks request-to-send
and clear-to-send lines.

The system clock provides the clocking function from a programmable prescaler. Users can select full
duplex, auto-echo loopback, local loopback, and remote loopback modes. The programmable triple
UARTs can interrupt the CPU on numerous events.

1.5.18 Queued Serial Peripheral Interface QSPI

The QSPI module provides a serial peripheral interface with queued transfer capability. It supports up to
16 stacked transfers at a time, making CPU intervention between transfers unnecessary. Transfers of up to

MCF5251 Introduction

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 1-11

17.5 Mbits/second are possible at a CPU clock of 140 MHz. The QSPI supports master mode operation
only.

1.5.19 Timer Module

The MCF5251 incorporates two independent, general-purpose 16-bit timers. The output of an 8-bit
prescaler clocks each 16-bit timer. The prescaler input can be the system clock or the system clock divided
by 16. Timer0 output pin is multiplexed with SDATAO1/TOUT0/GPIO18. Upon reset, this pin is
programmed as SDATAO1. To use the TOUT0 pin function it is necessary to program the Pin
Configuration register appropriately.

1.5.20 IDE Interface

The MCF5251 system bus allows connection of an IDE hard disk drive with a minimum of external
hardware. The external hardware consists of bus buffers for address and data and are intended to reduce
the load on the bus and prevent SDRAM and Flash accesses from propagating to the IDE bus. The control
signals for the buffers are generated in the MCF5251.

1.5.21 Analog/Digital Converter (ADC)

The six channel ADC is based on the Sigma-Delta concept with 12-bit resolution. Both the analog
comparator and digital sections are integrated in the MCF5251. An external integrator circuit
(resistor/capacitor) is required which is driven by the ADC output. A interrupt is provided when the ADC
measurement cycle is complete.

1.5.22 Flash Memory Card Interface

The interface is Sony® Memory Stick®, SecureDigital and Multi-Media card compatible. However, there
is no hardware support for Sony MagicGate™.

1.5.23 I2C Module

The two-wire I2C bus interface, which is compliant with the Philips I2C bus standard, is a bidirectional
serial bus that exchanges data between devices. The I2C bus minimizes the interconnection between
devices in the end system and is best suited for applications that need occasional bursts of rapid
communication over short distances among several devices. Bus capacitance and the number of unique
addresses limit the maximum communication length and the number of devices that can be connected.

1.5.24 Chip-Selects

There are three programmable chip selects on the MCF5251:
• Three programmable chip-select outputs (CS0/CS4, CS1 and CS2) provide signals that enable

glueless connection to external memory and peripheral circuits. The base address, access
permissions, and automatic wait-state insertion are programmable with configuration registers.
These signals also interface to 16-bit ports.

MCF5251 Introduction

MCF5251 Reference Manual, Rev. 1

1-12 Freescale Semiconductor

CS0 is intended to be used with an external boot ROM / Flash memory.
The MCF5251 can boot from its internal boot ROM, here CS0 is used internally, CS0/CS4 pin is
then is configured as CS4. CS0 and CS4 cannot be used simultaneously.

• One dedicated chip select (CS2) is used for the IDE interface

1.5.25 GPIO Interface

Up to 60 General Purpose Inputs and up to 57 General Purpose Outputs are available. These are
multiplexed with various other signals. Seven of the GPIO inputs have edge sensitive interrupt capability.

1.5.26 Interrupt Controller

The MCF5251 has a primary and a secondary interrupt controller. These interrupt controllers handle
interrupts from all internal interrupt sources. In addition, there are 7 GPIOs where external interrupts can
be generated on the rising or falling edge of the pin. All interrupts are autovectored and interrupt levels are
programmable.

1.5.27 JTAG

To help with system diagnostics and manufacturing testing, the MCF5251 includes dedicated
user-accessible test logic that complies with the IEEE 1149.1A standard for boundary scan testability,
often referred to as Joint Test Action Group, or JTAG. For more information, refer to the IEEE 1149.1A
standard. Freescale provides BSDL files for JTAG testing.

1.5.28 System Debug Interface

The ColdFire processor core debug interface supports real-time instruction trace and debug, plus
background-debug mode. A background-debug mode (BDM) interface provides system debug.

In real-time instruction trace, four status lines provide information on processor activity in real time (PST
pins). A four-bit wide debug data bus (DDATA) displays operand data and change-of-flow addresses,
which helps track the CPU’s dynamic execution path.

1.5.29 System Oscillator and PLL

The oscillator will operate from an external crystal connected across CRIN and CROUT. The circuit can
also operate from an external clock connected to CRIN.

Typically, an external 16.92 MHz or 33.86 MHz clock input is used for CD R/W applications, while an
11.2896 MHz clock is more practical for Portable CD player applications. However, the on-chip
programmable PLL, which generates the processor clock, allows the use of almost any low frequency
external clock (5-35 MHz).

Two clock outputs (MCLK1 and MCLK2) are provided for use as Audio Master Clock. The output
frequencies of both outputs are programmable to Fxtal, Fxtal/2, Fxtal/3, and Fxtal/4. The Fxtal/3 option is
intended for use when the 33.86 MHz crystal option is used.

MCF5251 Introduction

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 1-13

The MCF5251 supports voltage controlled crystal oscillator (VCXO) operation of the oscillator by means
of a 16-bit pulse density modulation output. Using this mode, it is possible to lock the oscillator to the
frequency of an incoming IEC958 or IIS signal. The maximum trim depends on the type and design of the
oscillator. Typically a trim of +/- 100 ppm can be achieved with a crystal oscillator and over +/- 1000 ppm
with an LC oscillator.

1.5.30 Sleep and Wake-Up Modes

The MCF5251 has a low power Sleep mode where all clocks are disabled and SRAM contents are
maintained. Sleep mode is exited by taking the external Wake-up pin low. Sleep mode is selected by
software control of a bit in the PLL register. When Sleep mode is exited code execution resumes from the
next instruction.

1.5.31 Bootloader

The MCF5251 incorporates a ROM Bootloader, which enables booting from UART, I2C, SPI or IDE
devices.

1.5.32 Internal Voltage Regulator

An internal 1.2 V regulator can be used to supply the CPU and PLL sections of the MCF5251, reducing
the number of external components required and allowing operation from a single supply rail, typically 3.3
volts. However, it must be noted that the internal regulator has an efficiency of less than 50%, and it is not
intended for use in battery powered applications, where the use of a highly efficient external DC-DC
converter would be more appropriate.

MCF5251 Introduction

MCF5251 Reference Manual, Rev. 1

1-14 Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 2-1

Chapter 2
Signal Description

2.1 Overview
This chapter describes the MCF5251 input and output signals. The signal descriptions as shown in
Table 2-1 are grouped according to relevant functionality.

Table 2-1. MCF5251 Signal Index

Signal Name Mnemonic Function
Input/
Output

Reset
State

Address A[24:1]
A[23]/GPO54

24 address lines—address 23 is
multiplexed with GPO54 and address
24 is multiplexed with A20 (SDRAM
access only).

Out X

Read-write control RW Bus write enable—indicates if read or
write cycle in progress.

Out H

Output enable OE Output enable for asynchronous
memories connected to chip selects

Out Negated

Data D[31:16] Data bus used to transfer word data In/Out Hi_Z

Synchronous row
address strobe

SDRAS/GPIO59 Row address strobe for external
SDRAM

Out Negated

Synchronous column
address strobe

SDCAS/GPIO39 Column address strobe for external
SDRAM

Out Negated

SDRAM write enable SDWE/GPIO38 Write enable for external SDRAM Out Negated

SDRAM upper byte
enable

SDUDQM/GPO53 Upper byte enable—indicates during
write cycle if high byte is written.

Out –

SDRAM lower byte
enable

SDLDQM/GPO52 Lower byte enable—indicates during
write cycle if low byte is written.

Out –

SDRAM chip selects SD_CS0/GPIO60 SDRAM chip select In/Out Negated

SDRAM clock enable BCLKE/GPIO63 SDRAM clock enable Out –

System clock BCLK/GPIO40 SDRAM clock output In/Out –

ISA bus read strobe IDE_DIOR/GPIO31
(CS2)

1 ISA bus read strobe and 1 ISA bus
write strobe—allow connection of an
independent ISA bus peripheral, such
as an IDE slave device.

In/Out –

ISA bus write strobe IDE_DIOW/GPIO32
(CS2)

In/Out –

ISA bus wait signal IDE_IORDY/GPIO33 ISA bus wait line available for both
busses

In/Out –

Signal Description

MCF5251 Reference Manual, Rev. 1

2-2 Freescale Semiconductor

Chip Selects[2:0] CS0/CS4
CS1/QSPICS3/GPIO28

Chip selects bits 2 through 0—
enable peripherals at programmed
addresses. CS0 provides boot ROM
selection.

Out
In/Out

negated

Buffer enable 1 BUFENB1/GPIO29 Two programmable buffer
enables—allow seamless steering of
external buffers to split data and
address bus in sections.

In/Out –

Buffer enable 2 BUFENB2/GPIO30 In/Out –

Transfer acknowledge TA/GPIO12 Transfer Acknowledge signal. In/Out –

Wake Up WAKEUP/GPIO21 Wake-up signal input In –

Serial Clock Line SCL0/SDATA1_BS1/GPIO41
SCL1/TXD1/GPIO10

Clock signal for Dual I2C module
operation

In/Out –

Serial Data Line SDA0/SDATA3/GPIO42
SDA1/RXD1/GPIO44

Serial data port for second I2C module
operation

In/Out –

Receive Data SDA1/RXD1/GPIO44
RXD0/GPIO46
EF/RXD2/GPIO6

Receive serial data input for UART In –

Transmit Data SCL1/TXD1/GPIO10
TXD0/GPIO45
XTRIM/TXD2/GPIO0

Transmit serial data output for UART Out –

Request-To-Send DDATA3/RTS0/GPIO4
DDATA1/RTS1/SDATA2_BS2/GPIO2

Signals sent from UART0/1 that it is
ready to receive data

Out –

Clear-To-Send DDATA2/CTS0/GPIO3
DDATA0/CTS1/SDATA0_SDIO1/GPIO1

Signals sent to UART0/1 that data can
be transmitted to peripheral

In –

Timer Output SDATAO1/TOUT0/GPIO18 Capability of output waveform or pulse
generation

Out –

IEC958 inputs EBUIN1/GPIO36
EBUIN2/SCLKOUT/GPIO13
EBUIN3/CMD_SDIO2/GPIO14
QSPICS0/EBUIN4/GPIO15

Audio interfaces to IEC958 inputs In –

IEC958 outputs EBUOUT1/GPIO37
QSPICS1/EBUOUT2/GPIO16

Audio interfaces to IEC958 outputs Out –

Serial data in SDATAI1/GPIO17
SDATAI3/GPIO8

Audio interfaces to serial data inputs In –

Serial data out SDATAO1/TOUT0/GPIO18
SDATAO2/GPIO34

Audio interfaces to serial data outputs In/Out
Out

–

Word clock LRCK1/GPIO19
LRCK2/GPIO23
LRCK3/AUDIOCLK/GPIO43

Audio interfaces to serial word clocks In/Out –

Bit clock SCLK1/GPIO20
SCLK2/GPIO22
SCLK3/GPIO35

audio interfaces to serial bit clocks In/Out –

Table 2-1. MCF5251 Signal Index (continued)

Signal Name Mnemonic Function
Input/
Output

Reset
State

Signal Description

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 2-3

Serial input EF/RXD2/GPIO6 Error flag serial in In/Out –

Serial input CFLG/GPIO5 C-flag serial in In/Out –

Subcode clock RCK/QSPIDIN/QSPIDOUT/
GPIO26

Audio interfaces to subcode clock In/Out –

Subcode sync QSPIDOUT/SFSY/GPIO27 Audio interfaces to subcode sync In/Out –

Subcode data QSPICLK/SUBR/GPIO25 Audio interfaces to subcode data In/Out –

Clock frequency trim XTRIM/TXD2/GPIO0 Clock trim control Out –

Audio clocks out MCLK1/GPIO11
QSPICS2/MCLK2/GPIO24

DAC output clocks Out –

Audio clock in LRCK3/AUDIOCLK/GPIO43 Optional audio clock input –

MemoryStick/
SecureDigital interface

EBUIN3/CMD_SDIO2/GPIO14 Secure Digital command lane—
MemoryStick interface 2 data I/O

In/Out –

EBUIN2/SCLKOUT/GPIO13 Clock out for both MemoryStick
interfaces and for Secure Digital

In/Out –

DDATA0/CTS1/SDATA0_SDIO1/GPIO1 SecureDigital serial data bit 0—
MemoryStick interface 1 data I/O

In/Out –

SCL0/SDATA1_BS1/GPIO41 SecureDigital serial data bit 1—
MemoryStick interface 1 strobe

In/Out –

DDATA1/RTS1/SDATA2_BS2/GPIO2 SecureDigital serial data bit 2—
MemoryStick interface 2 strobe
Reset output signal

In/Out –

SDA0/SDATA3/GPIO42 SecureDigital serial data bit 3 In/Out –

AT attachment interface
(IDE interface)

ATA_DIOW ATA write strobe signal Out –

ATA_DIOR ATA read strobe signal Out –

ATA_IORDY ATA I/O ready input In –

ATA_DMARQ ATA DMA request In –

ATA_DMACK ATA DMA acknowledge Out –

ATA_INTRQ ATA interrupt request In –

ATA_CS0 ATA chip select 0 Out –

ATA_CS1 ATA chip select 1 Out –

ATA_A[2:0] 3-bit ATA address bus Out –

ATA_D[15:0] 16-bit ATA data bus In/Out –

Table 2-1. MCF5251 Signal Index (continued)

Signal Name Mnemonic Function
Input/
Output

Reset
State

Signal Description

MCF5251 Reference Manual, Rev. 1

2-4 Freescale Semiconductor

CAN interface CAN0_TX CAN 0 transmit Out –

CAN0_RX CAN 0 receive In –

CAN1_TX CAN 1 transmit Out –

CAN1_RX CAN 1 receive In –

USB PHY interface USBVBUS USB Vbus input In –

USBID USB ID input In –

USBRES USB current programming resistor pin Analog –

USBDN USB DM signalling line In/Out –

USBDP USB DP signalling line In/Out –

USB oscillator USB_CRIN
USB_CROUT

Connections for USB oscillator crystal
(24 MHz)

In
Out

–

RTC oscillator RTC_CRIN
RTCCROUT

Connections for real-time clock crystal
(32.768 kHz)

In
Out

–

AD IN ADIN0/GPI52
ADIN1/GPI53
ADIN2/GPI54
ADIN3/GPI55
ADIN4/GPI56
ADIN5/GPI57

Analog-to-Digital Converter input
signals

In –

AD OUT ADREF
ADOUT/SCLK4/GPIO58

Analog-to-Digital Converter output
signal—connects to ADREF via
integrator network.

In/Out –

QSPI clock QSPICLK/SUBR/GPIO25 QSPI clock signal In/Out –

QSPI data in RCK/QSPIDIN/QSPIDOUT/GPIO26 QSPI data input In/Out –

QSPI data out RCK/QSPIDIN/QSPIDOUT/GPIO26
QSPIDOUT/SFSY/GPIO27

QSPI data out In/Out –

QSPI chip selects QSPICS0/EBUIN4/GPIO15
QSPICS1/EBUOUT2/GPIO16
QSPICS2/MCLK2/GPIO24
CS1/QSPICS3/GPIO28

QSPI chip selects In/Out –

System oscillator in CRIN System input In –

System oscillator out CROUT System output Out –

Reset In RSTI Processor reset input In –

Freescale Test Mode TEST[2:0] TEST pins. In –

Linear regulator output LINOUT Output of 1.2 V to supply core Out –

Linear regulator input LININ Input, typically I/O supply (3.3V) In –

Linear regulator ground LINGND –

Table 2-1. MCF5251 Signal Index (continued)

Signal Name Mnemonic Function
Input/
Output

Reset
State

Signal Description

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 2-5

2.2 GPIO
Many pins have an optional GPIO function.

• General purpose input is always active, regardless of state of pin.

• General purpose output or primary output is determined by the appropriate setting of the Pin
Multiplex Control Registers, GPIO-FUNCTION, GPIO1-FUNCTION and PIN-CONFIG.

• At Power-on reset all pins are set to their primary function.

2.3 MCF5251 Bus Signals
The signals discussed in this section provide the external bus interface to the MCF5251.

2.3.1 Address Bus

The address bus provides the address of the byte or most significant byte of the word or longword being
transferred.The address lines also serve as the DRAM address pins, providing multiplexed row and column
address signals.

High Impedance HI_Z Assertion tri-states output signal pins In

Debug Data DDATA0/CTS1/SDATA0_SDIO1/GPIO1
DDATA1/RTS1/SDATA2_BS2/GPIO2
DDATA2/CTS0/GPIO3
DDATA3/RTS0/GPIO4

Display of captured processor data
and break-point statuses

In/Out Hi_Z

Processor Status PST0/GPIO50
PST1/GPIO49
PST2/INTMON2/GPIO48
PST3/INTMON1/GPIO47

Indication of internal processor status. In/Out Hi_Z

Processor clock PSTCLK/GPIO51 Processor clock output Out –

Test Clock TCK Clock signal for IEEE 1149.1A JTAG In –

Test Reset/
Development Serial
Clock

TRST/DSCLK Multiplexed signal that is
asynchronous reset for JTAG
controller. Also, clock input for debug
module.

In –

Test Mode Select/Break
Point

TMS/BKPT Multiplexed signal that is test mode
select in JTAG mode and a hardware
break-point in debug mode

In –

Test Data Input/
Development Serial
Input

TDI/DSI Multiplexed serial input for the JTAG or
background debug module.

In –

Test Data
Output/Development
Serial Output

TDO/DSO Multiplexed serial output for the JTAG
or background debug module

Out –

Table 2-1. MCF5251 Signal Index (continued)

Signal Name Mnemonic Function
Input/
Output

Reset
State

Signal Description

MCF5251 Reference Manual, Rev. 1

2-6 Freescale Semiconductor

Bits 23 down to 1 and 24 of the address are available. A24 is intended to be used with 256 Mbit DRAM’s.

Signals are named:

• A[23:1]

• A20/24

2.3.2 Read-Write Control

This signal indicates during any bus cycle whether a read or write is in progress. A low is write cycle and
a high is a read cycle.

2.3.3 Output Enable

The OE signal is intended to be connected to the output enable of asynchronous memories connected to
chip selects. During bus read cycles, the ColdFire processor will drive OE low.

2.3.4 Data Bus

The data bus (D[31:16]) is bi-directional and non-multiplexed. Data is registered by the MCF5251 on the
rising clock edge. The data bus uses a default configuration if none of the chip-selects or DRAM bank
match the address decode. All 16 bits of the data bus are driven during writes, regardless of port width or
operand size.

2.3.5 Transfer Acknowledge

The TA/GPIO12 pin is the transfer acknowledge signal.

2.4 SDRAM Controller Signals
The following SDRAM signals provide a glueless interface to external SDRAM. An SDRAM width of 16
bits is supported and can access as much as 32MBs of memory. ADRAMs are not supported.

Table 2-2. SDRAM Controller Signals

SDRAM Signal Description

Synchronous DRAM row address strobe The SDRAS/GPIO59 active low pin provides a seamless interface to the RAS input
on synchronous DRAM

 Synchronous DRAM
column address strobe

The SDCAS/GPIO39 active low pin provides a seamless interface to CAS input on
synchronous DRAM.

 Synchronous DRAM write The SDWE/GPIO38 active-low pin is asserted to signify that a SDRAM write cycle is
underway. This pin outputs logic ‘1’ during read bus cycles.

Synchronous DRAM chip enable The SD_CS0/GPIO60 active-low output signal is used during synchronous mode to
route directly to the chip select of a SDRAM device.

Synchronous DRAM UDQM and
LQDM signals

The DRAM byte enables UDMQ and LDQM are driven by the SDUDQM/GPO53 and
SDLDQM/GPO52 byte enable outputs.

Signal Description

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 2-7

2.5 Chip Selects
There are three chip select outputs on the MCF5251 device. CS0/CS4 and CS1/QSPI_CS3/GPIO28 and
CS2 which is associated with the IDE interface read and write strobes—IDE_DIOR and IDE_DIOW.

CS0 and CS4 are multiplexed. The MCF5251 has the option to boot from an internal Boot Rom.
The function of the CS0/CS4 pin is determined by the boot mode. When the device is booted from internal
ROM, the internal ROM is accessed with CS0 (required for boot) and the CS0/CS4 pin is driven by CS4.
When the device is booted from external ROM / Flash, the CS0/CS4 pin is driven by CS0 and the internal
ROM is disabled.

The active low chip selects can be used to access asynchronous memories. The interface is glueless.

2.6 ISA Bus
The MCF5251 supports an ISA bus. Using the ISA bus protocol, reads and writes for one ISA bus
peripheral is possible. IDE_DIOR/GPIO31 and IDE_DIOW/GPIO32 are the read and write strobe. The
peripheral can insert wait states by pulling IDE_IORDY/GPIO33.

CS2 is associated with the IDE_DIOR and IDE_DIOW.

2.7 Bus Buffer Signals
As the MCF5251 has a quite complicated slave bus, with the possibility of having DRAM, asynchronous
memories and an ISA peripherals on the bus, it may become necessary to introduce a buffer on the bus.
The MCF5251 has a glueless interface to steer these bus buffers with 2 bus buffer output signals
BUFENB1/GPIO29 and BUFENB2/GPIO30.

2.8 I2C Module Signals
There are two I2C interfaces on this device.

The I2C module acts as a two-wire, bidirectional serial interface between the MCF5251 processor and
peripherals with an I2C interface (e.g., LED controller, A-to-D converter, D-to-A converter). When devices
connected to the I2C bus drive the bus, they will either drive logic-0 or high-impedance. This can be
accomplished with an open-drain output.

Synchronous DRAM clock The DRAM clock is driven by the BCLK/GPIO40 signal.

Synchronous DRAM clock enable The BCLKE active high output signal is used during synchronous mode to route
directly to the SCKE signal of external SDRAMs. This signal provides the clock
enable to the SDRAM.

Table 2-2. SDRAM Controller Signals

SDRAM Signal Description

Signal Description

MCF5251 Reference Manual, Rev. 1

2-8 Freescale Semiconductor

2.9 Serial Module Signals
The following signals transfer serial data between the three UART modules and external peripherals.

2.10 Timer Module Signals
The following signal provides an external interface to Timer0. One 16-bit timers can trigger external events
or both 16-bit timers can trigger internal interrupts.

2.11 Serial Audio Interface Signals
The following signals provide the external audio interface.

Table 2-3. I2C Module Signals

I2c Module Signal Description

I2C Serial Clock The SCL0/SDATA1_BS1/GPIO41, and SCL1/TXD1/GPIO10 bidirectional signals are the clock signal for
first and second I2C module operation. The I2C module controls this signal when the bus is in master mode;
all I2C devices drive this signal to synchronize I2C timing.
Signals are multiplexed.

I2C Serial Data The SDA0/SDATA3/GPIO42 and SDA1/RXD1/GPIO44 bidirectional signals are the data input/output for
the first and second serial I2C interface.
Signals are multiplexed.

Table 2-4. Serial Module Signals

Serial Module Signal Description

Receive Data The RXD0/GPIO46, SDA1/RXD1/GPIO44, and EF/RXD2/GPIO6 are the inputs on which serial data is
received by the UART. Data is sampled on RxD[2:0] on the rising edge of the serial clock source, with
the least significant bit received first.

Transmit Data The UART transmits serial data on the TXD0/GPIO45, SCL1/TXD1/GPIO10, and XTRIM/TXD2/GPIO0
output signals. Data is transmitted on the falling edge of the serial clock source, with the least significant
bit transmitted (LSB) first. When no data is being transmitted or the transmitter is disabled, these two
signals are held high. TxD[2:0] are also held high in local loopback mode.

Request To Send The DDATA3/RTS0/GPOI4 and DDATA1/RTS1/SDATA2_BS2/GPIO2 request-to-send outputs indicate
to the peripheral device that UART0/1 are ready to send data and requires a clear-to-send signal to
initiate transfer. The third UART lacks flow control using RTS/CTS.

Clear To Send Peripherals drive the DDATA2/CTS0/GPIO3 and DDATA0/CTS1/SDATA0_SDIO1/GPIO1 inputs to
indicate to the MCF5251 serial module that it can begin data transmission. The third UART lacks flow
control using RTS/CTS.

Table 2-5. Timer Module Signals

Timer Signal Description

Timer Output The SDATAO1/TOUT0/GPIO18 programmable output pulse or toggle on various timer events.

Signal Description

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 2-9

2.12 Digital Audio Interface Signals

Table 2-6. Serial Audio Interface Signals

Audio Interface
Signal

Description

Serial audio bit clock The SCLK1/GPIO20, SCLK2/GPIO22, and SCLK3/GPIO35 multiplexed pins can serve as general
purpose I/Os or serial audio bit clocks. As bit clocks, these bidirectional pins can be programmed as
outputs to drive their associated serial audio (IIS) bit clocks. Alternately, these pins can be programmed
as inputs when the serial audio bit clocks are driven internally. The functionality is programmed within
the Audio module. During reset, these pins are configured as input serial audio bit clocks.

Serial audio word clock The LRCK1/GPIO19, LRCK2/GPIO23, and LRCK3/AUDIOCLK/GPIO43 multiplexed pins can serve as
general purpose I/Os or serial audio word clocks. As word clocks, the bidirectional pins can be
programmed as inputs to drive their associated serial audio word clock. Alternately, these pins can be
programmed as outputs when the serial audio word clocks are derived internally. The functionality is
programmed within the Audio module. During reset, these pins are configured as input serial audio
word clocks.
LRCK3/AUDIOCLK/GPIO43 can be used as the external audio clock input. If the core clock chosen to
be non-audio specific.

Serial audio data in The SDATAI1/GPIO17 and SDATAI3/GPIO8 multiplexed pins can serve as general purpose I/Os or
serial audio inputs. As serial audio inputs the data is sent to interfaces 1and 3 respectively. During
reset, the pins are configured as serial data inputs.

Serial audio data out SDATAO1/TOUT0/GPIO18 AND SDATAO2/GPIO34 multiplexed pins can serve as general purpose
I/Os or serial audio outputs. During reset, the pins are configured as serial data outputs.

Serial audio error flag The EF/GPIO6 multiplexed pin can serve as general purpose I/Os or error flag input. As error flag input,
this pin will input the error flag delivered by the CD-DSP. EF/GPIO6 is only relevant for serial interface
SDATAI1.

Serial audio CFLG The CFLG/GPIO5 multiplexed pin can serve as general purpose I/O or CFLG input. As CFLG input,
the pin will input the CFLG flag delivered by the CD-DSP. CFLG/GPIO5 is only relevant for serial
interface SDATAI1.

Table 2-7. Digital Audio Interface Signals

Digital Audio
Interface Signal

Description

Digital audio in The EBUIN1/GPIO36, EBUIN2/SCLKOUT/GPIO13, EBUIN3/CMD_SDIO2/GPIO14, and
QSPICS0/EBUIN4/GPIO15 multiplexed signals can serve as general purpose input or can be driven by
various digital audio (IEC958) input sources. Both functionalities are always active. Input chosen for
IEC958 receiver is programmed within the audio module. Input value on the 4 pins can always be read
from the appropriate gpio register.

Digital audio out The EBUOUT1/GPIO37 and QSPICS1/EBUOUT2/GPIO16 multiplexed pins can serve as general
purpose I/O or as digital audio (IEC958) output. EBUOUT1 is digital audio out for consumer mode,
EBUOUT2 is digital audio out for professional mode. During reset, the pin is configured as a digital audio
output.

Signal Description

MCF5251 Reference Manual, Rev. 1

2-10 Freescale Semiconductor

2.13 Subcode Interface
There is a 3-line subcode interface on the MCF5251. This 3-line subcode interface allows the device to
format and transmit subcode in EIAJ format to a CD channel encoder device. The three signals are
described in Table 2-8.

2.14 Analog to Digital Converter (ADC)
The ADOUT signal on the ADOUT/SCLK4/GPIO58 pin provides the reference voltage in PWM format.
Therefore this output requires an external integrator circuit (resistor/capacitor) to convert it to a DC level
to be input to the ADREF pin.

The six AD inputs are each fed to their own comparator the reference input to each (ADREF) is then
multiplexed as only one AD comparison can be made at any one time.

NOTE
To use the ADINx as General Purpose inputs (rather than the analog
function) it is necessary to generate a fixed comparator voltage level of
VDD/2. This is accomplished by a potential divider network connected to
the ADREF pin. However in portable applications where stand-by power
consumption is important, the current taken by the divider network (in
stand-by mode) can be excessive. Therefore it is possible to generate a
VDD/2 voltage by selecting SCLK4 output mode and feeding this clock
signal (which is 50% duty cycle) through an external integration circuit.
This generates a voltage level equal to VDD/2, however when stand-by
mode is selected it is disabled.

2.15 Secure Digital / Memory Stick Card Interface
The device has a versatile flash card interface that supports both SecureDigital and MemoryStick cards.
The interface can either support one SecureDigital or two MemoryStick cards. No mixing of card types is
possible. Table 2-9 gives the pin descriptions.

Table 2-8. Subcode Interface Signal

Subcode Interface Signal Description

RCK/QSPIDIN/QSPIDOUT/GPIO26 Subcode clock input. When pin is used as subcode clock, this pin is driven by the CD
channel encoder.

QSPIDOUT/SFSY/GPIO27 Subcode sync output. This signal is driven high if a subcode sync needs to be inserted in
the EFM stream.

QSPICLK/SUBR/GPIO25 Subcode data output. This signal is a subcode data out pin.

Table 2-9. Flash Memory Card Signals

Flash Memory Signal Description

EBUIN2/SCLKOUT/GPIO13 Clock out for both MemoryStick interfaces and for SecureDigital.

EBUIN3/CMD_SDIO2/GPIO14 Secure Digital command line. MemoryStick interface 2 data I/O.

Signal Description

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 2-11

2.16 Queued Serial Peripheral Interface (QSPI)
The QSPI interface is a high-speed serial interface allowing transmit and receive of serial data. Pin
descriptions are given in Table 2-10.

2.17 ATA Interface
The ATA interface is a high-speed interface to IDE hard disc drives or to ATAPI optical disc drives. Besides
this interface, the device also has a ISA bus interface. However, the ISA bus is intended for slow
peripherals. It only supports PIO mode transfers. The AT attachment interface supports PIO transfers and
the faster multiword DMA and ultra DMA transfers. Pin descriptions are given in Table 2-1.

2.18 Two Controller Area Network (CAN) Communication Modules
The two FlexCan modules are full implementation of the Bosch CAN protocol specification 2.0B. Pin
descriptions are given in Table 2-1.

DDATAO/CTS1/SDATA0_SDIO1/GPIO1 Secure Digital serial data bit 0. MemoryStick interface 1 data I/O.

SCL0/SDATA1_BS1/GPIO41 Secure Digital serial data bit 1. MemoryStick interface 1 strobe.

DDATA1/RTS1/SDATA2_BS2/GPIO2 Secure Digital serial data bit 2. MemoryStick interface 2 strobe.

SDA0/SDATA3/GPIO42 Secure Digital serial data bit 3.

Table 2-10. Queued Serial Peripheral Interface (QSPI) Signals

QSPI Signal Description

QSPICLK/SUBR/GPIO25 Multiplexed signal IIC interface clock or QSPI clock output
Function select is done via pin configuration register.

RCK/QSPIDIN/QSPIDOUT/GPIO26 Multiplexed signal IIC interface data or QSPI data input.
Function select is done via pin configuration register.

RCK/QSPIDIN/QSPIDOUT/GPIO26
QSPIDOUT/SFSY/GPIO27

QSPI data input/output

QSPICLK/SUBR/GPIO25 QSPI clock signal

QSPICS0/EBUIN4GPIO15 4 different QSPI chip selects

QSPICS1/EBUOUT2/GPIO16

QSPICS2/MCLK2/GPIO24

CS1/QSPICS3/GPIO28

Table 2-9. Flash Memory Card Signals (continued)

Flash Memory Signal Description

Signal Description

MCF5251 Reference Manual, Rev. 1

2-12 Freescale Semiconductor

2.19 USB Controller
The MCF5251 is fitted with an on-chip USB controller.

2.19.1 USB PHY Interface Including Oscillator

There is an integrated on-chip USB PHY. Pins are described in Table 2-11.

2.20 Real-Time Clock
There is a real-time clock integrated in the device. Pins are described in Table 2-12.

2.21 Crystal Trim
The XTRIM/TXD2/GPIO0 output produces a pulse-density modulated phase/frequency difference signal
to be used after low-pass filtering to control varicap-voltage to control crystal oscillation frequency. This
will lock the crystal to the incoming digital audio signal.

2.22 Clock Out
The MCLK1/GPIO11 and QSPI_CS2/MCLK2/GPIO24 can serve as DAC clock outputs. When
programmed as DAC clock outputs, these signals are directly derived from the crystal oscillator or clock
Input (CRIN).

2.23 Debug and Test Signals
These signals interface with external I/O to provide processor debug and status signals.

Table 2-11. USB PHY Interface Pins

USB PHY Signal Description

USBVBUS Vbus input/output

USBRES Current programming resistor pin of 6.05k Ω having a 1% tolerance

USBID USB ID input

USBDN USB dm signalling line

USBDP USB dp signalling line

USB_CRIN A 24 MHz X-tal needs to be connected between these 2 pins

USB_CROUT

Table 2-12. Real-Time Clock (RTC) Pins

Real-Time Clock Signal Description

RTC_CRIN Connect a real-time clock crystal (32.768 kHz) between these 2 pins.

RTCCROUT

Signal Description

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 2-13

2.23.1 Test Mode

The TEST[2:0] inputs are used for various manufacturing and debug tests. For normal mode TEST [2:1]
should be ways be tied low. TEST0 should be set high for BDM debug mode and set low for JTAG mode.

2.23.2 High Impedance

The assertion of HI_Z will force all output drivers to a high-impedance state. The timing on HI_Z is
independent of the clock.

NOTE
JTAG operation will override the HI_Z pin.

2.23.3 Processor Clock Output

The internal PLL generates this PSTCLK/GPIO51 and output signal, and is the processor clock output that
is used as the timing reference for the Debug bus timing (DDATA[3:0] and PST[3:0]). The
PSTCLK/GPIO51 is at the same frequency as the core processor.

2.23.4 Debug Data

The debug data pins, DDATA0/CTS1/SDATA0_SDIO1/GPIO1, DDATA1/RTS1/SDATA2_BS2/GPIO2,
DDATA2/CTS0/GPIO3, and DDATA3/RTS0/GPIO4, are four bits wide. This nibble-wide bus displays
captured processor data and break-point status. Refer to Chapter 20, “Background Debug Mode (BDM)
Interface,” for additional information on this bus.

2.23.5 Processor Status

The processor status pins, PST0/GPIO50, PST1/GPIO49, PST2/INTMON/GPIO48, and
PST3/INTMON/GPIO47, indicate the MCF5251 processor status. During debug mode, the timing is
synchronous with the processor clock (PSTCLK) and the status is not related to the current bus transfer.
Table 2-13 shows the encodings of these signals.

.

Table 2-13. Processor Status Signal Encodings

PST[3:0]
Definition

(Hex) (Binary)

$0 0000 Continue execution

$1 0001 Begin execution of an instruction

$2 0010 Reserved

$3 0011 Entry into user-mode

$4 0100 Begin execution of PULSE and WDDATA instructions

$5 0101 Begin execution of taken branch or Synch_PC1

$6 0110 Reserved

Signal Description

MCF5251 Reference Manual, Rev. 1

2-14 Freescale Semiconductor

2.24 BDM/JTAG Signals
The MCF5251 complies with the IEEE 1149.1A JTAG testing standard. The JTAG test pins are
multiplexed with background debug pins. See Chapter 20, “Background Debug Mode (BDM) Interface,”
for details.

2.25 Clock and Reset Signals
These signals configure the MCF5251 and provide interface signals to the external system.

2.25.1 Reset In

Asserting RSTI causes the MCF5251 to enter reset exception processing. When RSTI is recognized, the
data bus is tri-stated.

2.25.2 System Bus Input

MCF5251 includes on-chip crystal oscillator. The crystal must be connected between CRIN and CROUT.

An externally generated clock signal can also be used and should be connected directly to the CRIN pin.

2.26 Wake-Up Signal
To exit power down mode, apply a LOW level to the WAKEUP/GPIO21 input pin.

$7 0111 Begin execution of RTE instruction

$8 1000 Begin 1-byte data transfer on DDATA

$9 1001 Begin 2-byte data transfer on DDATA

$A 1010 Begin 3-byte data transfer on DDATA

$B 1011 Begin 4-byte data transfer on DDATA

$C 1100 Exception processing2

$D 1101 Emulator mode entry exception processing2

$E 1110 Processor is stopped, waiting for interrupt2

$F 1111 Processor is halted2

1 Rev. B enhancement.
2 These encodings are asserted for multiple cycles.

Table 2-13. Processor Status Signal Encodings (continued)

PST[3:0]
Definition

(Hex) (Binary)

Signal Description

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 2-15

2.27 On-Chip Linear Regulator
The MCF5251 includes an on-chip linear regulator. This regulator provides an 1.2 V output which is
intended to be used to power the MCF5251 core. Three pins are associated with this function; LININ,
LINOUT, and LINGND. Typically, LININ would be fed by the I/O (PAD) supply (3.3 V) with separate
filtering recommended to provide some isolation between the I/O and the core.

In portable solutions, this linear regulator may not be efficient enough. In this case, we would expect the
1.2 V supply to be generated externally, possibly by a highly efficient DC-DC convertor.

If not used, leave pins unconnected.

Signal Description

MCF5251 Reference Manual, Rev. 1

2-16 Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 3-1

Chapter 3
ColdFire Core
This chapter provides an overview of the microprocessor core of the MCF5251. The chapter describes the
CF2 memory map and register description as it is implemented on the MCF5251. It also includes a full
description of exception handling, data formats, an instruction set summary, and a table of instruction
timings. For detailed information on instructions, see the ColdFire Family Programmer’s Reference
Manual.

3.1 Processor Pipelines
Figure 3-1 shows a block diagram of the processor pipelines of a CF2 ColdFire core.

Figure 3-1. CF2 ColdFire Processor Core Pipelines

The processor core is comprised of two separate pipelines that are decoupled by an instruction buffer. The
Instruction Fetch Pipeline (IFP) is responsible for instruction address generation and instruction fetch. The
instruction buffer is a first-in-first-out (FIFO) buffer that holds prefetched instructions awaiting execution

FIFO
INSTRUCTION

BUFFER

DECODE & SELECT,
OPERAND FETCH

ADDRESS
GENERATION,

EXECUTE

IFP

OEP

 ADDRESS[31:0]

 DATA[31:0]

3 X 32

INSTRUCTION
FETCH

PIPELINE

OPERAND
EXECUTION

PIPELINE

INSTRUCTION
FETCH

INSTRUCTION
ADDRESS IA
GENERATION

ColdFire Core

MCF5251 Reference Manual, Rev. 1

3-2 Freescale Semiconductor

in the Operand Execution Pipeline (OEP). The OEP includes two pipeline stages. The first stage decodes
instructions and selects operands (DSOC); the second stage (AGEX) performs instruction execution and
calculates operand effective addresses, if needed.

3.2 ColdFire Processor Memory Map and Register Definitions
The following sections describe the processor registers in the user and supervisor programming models.
The appropriate programming model is selected based on the privilege level (user mode or supervisor
mode) of the processor as defined by the S bit of the status register.

3.2.1 User Memory Map and Register Description

Figure 3-2 shows the user Memory Map. The model is the same as the M68000 family of microprocessors
and consists of the following registers:

• 16 general-purpose 32-bit registers (D0–D7, A0–A7)

• 32-bit program counter (PC)

• 8-bit condition code register (CCR)

Figure 3-2. User Memory Map

3.2.1.1 Data Registers (D0–D7)

Registers D0–D7 are used as data registers for bit (1 bit), byte (8 bit), word (16 bit) and longword (32 bit)
operations and can also be used as index registers.

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6

A7

CCR

PC

15 7 0

15 031

Data
Registers

Address
Registers

Stack
Pointer

Program
Counter

Condition
Code
Register

7

ColdFire Core

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 3-3

3.2.1.2 Address Registers (A0–A6)

Registers A0–A6 can be used as software stack pointers, index registers, or base address registers as well
as for word and longword operations.

3.2.1.3 Stack Pointer (A7, SP)

The ColdFire architecture supports a single hardware stack pointer (A7) for explicit references as well as
for implicit ones during stacking for subroutine calls and returns and exception handling. The initial value
of A7 is loaded from the reset exception vector, address $0. The same register is used for both user and
supervisor mode as well as word and longword operations.

A subroutine call saves the Program Counter (PC) on the stack and the return restores it from the stack.
Both the PC and the Status Register (SR) are saved to the stack during the processing of exceptions and
interrupts. The return from exception instruction restores the SR and PC values from the stack.

3.2.1.4 Program Counter (PC)

The PC contains the address of the next instruction to execute. During instruction execution and exception
processing, the processor automatically increments the contents of the PC or places a new value in the PC,
as appropriate. For some addressing modes, the PC can be used as a pointer for PC-relative operand
addressing.

3.2.1.5 Condition Code Register (CCR)

The CCR is the least significant byte of the processor status register (SR). Refer to Status Register (SR) on
Section 3.5, “Processor Exceptions” for more information. Bits 4–0 represent indicator flags based on
results generated by processor operations. Bit 4, the extend bit (X bit), is also used as an input operand
during multiprecision arithmetic computations.

Table 3-2 describes the bits in the condition code register.

Table 3-1. Condition Code Register (Bits 0–4)

7 6 5 4 3 2 1 0

– – – X N Z V C

Table 3-2. CCR Register Field Description

Field Code Description

7–5 – Reserved, should be cleared.

4 X Extend condition code bit. Assigned the value of the carry bit for arithmetic operations; otherwise not
affected or set to a specified result. Also used as an input operand for multiple-precision arithmetic.

3 N Negative condition code bit. Set if the msb of the result is set; otherwise cleared.

2 Z Zero condition code bit. Set if the result equals zero; otherwise cleared.

ColdFire Core

MCF5251 Reference Manual, Rev. 1

3-4 Freescale Semiconductor

3.2.2 Enhanced Multiply Accumulate Module (eMAC) User Memory Map
and Register Description

The eMAC provides a variety of program-visible registers:

• Four 48-bit accumulators (Raccx = Racc0, Racc1, Racc2, Racc3)

• Eight 8-bit accumulator extensions (2 per accumulator), packaged as two 32-bit values for load and
store operations (Raccext01, Raccext23)

• One 16-bit Mask Register (Rmask)

• One 32-bit Status Register (MACSR) including four indicator bits signaling product or
accumulation overflow (one for each accumulator: PAV0, PAV1, PAV2, PAV3)

3.2.2.1 eMAC Instruction Set Summary

The eMAC unit supports the integer multiply operations defined by the baseline ColdFire architecture, as
well as the multiply-accumulate instructions. Table 3-3 summarizes the eMAC unit instruction set.

1 V Overflow condition code bit. Set if an arithmetic overflow occurs, implying that the result cannot be
represented in the operand size; otherwise cleared.

0 C Carry condition code bit. Set if a carry-out of the data operand msb occurs for an addition or if a borrow
occurs in a subtraction; otherwise cleared.

Table 3-3. eMAC Instruction Summary

Command Mnemonic Description

Multiply Signed MULS <ea>y,Dx Multiplies two signed operands yielding a signed result

Multiply Unsigned MULU <ea>y,Dx Multiplies two unsigned operands yielding an unsigned result

Multiply Accumulate MAC Ry,RxSF,Raccx
MSAC Ry,RxSF,Raccx

Multiplies two operands, then adds/subtracts the product to/from an
accumulator

Multiply Accumulate with
Load

MAC Ry,RxSF,Rw,Raccx
MSAC Ry,RxSF,Rw,Raccx

Multiplies two operands, then combines the product to an
accumulator while loading a register with the memory operand

Load Accumulator MOV.L {Ry,#imm},Raccx Loads an accumulator with a 32-bit operand

Store Accumulator MOV.L Raccx,Rx Writes the contents of an accumulator to a CPU register

Copy Accumulator MOV.L Raccy,Raccx Copies a 48-bit accumulator

Load MAC Status Reg MOV.L {Ry,#imm},MACSR Writes a value to the MAC status register

Store MAC Status Reg MOV.L MACSR,Rx Write the contents of the MAC status register to a CPU register

Store MACSR to CCR MOV.L MACSR,CCR Write the contents of the MAC status register to the
processor’s CCR register

Load MAC Mask Reg MOV.L {Ry,#imm},Rmask Writes a value to the MAC Mask Register

Store MAC Mask Reg MOV.L Rmask,Rx Writes the contents of the MAC mask register to a CPU
register

Table 3-2. CCR Register Field Description (continued)

Field Code Description

ColdFire Core

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 3-5

3.2.3 Supervisor Memory Map and Register Description

Only system programmers use the supervisor programming model to implement sensitive operating
system functions, I/O control, and memory management. All accesses that affect the control features of
ColdFire processors are in the supervisor memory map and register descriptions, which consists of the
registers available to users as well as the following control registers:

• 16-bit status register (SR)

• 32-bit vector base register (VBR)

Figure 3-3. Supervisor Memory Map

Additional registers may be supported on a part-by-part basis.

The following sections describe the supervisor register descriptions.

3.2.3.1 Status Register (SR)

The SR stores the processor status and includes the CCR, the interrupt priority mask, and other control
bits. In the supervisor mode, software can access the entire SR. In user mode, only the lower 8 bits are
accessible (CCR). The control bits indicate the following states for the processor: trace mode (T-bit),
supervisor or user mode (S bit), and master or interrupt state (M).

Load AccExtensions01 MOV.L {Ry,#imm},Raccext01 Loads the accumulator 0,1 extension bytes with a 32-bit
operand

Load AccExtensions23 MOV.L {Ry,#imm},Raccext23 Loads the accumulator 2,3 extension bytes with a 32-bit
operand

Store AccExtensions01 MOV.L Raccext01,Rx Writes the contents of accumulator 0,1 extension bytes into a CPU
register

Store AccExtensions23 MOV.L Raccext23,Rx Writes the contents of accumulator 2,3 extension bytes into a CPU
register

System Byte Condition Code Register (CCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T 0 S M 0 I [2–0] 0 0 0 X N Z V C

Figure 3-4. Status Register

Table 3-3. eMAC Instruction Summary (continued)

Command Mnemonic Description

31–20 19–0

MUST BE ZEROS VBR VECTOR BASE REGISTER

15– 8 7–0

System Byte CCR SR STATUS REGISTER

ColdFire Core

MCF5251 Reference Manual, Rev. 1

3-6 Freescale Semiconductor

3.2.3.2 Vector Base Register (VBR)

The VBR contains the base address of the exception vector table in memory. The displacement of an
exception vector is added to the value in this register to access the vector table. The lower 20 bits of the
VBR are not implemented by ColdFire processors; they are zero, forcing the table to be aligned on a
1-megabyte boundary.

Figure 3-5. Vector Base Register (VBR)

3.3 Exception Processing Overview
Exception processing for ColdFire processors is streamlined for performance. The ColdFire processors
provide a simplified exception processing model. The next section details the model.Differences from
previous 68000 Family processors include:

• A simplified exception vector table

• Reduced relocation capabilities using the vector base register

• A single exception stack frame format

• Use of a single self-aligning system stack

ColdFire processors use an instruction restart exception model but do require more software support to
recover from certain access errors. Refer to Section 3.5.1, “Access Error Exception,” for details.

Exception processing is comprised of four major steps and is defined as the time from the detection of the
fault condition to the fetch of the first handler instruction has been initiated.

1. The processor makes an internal copy of the SR and then enters supervisor mode by setting the S
bit and disabling trace mode by clearing the T bit. The occurrence of an interrupt exception also
forces the M bit to be cleared and the interrupt priority mask to be set to the level of the current
interrupt request.

Table 3-4. Status Register Field Descriptions

Field Description

T When set, the trace enable allows the processor to perform a trace exception after every instruction.

S The supervisor / user state bit denotes whether the processor is in supervisor mode (S=1) or user mode (S=0).

M The master / interrupt state bit is cleared by an interrupt exception, and can be set by software during execution of
the RTE or move to SR instructions.

I [2–0] The interrupt priority mask defines the current interrupt priority. Interrupt requests are inhibited for all priority levels
less than or equal to the current priority, except the edge-sensitive level 7 request, which cannot be masked.

30 –21 19 –0

Field Exception vector table base address –

Reset 0000_0000_0000_0000_0000_0000_0000_0000

R/W Written from a BDM serial command or from the CPU using the MOVEC instruction. VBR can be read
from the debug module only. The upper 12 bits are returned, the low-order 20 bits are undefined.

Rc [11–0] 0x801

ColdFire Core

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 3-7

2. The processor determines the exception vector number. For all faults except interrupts, the
processor performs this calculation based on the exception type. For interrupts, the processor
performs an interrupt-acknowledge (IACK) bus cycle to obtain the vector number from a
peripheral device. The IACK cycle is mapped to a special acknowledge address space with the
interrupt level encoded in the address.

3. The processor saves the current context by creating an exception stack frame on the system stack.
The CF2 Core supports a single stack pointer in the A7 address register; therefore, there is no
notion of separate supervisor or user stack pointers. As a result, the exception stack frame is created
at a 0-modulo-4 address on the top of the current system stack. Additionally, the processor uses a
simplified fixed-length stack frame for all exceptions. The exception type determines whether the
program counter placed in the exception stack frame defines the location of the faulting instruction
(fault) or the address of the next instruction to be executed (next).

4. The processor calculates the address of the first instruction of the exception handler. By definition,
the exception vector table is aligned on a 1-megabyte boundary. This instruction address is
generated by fetching an exception vector from the table located at the address defined in the vector
base register. The index into the exception table is calculated as (4 x vector number). Once the
exception vector has been fetched, the contents of the vector determine the address of the first
instruction of the desired handler. After the instruction fetch for the first opcode of the handler has
been initiated, exception processing terminates and normal instruction processing continues in the
handler.

ColdFire 5200 processors support a 1024-byte vector table aligned on any 1-megabyte address boundary
(see Table 3-5). The table contains 256 exception vectors where the first 64 are defined by Freescale and
the remaining 192 are user-defined interrupt vectors.

The CF2 Core processor inhibits sampling for interrupts during the first instruction of all exception
handlers. This allows any handler to effectively disable interrupts, if necessary, by raising the interrupt
mask level contained in the status register.

Table 3-5. Exception Vector Assignments

Vector
Numbers(s)

Vector
Offset (HEX)

Stacked1, 2

Program
Counter

Assignment

0 $000 – Initial stack pointer

1 $004 – Initial program counter

2 $008 Fault Access error

3 $00C Fault Address error

4 $010 Fault Illegal instruction

5 $014 Fault Divide by zero

6–7 $018-$01C – Reserved

8 $020 Fault Privilege violation

9 $024 Next Trace

10 $028 Fault Unimplemented line-a opcode

ColdFire Core

MCF5251 Reference Manual, Rev. 1

3-8 Freescale Semiconductor

3.4 Exception Stack Frame Definition
The exception stack frame is shown in Figure 3-6. The first longword of the exception stack frame contains
the 16-bit format/vector word (F/V) and the 16-bit status register, and the second longword contains the
32-bit program counter address.

Figure 3-6. Exception Stack Frame Form

The 16-bit format/vector word contains 3 unique fields:

• A 4-bit format field at the top of the system stack is always written with a value of {4,5,6,7} by the
processor indicating a two-longword frame format. See Table 3-6.

11 $02C Fault Unimplemented line-f opcode

12 $030 Next Debug interrupt

13 $034 – Reserved

14 $038 Fault Format error

15 $03C Next Uninitialized interrupt

16-23 $040-$05C – Reserved

24 $060 Next Spurious interrupt

25–31 $064-$07C Next Level 1–7 autovectored interrupts

32–47 $080-$0BC Next Trap # 0–15 instructions

48–63 $0C0-$0FC – Reserved

64–255 $100-$3FC Next User-defined interrupts

1 “Fault” refers to the PC of the instruction that caused the exception.
2 “Next” refers to the PC of the next instruction that follows the instruction that caused the fault.

Table 3-6. Format Field Encoding

Original A7 @ Time of
Exception, Bits 1:0

A7 @ 1st Instruction
of Handler

Format Field

00 Original A7 - 8 4

01 Original A7 - 9 5

10 Original A7 - 10 6

11 Original A7 - 11 7

Table 3-5. Exception Vector Assignments (continued)

Vector
Numbers(s)

Vector
Offset (HEX)

Stacked1, 2

Program
Counter

Assignment

FORMAT FS[3:0] VECTOR[7:0] FS[1:0]

PROGRAM COUNTER[31:0]

A7

+ $04

STATUS REGISTER

31 27 25 17 15 C

ColdFire Core

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 3-9

• There is a 4-bit fault status field, FS[3:0], at the top of the system stack. This field is defined for
access and address errors only and written as zeros for all other types of exceptions. See Table 3-7.

• The 8-bit vector number, vector[7:0], defines the exception type and is calculated by the processor
for all internal faults and represents the value supplied by the peripheral in the case of an interrupt.
Refer to Table 3-5.

3.5 Processor Exceptions

3.5.1 Access Error Exception

The exact processor response to an access error depends on the type of memory reference being performed.
For an instruction fetch, the processor postpones the error reporting until the faulted reference is needed
by an instruction for execution. Therefore, faults that occur during instruction prefetches that are then
followed by a change of instruction flow do not generate an exception. When the processor attempts to
execute an instruction with a faulted opword and/or extension words, the access error is signaled and the
instruction aborted. For this type of exception, the programming model has not been altered by the
instruction generating the access error.

If the access error occurs on an operand read, the processor immediately aborts the current instruction’s
execution and initiates exception processing. In this situation, any address register updates attributable to
the auto-addressing modes, (e.g., (An)+,-(An)), have already been performed, so the programming model
contains the updated An value. In addition, if an access error occurs during the execution of a MOVEM
instruction loading from memory, any registers already updated before the fault occurs contains the
operands from memory.

The ColdFire processor uses an imprecise reporting mechanism for access errors on operand writes.
Because the actual write cycle may be decoupled from the processor’s issuing of the operation, the
signaling of an access error appears to be decoupled from the instruction that generated the write.
Accordingly, the PC contained in the exception stack frame merely represents the location in the program

Table 3-7. Fault Status Encoding

FS[3:0] Definition

00xx Reserved

0100 Error on instruction fetch

0101 Reserved

011x Reserved

1000 Error on operand write

1001 Attempted write to write-protected space

101x Reserved

1100 Error on operand read

1101 Reserved

111x Reserved

ColdFire Core

MCF5251 Reference Manual, Rev. 1

3-10 Freescale Semiconductor

when the access error was signaled. All programming model updates associated with the write instruction
are completed. The NOP instruction can collect access errors for writes. This instruction delays its
execution until all previous operations, including all pending write operations, are complete. If any
previous write terminates with an access error, it is guaranteed to be reported on the NOP instruction.

3.5.2 Address Error Exception

Any attempted execution transferring control to an odd instruction address (i.e., if bit 0 of the target address
is set) results in an address error exception.

Any attempted use of a word-sized index register (Xn.w) or a scale factor of 8 on an indexed effective
addressing mode generates an address error as does an attempted execution of a full-format indexed
addressing mode.

3.5.3 Illegal Instruction Exception

The MCF5251 processors decode the full 16-bit opcode and generate this exception if execution of an
unsupported instruction is attempted. Additionally, attempting to execute an illegal line A or line F opcode
generates unique exception types: vectors 10 and 11, respectively.

ColdFire processors do not provide illegal instruction detection on extension words of any instruction,
including MOVEC. Attempting to execute an instruction with an illegal extension word causes undefined
results.

3.5.4 Divide By Zero

Attempted division by zero causes an exception (vector 5, offset = 0x014) except when the PC points to
the faulting instruction (DIVU, DIVS, REMU, REMS).

3.5.5 Privilege Violation

The attempted execution of a supervisor mode instruction while in user mode generates a privilege
violation exception. Refer to the ColdFire Programmer’s Reference Manual for lists of supervisor- and
user-mode instructions.

3.5.6 Trace Exception

To aid in program development, the CF2 processors provide an instruction-by-instruction tracing
capability. While in trace mode, indicated by the assertion of the T bit in the status register (SR[15] = 1),
the completion of an instruction execution signals a trace exception. This functionality allows a debugger
to monitor program execution.

The single exception to this definition is the STOP instruction. When the STOP opcode is executed, the
processor core waits until an unmasked interrupt request is asserted, then aborts the pipeline and initiates
interrupt exception processing.

ColdFire Core

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 3-11

Because ColdFire processors do not support hardware stacking of multiple exceptions, it is the
responsibility of the operating system to check for trace mode after processing other exception types. For
example, consider the execution of a TRAP instruction while in trace mode. The processor will initiate the
TRAP exception and then pass control to the corresponding handler. If the system requires that a trace
exception be processed, it is the responsibility of the TRAP exception handler to check for this condition
(SR[15] in the exception stack frame asserted) and pass control to the trace handler before returning from
the original exception.

3.5.7 Debug Interrupt

This special type of program interrupt is covered in detail in Chapter 20, “Background Debug Mode
(BDM) Interface.” This exception is generated in response to a hardware breakpoint register trigger. The
processor does not generate an IACK cycle but rather calculates the vector number internally (vector
number 12).

3.5.8 RTE and Format Error Exceptions

When an RTE instruction is executed, the processor first examines the 4-bit format field to validate the
frame type. For a ColdFire 5200 processor, any attempted execution of an RTE where the format is not
equal to {4,5,6,7} generates a format error. The exception stack frame for the format error is created
without disturbing the original RTE frame and the stacked PC pointing to the RTE instruction.

The selection of the format value provides some limited debug support for porting code from 68000
applications. On 680x0 family processors, the SR was located at the top of the stack. On those processors,
bit[30] of the longword addressed by the system stack pointer is typically zero. Thus, if an RTE is
attempted using this “old” format, it generates a format error on a ColdFire 5200 processor.

If the format field defines a valid type, the processor: (1) reloads the SR operand, (2) fetches the second
longword operand, (3) adjusts the stack pointer by adding the format value to the auto-incremented address
after the fetch of the first longword, and then (4) transfers control to the instruction address defined by the
second longword operand within the stack frame.

3.5.9 TRAP Instruction Exceptions

Executing TRAP always forces an exception and is useful for implementing system calls. The trap
instruction may be used to change from user to supervisor mode.

3.5.10 Interrupt Exception

The interrupt exception processing, with interrupt recognition and vector fetching, includes uninitialized
and spurious interrupts as well as those where the requesting device supplies the 8-bit interrupt vector.
Autovectoring may optionally be supported through the System Integration module (SIM).

ColdFire Core

MCF5251 Reference Manual, Rev. 1

3-12 Freescale Semiconductor

3.5.11 Fault-on-Fault Halt

If a CF2 processor encounters any type of fault during the exception processing of another fault, the
processor immediately halts execution with the catastrophic “fault-on-fault” condition. A reset is required
to force the processor to exit this halted state.

3.5.12 Reset Exception

Asserting the reset input signal to the processor causes a reset exception. The reset exception has the
highest priority of any exception; it provides for system initialization and recovery from catastrophic
failure. Reset also aborts any processing in progress when the reset input is recognized. Processing cannot
be recovered.

The reset exception places the processor in the supervisor mode by setting the S bit and disables tracing
by clearing the T bit in the SR. This exception also clears the M bit and sets the processor’s interrupt
priority mask in the SR to the highest level (level 7). Next, the VBR is initialized to zero ($00000000). The
control registers specifying the operation of any memories (e.g., cache and/or RAM modules) connected
directly to the processor are disabled.

NOTE
Other implementation-specific supervisor registers are also affected.
Refer to each of the modules in this manual for details on these registers.

After reset is negated, the core performs two longword read bus cycles. The first longword at address 0 is
loaded into the stack pointer and the second longword at address 4 is loaded into the program counter. After
the initial instruction is fetched from memory, program execution begins at the address in the PC. If an
access error or address error occurs before the first instruction is executed, the processor enters the
fault-on-fault halted state.

3.6 Instruction Execution Timing
This section describes CF2 processor instruction execution times in terms of processor core clock cycles.
The number of operand references for each instruction is enclosed in parentheses following the number of
clock cycles. Each timing entry is presented as C(r/w) where:

• C—number of processor clock cycles, including all applicable operand fetches and writes, and all
internal core cycles required to complete the instruction execution.

• r/w—number of operand reads (r) and writes (w) required by the instruction. An operation
performing a read-modify-write function is denoted as (1/1).

This section includes the assumptions concerning the timing values and the execution time details.

3.6.1 Timing Assumptions

For the timing data presented in this section, the following assumptions apply:

1. The operand execution pipeline (OEP) is loaded with the opword and all required extension words
at the beginning of each instruction execution. This implies that the OEP does not wait for the
instruction fetch pipeline (IFP) to supply opwords and/or extension words.

ColdFire Core

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 3-13

2. The OEP does not experience any sequence-related pipeline stalls. For ColdFire 5200 processors,
the most common example of this type of stall involves consecutive store operations, excluding the
MOVEM instruction. For all STORE operations (except MOVEM), certain hardware resources
within the processor are marked as “busy” for two clock cycles after the final DSOC cycle of the
store instruction. If a subsequent STORE instruction is encountered within this 2-cycle window, it
will be stalled until the resource again becomes available. Thus, the maximum pipeline stall
involving consecutive STORE operations is 2 cycles. The MOVEM instruction uses a different set
of resources and this stall does not apply.

3. The OEP completes all memory accesses without any stall conditions caused by the memory itself.
Thus, the timing details provided in this section assume that an infinite zero-wait state memory is
attached to the processor core.

4. All operand data accesses are aligned on the same byte boundary as the operand size, i.e., 16 bit
operands aligned on 0-modulo-2 addresses, 32 bit operands aligned on 0-modulo-4 addresses.

If the operand alignment fails these guidelines, it is misaligned. The processor core decomposes the
misaligned operand reference into a series of aligned accesses as shown in Table 3-8.

3.6.2 MOVE Instruction Execution Times

The execution times for the MOVE.{B,W} instructions are shown in Table 3-9, while Table 3-10 provides
the timing for MOVE.L.

NOTE
For all tables in this section, the execution time of any instruction using the
PC-relative effective addressing modes is the same for the comparable
An-relative mode.

The nomenclature “xxx.wl” refers to both forms of absolute addressing, xxx.w and xxx.l.

Table 3-8. Misaligned Operand References

Address[1:0] Size KBUS Operations Additional C(R/W)

X1 Word Byte, Byte 2(1/0) if read
1(0/1) if write

X1 Long Byte, Word, Byte 3(2/0) if read
2(0/2) if write

10 Long Word, Word 2(1/0) if read
1(0/1) if write

Table 3-9. Move Byte and Word Execution Times

Source
Destination

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xi) (xxx).wl

Dn 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

An 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(An) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)

ColdFire Core

MCF5251 Reference Manual, Rev. 1

3-14 Freescale Semiconductor

(An)+ 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)

-(An) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)

(d16,An) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) – –

(d8,An,Xi) 4(1/0) 4(1/1) 4(1/1) 4(1/1) – – –

(xxx).w 3(1/0) 3(1/1) 3(1/1) 3(1/1) – – –

(xxx).l 3(1/0) 3(1/1) 3(1/1) 3(1/1) – – –

(d16,PC) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) – –

(d8,PC,Xi) 4(1/0) 4(1/1) 4(1/1) 4(1/1) – – –

#<xxx> 1(0/0) 3(0/1) 3(0/1) 3(0/1) – – –

Table 3-10. Move Long Execution Times

Source
Destination

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xi) (xxx).wl

Dn 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

An 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(An) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(An)+ 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

-(An) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(d16,An) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) – –

(d8,An,Xi) 3(1/0) 3(1/1) 3(1/1) 3(1/1) – – –

(xxx).w 2(1/0) 2(1/1) 2(1/1) 2(1/1) – – –

(xxx).l 2(1/0) 2(1/1) 2(1/1) 2(1/1) – – –

(d16,PC) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) – –

(d8,PC,Xi) 3(1/0) 3(1/1) 3(1/1) 3(1/1) – – –

#<xxx> 1(0/0) 2(0/1) 2(0/1) 2(0/1) – – –

Table 3-9. Move Byte and Word Execution Times (continued)

Source
Destination

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xi) (xxx).wl

ColdFire Core

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 3-15

3.7 Standard One Operand Instruction Execution Times

3.8 Standard Two Operand Instruction Execution Times

Table 3-11. One Operand Instruction Execution Times

Opcode <EA>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx

clr.b <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) –

clr.w <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) –

clr.l <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) –

ext.w Dx 1(0/0) – – – – – – –

ext.l Dx 1(0/0) – – – – – – –

extb.l Dx 1(0/0) – – – – – – –

neg.l Dx 1(0/0) – – – – – – –

negx.l Dx 1(0/0) – – – – – – –

not.l Dx 1(0/0) – – – – – – –

Scc Dx 1(0/0) – – – – – – –

swap Dx 1(0/0) – – – – – – –

tst.b <ea> 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

tst.w <ea> 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

tst.l <ea> 1(0/0) 2(1/0) 2(1/0) 2(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

Table 3-12. Two Operand Instruction Execution Times (MACS)

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xn*SF)
(d8,PC,Xn*SF)

xxx.wl #xxx

add.l <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

add.l Dy,<ea> – 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) –

addi.l #imm,Dx 1(0/0) – – – – – – –

addq.l #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) –

addx.l Dy,Dx 1(0/0) – – – – – – –

and.l <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

and.l Dy,<ea> – 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) –

andi.l #imm,Dx 1(0/0) – – – – – – –

asl.l <ea>,Dx 1(0/0) – – – – – – 1(0/0)

asr.l <ea>,Dx 1(0/0) – – – – – – 1(0/0)

ColdFire Core

MCF5251 Reference Manual, Rev. 1

3-16 Freescale Semiconductor

bchg Dy,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) –

bchg #imm,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) – – –

bclr Dy,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) –

bclr #imm,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) – – –

bset Dy,<ea> 2(0/0) 4(1/1) 41/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) –

bset #imm,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) – – –

btst Dy,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) –

btst #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) – – 1(0/0)

cmp.l <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

cmpi.l #imm,Dx 1(0/0) – – – – – – –

DIVS.W <ea>,Dx 20(0/0) 23(1/0) 23(1/0) 23(1/0) 23(1/0) 24(1/0) 23(1/0) 20(0/0)

DIVU.W <ea>,Dx 20(0/0) 23(1/0) 23(1/0) 23(1/0) 23(1/0) 24(1/0) 23(1/0) 20(0/0)

DIVS.L <ea>,Dx 35(0/0) 38(1/0) 38(1/0) 38(1/0) 38(1/0) – – –

DIVU.L <ea>,Dx 35(0/0) 38(1/0) 38(1/0) 38(1/0) 38(1/0) – – –

eor.l Dy,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) –

eori.l #imm,Dx 1(0/0) – – – – – – –

lea <ea>,Ax – 1(0/0) – – 1(0/0) 2(0/0) 1(0/0) –

lsl.l <ea>,Dx 1(0/0) – – – – – – 1(0/0)

LSR.L <ea>,Dx 1(0/0) – – – – – – 1(0/0)

MAC.W Ry,Rx 1(0/0) – – – – – – –

MAC.L Ry,Rx 1(0/0) – – – – – – –

MSAC.W Ry,Rx 1(0/0) – – – – – – –

MSAC.L Ry,Rx 3(0/0) – – – – – – –

MAC.W Ry,Rx,ea,Rw – 2(1/0) 2(1/0) 2(1/0) 2(1/0) – – –

MAC.L Ry,Rx,ea,Rw – 2(1/0) 2(1/0) 2(1/0) 2(1/0) – – –

MSAC.W Ry,Rx,ea,Rw – 2(1/0) 2(1/0) 2(1/0) 2(1/0) – – –

MSAC.L Ry,Rx,ea,Rw – 2(1/0) 2(1/0) 2(1/0) 2(1/0) – – –

MOVEQ #imm,Dx – – – – – – – 1(0/0)

MULS.W <ea>,Dx 4(0/0) 6(1/0) 6(1/0) 6(1/0) 6(1/0) 12(1/0) 11(1/0) 9(0/0)

mulu.w <ea>,Dx 4(0/0) 6(1/0) 6(1/0) 6(1/0) 6(1/0) 12(1/0) 11(1/0) 9(0/0)

muls.l1 <ea>,Dx ≤ 4(0/0) ≤ 6(1/0) ≤ 6(1/0) ≤ 6(1/0) ≤ 6(1/0) – – –

Table 3-12. Two Operand Instruction Execution Times (MACS) (continued)

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xn*SF)
(d8,PC,Xn*SF)

xxx.wl #xxx

ColdFire Core

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 3-17

3.9 Miscellaneous Instruction Execution Times

mulu.l1 <ea>,Dx ≤ 4(0/0) ≤ 6(1/0) ≤ 6(1/0) ≤ 6(1/0) ≤ 6(1/0) – – –

or.l <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

or.l Dy,<ea> – 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) –

ori.l #imm,Dx 1(0/0) – – – – – – –

sub.l <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

rems.l <ea>,Dx 35(0/0) 38(1/0) 38(1/0) 38(1/0) 38(1/0) – – –

remu.l <ea>,Dx 35(0/0) 35(1/0) 38(1/0) 38(1/0) 38(1/0) – – –

sub.l Dy,<ea> – 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) –

subi.l #imm,Dx 1(0/0) – – – – – – –

subq.l #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) –

subx.l Dy,Dx 1(0/0) – – – – – – –

Table 3-13. Miscellaneous Instruction Execution Times

Opcode <EA>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx

cpushl (Ax) – 11(0/1) – – – – – –

link.w Ay,#imm 2(0/1) – – – – – – –

move.w CCR,Dx 1(0/0) – – – – – – –

move.w <ea>,CCR 1(0/0) – – – – – – 1(0/0)

move.w SR,Dx 1(0/0) – – – – – – –

move.w <ea>,SR 7(0/0) – – – – – – 7(0/0) 2

movec Ry,Rc 9(0/1) – – – – – – –

movem.l <ea>,&list – 1+n(n/0) – – 1+n(n/0) – – –

movem.l &list,<ea> – 1+n(0/n) – – 1+n(0/n) – – –

nop – 3(0/0) – – – – – – –

pea <ea> – 2(0/1) – – 2(0/1) 4 3(0/1) 5 2(0/1) –

pulse – 1(0/0) – – – – – – –

stop #imm – – – – – – – 3(0/0) 3

trap #imm – – – – – – – 15(1/2)

trapf – 1(0/0) – – – – – – –

trapf.w – 1(0/0) – – – – – – –

Table 3-12. Two Operand Instruction Execution Times (MACS) (continued)

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xn*SF)
(d8,PC,Xn*SF)

xxx.wl #xxx

ColdFire Core

MCF5251 Reference Manual, Rev. 1

3-18 Freescale Semiconductor

3.10 Branch Instruction Execution Times

trapf.l – 1(0/0) – – – – – – –

unlk Ax 2(1/0) – – – – – – –

wddata <ea> – 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 3(1/0)

wdebug <ea> – 5(2/0) – – 5(2/0) – – –

Notes:
n is the number of registers moved by the MOVEM opcode.
1≤ indicates that long multiplies have early termination after 9 cycles; thus, actual cycle count is operand independent
2If a MOVE.W #imm,SR instruction is executed and imm[13] = 1, the execution time is 1(0/0).
3The execution time for STOP is the time required until the processor begins sampling continuously for interrupts.
4PEA execution times are the same for (d16,PC)
5PEA execution times are the same for (d8,PC,Xn*SF)

Table 3-14. General Branch Instruction Execution Times

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xi*SF)
(d8,PC,Xi*SF)

xxx.wl #xxx

BSR – – – – – 3(0/1) – – –

JMP <ea> – 3(0/0) – – 3(0/0) 4(0/0) 3(0/0) –

JSR <ea> – 3(0/1) – – 3(0/1) 4(0/1) 3(0/1) –

RTE – – – 10(2/0) – – – – –

RTS – – – 5(1/0) – – – – –

Table 3-15. BRA, Bcc Instruction Execution Times

Opcode
Forward
Taken

Forward
Not Taken

Backward
Taken

Backward
Not Taken

BRA 2(0/0) – 2(0/0) –

Bcc 3(0/0) 1(0/0) 2(0/0) 3(0/0)

Table 3-13. Miscellaneous Instruction Execution Times (continued)

Opcode <EA>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 4-1

Chapter 4
Phase-Locked Loop and Clock Dividers
This chapter provides detailed information about the operation and programming of the clock generation
module as well as the recommended circuit settings. It also describes the audio clock generation and the
system power states.

4.1 PLL Features
• The PLL locks to the crystal clock at the CRIN pin and produces a processor clock (PSTCLK) and

a SYSCLK which is always 1/2 of the processor clock.

• The audio clock (AUDIOCLK) can be derived directly from CRIN or from the
LRCK3/AUDIOCLK/GPIO43 input pin.

• The Audio DAC Master clocks MCLK1 and MCLK2 are derived directly from CRIN.

• The PLL is configured by writing to a configuration register.

• The PLL Configuration Register must always be programmed to Bypass mode before it is
reprogrammed to change any clock frequency. In bypass mode, the crystal clock is fed to the
processor (PSTCLK).

• When the PLL is switched from “bypass” to “normal operation”, the switch-over is delayed until
the PLL is locked.

• The MCF5251 has a new block added to the output of the PLL / Clock Dividers to provide
glitch-free Dynamic Clock Switching. This allows dynamic switching of the clock rate being fed
to the CPU core and the system bus. This new block is controlled by a new 32-bit register called
the ClockRate Register.

Figure 4-1 shows the PLL module and the frequency relationships of various clock signals.

Phase-Locked Loop and Clock Dividers

MCF5251 Reference Manual, Rev. 1

4-2 Freescale Semiconductor

Figure 4-1. Phase-Locked Loop Module Block Diagram

4.2 PLL Memory Map and Register Definitions
The different settings for the PLL/clock module are summarized in Table 4-2.

Table 4-1. PLL Memory Map

Address
MBAR2BAS +

Access Size Bits Name Description Reset

180 RW 32 PllConfig PLL configuration register 0x02020088

Divide By
CPUDIV

VCXO
Phase

Frequency
Comparator

Divide
By

VCXODIV

Divide
By 2

0
1

0
1

PLLBYPASS

CPU CORE

SCLK

MCLK1

AUDIOCLK

MCLK2

AUDIOSEL

CRSEL, CLSEL

Divide
By

VCXOOUT

Divide
By

PLLDIV
Divide
By 2

CRIN

0
1

A20/A24

LRCK3/AUDIOCLK/GPIO43

Glitch Free
Divider

ClockRate Select

/ PSTCLK

Divide
By 2

Divide
By 3

Divide
By 4

Phase-Locked Loop and Clock Dividers

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 4-3

Offset: MBAR2BAS + 0 x 180 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R LOCK
CLSEL CPUDIV CRSEL

AUDIO
SEL

VCXODIV[7:4]
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
VCXODIV[3:0] SLEEP

PLL
POWER
DOWN

PLLDIV VCXOOUT
PLL
BYPW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4-2. PLLCONFIG Register

Table 4-2. PLLCONFIG Field Descriptions

Field Description Notes

31
LOCK

Read-only bit. Set if PLL is locked 2

30–28
CLSEL

MCLK1 and MCLK2 select 7

27 Reserved. –

26–24
CPUDIV

CPU clock divider 8, 9

23
CRSEL

0 Fin = CRIN
1 Fin = CRIN/2

3

22
AUDIOSEL

If (pull-up on address pin A20/A24):
Faudio = LRCK3/AUDIOCLK/GPIO43

If (pull-down on address pin A20/A24 && AUDIOSEL = 1):
Faudio = CRIN

If (pull-down on address pin A20/A24 && AUDIOSEL = 0):
Faudio = CRIN/2

4, 12

21–20 Reserved, should be cleared. –

19–12
VCXODIV

PLL compare frequency is VCXO frequency divided by (VCXODIV) 5, 10

11
SLEEP

0 Switch back to operational mode
1 Switch device to Sleep mode, including stopping clocks

11

10 Reserved, should be cleared. –

9
PLLPWRDWN

0 PLL normal operation
1 Disable PLL to power-down mode

–

8–4
PLLDIV

Input frequency (Fin) is divided by (PllDiv) to determine the PLL compare frequency. 5

3–2
VCXOOUT

VCXO output divider 6

Phase-Locked Loop and Clock Dividers

MCF5251 Reference Manual, Rev. 1

4-4 Freescale Semiconductor

1. If this bit is 0, the PLL is by-passed, and CRIN is sent directly to the CPU and MCLKs. Always set the PLL to Bypass mode
before changing any other bit in this register. Clock frequencies described in other notes are only valid when this bit is set 1.

2. PLL may require up to 10 mS to lock
3. Fin is input frequency to PLL. Nominal setting for CRsel is ‘1’ for 33.8688 MHz X-tal, ‘0’ for 16.9344 MHz or 11.2896MHz X-tal.

4. Faudio is clock for audio interfaces. Typically 11.2896 or 16.9344 or 22.579 or 33.8688 MHz.

5. Fvcxo = Fin × (2 × VCXODIV)/ (PLLDIV)
6. FVCXOOut depends on Fvcxo (note 5) and vcxoout setting as shown in Table 4-3.

7. Field determines frequency output on MCLK1 and MCLK2 pins

When frequency is CRIN/2 or CRIN/4, duty cycle is 50%. When frequency is CRIN/3, duty cycle is 33%.
8. Fcpu = FVCXOOUT / CPUDIV; Fcpu is the frequency the processor is running at.

1 Reserved, should be cleared. –

0
PLLBYP

0 Bypass PLL and dividers
1 Switch to PLL after PLL is locked

1, 2

Table 4-3. Vcxoout Settings

Vcxoout
Setting

FVCXOOut

0 Don’t use

1 Fvcxo

2 Fvcxo/2

3 Don’t use

Table 4-4. Crsel and CLsel Settings

Crsel CLsel
Frequency

MCLK1
Frequency

MCLK2

0 000 CRIN CRIN/2

0 001 CRIN CRIN

0 010 CRIN/2 CRIN/2

0 011 CRIN/2 CRIN

1 000 CRIN/2 CRIN/2

1 001 CRIN/2 CRIN/3

1 010 CRIN/2 CRIN/4

1 011 CRIN/3 CRIN/2

1 100 CRIN/3 CRIN/3

1 101 CRIN/3 CRIN/4

1 110 CRIN/4 CRIN/2

1 111 CRIN/4 CRIN/3

Table 4-2. PLLCONFIG Field Descriptions (continued)

Field Description Notes

Phase-Locked Loop and Clock Dividers

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 4-5

9. If field is “000”, divide by 8
10. Fvcxo min. 200 MHz max. is 400 MHz

11. This bit controls power-down.

12. Faudio is the audio clock. It is LRCK3/AUDIOCLK/GPIO43 when address pin A20/A24 is connected with a pull-up to Vdd, it
is CRIN or CRIN/2 when address pin A20/A24 is connected with a pull-down to GND.

4.2.1 PLL Operation

The input to the PLL is either CRIN, or CRIN divided by two. Selection is done by CRSEL. The PLL
divides this input frequency by a programmable division factor (PLLDIV). In the PLL phase/frequency
detector, this divided clock is compared with the VCXO output clock divided by (VCXODIV). As a result,
Fvcxo = Fin × (2 × VCXODIV) / (PLLDIV).

NOTE
The PLL lock counter is designed for worst case audio input frequency (Fin)
of 33.8688 MHz. This will result in the required 0.5 ms for the PLL to lock.
Other Fin frequencies can be used, however, the resulting lock time will be
slightly longer.

In a second step, this VCXO clock is divided by (VCXOOUT * CPUDIV) to create the CPU clock
PSTCLK.

The multiplexers that switch between PLL clock and CRIN is glitch-free, so no system reset is needed
when switching between bypass and PLL modes.

NOTE
It is important that before reprogramming the PLL division factors, users
must switch to PLL bypass mode. After reprogramming, users may
immediately switch back to PLL enabled mode. Switching back is delayed
internally until the PLL is locked.

4.2.2 PLL Lock-In Time

PLL lock time is typically around 10 ms.

4.2.3 PLL Electrical Limits

Due to implementation of the block, some limits apply to the PLL block. These limitations are shown in
Table 4-5.

Table 4-5. PLL Electrical Limits

Name
Minimum

Frequency MHz
Maximum

Frequency MHz
Reason

Fvcxo 200 400 PLL limitations

Fcpu 0 140 Maximum operating frequency of device

Fin/PLLDIV 2 8 PLL limitations

Phase-Locked Loop and Clock Dividers

MCF5251 Reference Manual, Rev. 1

4-6 Freescale Semiconductor

4.3 Dynamic Clock Switching
The Glitch-free Clock Rate divider block works on the PDM (Pulse Density Modulation) principal. As it
is a divider, it only reduces the clock rate output from the PLL module. It does this by gating out
(removing) clock pulses to reach the desired clock rate (operating frequency). This implies that clock
pulses after the Clock Rate divider block may not be equi-distant depending on the chosen divider value.

The re-action time of the Clock Rate divider block is in the order of 20nS.

The Clock Rate divider block is controlled by a 32-bit register as shown in Table 4-3

NOTE
Do not make the PLL output frequency any higher than required for the
actual application. The higher the PLL operating frequency then the higher
the power consumption of the PLL block.

4.4 Audio Clock Generation
The audio clocks and output DAC clocks are derived directly from the CRIN pin. Clock settings depend
on CRSEL, CLSEL, and AUDIOSEL bits, as explained in Table 4-7. As the table shows, the
AUDIO_CLOCK is completely derived from the AUDIOSEL bit, and this clock is independent of the
other select bits. For the DAC clocks (MCLK2 and MCLK1) the relationship between CRSEL and CLSEL
is defined in Table 4-7.

Offset: MBAR2BAS + 0x170 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
Clock rate select

W

Reset 0 1 1 1 1 1 1 1 1

Figure 4-3. ClockRate Register

Table 4-6. ClockRate Field Descriptions

Field Description

31–8 Reserved, should be cleared.

7–0
Clock Rate

Select

Sets the divider to pass-thru mode and no clock rate reduction is applied. At reset, this bit field is set to 0xFF.
Clock Rate Select = round ((Desired Clock Rate / PLL Output Frequency) × 255)

Table 4-7. PLLCR Bit Fields

PLLCR[CLSEL]
(Bits 30–28)

PllCR CRsel
(Bit 23)

pllCR Config
Audiosel
(Bit 22)

AUDIO_CLOCK MCLK2 MCLK1

000 1 1 CRIN CRIN CRIN/2

001 1 1 CRIN CRIN CRIN

010 1 1 CRIN CRIN/2 CRIN/2

Phase-Locked Loop and Clock Dividers

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 4-7

Note: MCLK1 will output a clock signal just after reset, it can be configured as GPIO if so desired. The frequency of the clock will
be the same as CRIN prior to initialization of the PLL.

Note: The AUDIO_CLOCK can also be derived from the LRCK3/AUDIOCLK/GPIO43 pin.

The multiplexer that switches AUDIO_CLOCK between CRIN and CRIN/2 is glitch free. No reset is
needed after switching audio clock. For the MCLK1 and MCLK2 clocks, the divide by 2 is 50% duty cycle,
divide by 3 is 33% duty cycle, and divide by 4 is 50% duty cycle.

4.5 Reduced Power Mode
To save power, it is recommended that users reduce the frequency of the CPU clocks. This is done by
reprogramming the PLLCONFIG register.

The PLL is also configured with a power down bit. This bit, when set to 1, this sets the PLL to Sleep mode.
In Sleep mode, the VCXO is turned off.

NOTE
The PLL must go through the re-locking procedure when it is re-enabled.

4.6 Sleep / Wake-up Mode
The device can be put in a low power Sleep mode, where all internal clocks and all on-chip functions are
stopped. In Sleep mode, the only block still functional is the on-chip voltage regulator. All the other analog
features are put in to low-power operation and all digital functions are stopped.

011 1 1 CRIN CRIN/2 CRIN

100 1 1 CRIN CRIN CRIN/2

101 1 1 CRIN CRIN CRIN

110 1 1 CRIN CRIN/2 CRIN/2

111 1 1 CRIN CRIN/2 CRIN

000 1 0 CRIN/2 CRIN CRIN/2

001 1 0 CRIN/2 CRIN CRIN

010 1 0 CRIN/2 CRIN/2 CRIN/2

011 1 0 CRIN/2 CRIN/2 CRIN

100 1 0 CRIN/2 CRIN CRIN/2

101 1 0 CRIN/2 CRIN CRIN

110 1 0 CRIN/2 CRIN/2 CRIN/2

111 1 0 CRIN/2 CRIN/2 CRIN

Table 4-7. PLLCR Bit Fields (continued)

PLLCR[CLSEL]
(Bits 30–28)

PllCR CRsel
(Bit 23)

pllCR Config
Audiosel
(Bit 22)

AUDIO_CLOCK MCLK2 MCLK1

Phase-Locked Loop and Clock Dividers

MCF5251 Reference Manual, Rev. 1

4-8 Freescale Semiconductor

4.6.1 Enter Sleep Mode

To enter Sleep mode, first put the PLL in bypass mode by clearing bit 0 of PLLCONFIG. Next, switch off
all activity by setting the SLEEPMODE bit (bit 11) in PLLCONFIG. As a result, the device will go in to
a low-power standby mode. All clocks are stopped.

4.6.2 Exit Sleep Mode

To exit Sleep mode, apply a LOW level to the WAKEUP/GPIO21 input pin. This will power up all the
analog functions, and restart the on-chip clocks after a 10 ms time delay. Program code should then clear
bit 11 in PLLCONFIG before the low level on the WAKEUP/GPIO21 pin is removed.

If WAKEUP/GPIO21 pin is programmed as its GPO21 function, it may be impossible to exit Sleep mode
by applying low level to the WAKEUP pin.
To exit Sleep mode under this circumstance ensure the WAKEUP/GPIO21 pin is in its non-GPIO function
prior to entering Sleep mode.

4.7 Selecting Audio_clock Input
During power-on reset, the value on pin A20/A24 is sensed. A 10 Kohm resistor should be connected
between these pins and VDD/GND. Depending whether a pull-up or pull-down is mounted, different
options are selected.

4.8 Recommended Settings
Many valid PLL settings exist. However, in many cases some limitations apply so that only a few typical
settings will be used. In a typical system, the following limitations may exist:

• Users may want to run the processor at 120, 96, or 72 MHz clock frequency

• MCLK1 may be 11.2896 MHz (a typical value) see Table 4-7 in this section for further definition.

As a result, the user may select a 11.2896 MHz X-TAL as the CRIN and use the settings shown in
Table 4-9.

Table 4-8. Audio_Clock Selection Fields

Pin Description

A20/A24 Pull-down: Audio clock taken from CRIN
Pull-up: Audio clock taken from LRCK3/AUDIOCLK/GPIO43 pin

Table 4-9. Recommended PLL Settings

X-Tal Freq
MHz

CPU
Div

CRSel
Vcxo
Div

Pll
Div

Vcxo
Out

CPU
Clock MHz

11.2896 2 0 42 4 1 120

11.2896 3 0 51 4 1 96

11.2896 4 0 51 4 1 72

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 5-1

Chapter 5
Instruction Cache
This chapter describes the physical organization, operation, memory map and register descriptions for the
MCF5251 instruction cache.

5.1 Instruction Cache Features
• 8 Kbyte Direct-Mapped Cache

• Single-Cycle Access on Cache Hits

• Physically Located on the ColdFire® Core High-Speed Local Bus

• Nonblocking Design to Maximize Performance

• 16 Byte Line-Fill Buffer

• Configurable Cache Miss-Fetch Algorithm

5.2 Block Diagram
Figure 5-1 illustrates the block diagram for the instruction cache memory.

Figure 5-1. Instruction Cache Block Diagram

31 12 43 012 31 4

=

=

31 9
31 0

‘127
31

0
0

LOCAL ADDRESS BUS

LINE BUFFER
ADDRESS

EXTERNAL DATA[31:0]

LINE BUFFER DATA STORAGE

MUX

DATA

MUX

FILL HIT

TAG

V
A

LI
D

LOCAL DATA BUSTAG HIT

Instruction Cache

MCF5251 Reference Manual, Rev. 1

5-2 Freescale Semiconductor

5.3 Instruction Cache Physical Organization
The instruction cache is a direct-mapped single-cycle memory, organized as 512 lines, each containing 16
Bytes. The memory storage consists of a 512-entry tag array (containing addresses and a valid bit), and the
data array containing 8 Kbyte of instruction data, organized as 2048 × 32 bits.

The two memory arrays are accessed in parallel: bits [12:4] of the instruction fetch address provide the
index into the tag array, and bits [12:2] addressing the data array. The tag array outputs the address mapped
to the given cache location along with the valid bit for the line. This address field is compared to bits
[31:12] of the instruction fetch address from the local bus to determine if a cache hit in the memory array
has occurred. If the desired address is mapped into the cache memory, the output of the data array is driven
onto the ColdFire core's local data bus completing the access in a single cycle.

The tag array maintains a single valid bit per line entry. Accordingly, only entire 16 byte lines are loaded
into the instruction cache.

The instruction cache also contains a 16 byte fill buffer that provides temporary storage for the last line
fetched in response to a cache miss. With each instruction fetch, the contents of the line fill buffer are
examined. Thus, each instruction fetch address examines both the tag memory array and the line fill buffer
to see if the desired address is mapped into either hardware resource. A cache hit in either the memory
array or the line-fill buffer is serviced in a single cycle. Because the line fill buffer maintains valid bits on
a longword basis, hits in the buffer can be serviced immediately without waiting for the entire line to be
fetched.

If the referenced address is not contained in the memory array or the line-fill buffer, the instruction cache
initiates the required external fetch operation. In most situations, this is a 16 byte line-sized burst reference.

The hardware implementation is a nonblocking design, meaning the ColdFire core's local bus is released
after the initial access of a miss. Thus, the cache or the SRAM module can service subsequent requests
while the remainder of the line is being fetched and loaded into the fill buffer.

5.4 Instruction Cache Operation
The instruction cache is physically connected to the ColdFire core local bus, allowing it to service all
instruction fetches from the ColdFire core and certain memory fetches initiated by the debug module.
Typically, the debug module's memory references appear as supervisor data accesses but the unit can be
programmed to generate user-mode accesses and/or instruction fetches. The instruction cache processes
any instruction fetch access in the normal manner.

5.4.1 Interaction with Other Modules

Because both the instruction cache and high-speed SRAM module are connected to the ColdFire core local
data bus, certain user-defined configurations can result in simultaneous instruction fetch processing.

If the referenced address is mapped into the SRAM module, that module will service the request in a single
cycle. In this case, data accessed from the instruction cache is simply discarded and no external memory
references are generated. If the address is not mapped into the SRAM space, the instruction cache handles
the request in the normal fashion.

Instruction Cache

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 5-3

5.4.2 Memory Reference Attributes

For every memory reference the ColdFire core or the debug module generates, a set of “effective attributes”
is determined based on the address and the Access Control Registers (ACR0, ACR1). This set of attributes
includes the cacheable/noncacheable definition, the precise/imprecise handling of operand write, and the
write-protect capability.

In particular, each address is compared to the values programmed in the Access Control Registers (ACR).
If the address matches one of the ACR values, the access attributes from that ACR are applied to the
reference. If the address does not match either ACR, then the default value defined in the Cache Control
Register (CACR) is used. The specific algorithm is as follows:

if (address = ACR0_address including mask)

Effective Attributes = ACR0 attributes

else if (address = ACR1_address including mask)

Effective Attributes = ACR1 attributes

else Effective Attributes = CACR default attributes

5.4.3 Cache Coherency and Invalidation

The instruction cache does not monitor ColdFire core data references for accesses to cached instructions.
Therefore, software must maintain cache coherency by invalidating the appropriate cache entries after
modifying code segments.

The cache invalidation can be performed in two ways. The assertion of bit 24 in the CACR forces the entire
instruction cache to be marked as invalid. The invalidation operation requires 512 cycles because the cache
sequences through the entire tag array, clearing a single location each cycle. Any subsequent instruction
fetch accesses are postponed until the invalidation sequence is complete.

The privileged CPUSHL instruction can invalidate a single cache line. When this instruction is executed,
the cache entry defined by bits[12:4] of the source address register is invalidated, provided bit 28 of the
CACR is cleared.

These invalidation operations can be initiated from the ColdFire core or the debug module.

5.4.4 Reset

A hardware reset clears the CACR disabling the instruction cache. The contents of the tag array are not
affected by the reset. Accordingly, the system startup code must explicitly perform a cache invalidation by
setting CACR[24] before the cache can be enabled.

5.4.5 Cache Miss Fetch Algorithm/Line Fills

As detailed in Section 5.1, “Instruction Cache Features,” the instruction cache hardware includes a 16-byte
line fill buffer for providing temporary storage for the last fetched instruction.

With the cache enabled as defined by CACR[31], a cacheable instruction fetch that misses in both the tag
memory and the line-fill buffer generates a external fetch. The size of the external fetch is determined by

Instruction Cache

MCF5251 Reference Manual, Rev. 1

5-4 Freescale Semiconductor

the value contained in the 2-bit CLNF field of the CACR and the miss address. Table 5-1 shows the
relationship between the CLNF bits, the miss address, and the size of the external fetch.

Depending on the runtime characteristics of the application and the memory response speed, overall
performance may be increased by programming the CLNF bits to values {00, 01}.

For all cases of a line-sized fetch, the critical longword defined by bits [3:2] of the miss address is accessed
first followed by the remaining three longwords that are accessed by incrementing the longword address
in a modulo-16 fashion is shown in the following example code:

if miss address[3:2] = 00

fetch sequence = {$0, $4, $8, $C}

if miss address[3:2] = 01

fetch sequence = {$4, $8, $C, $0}

if miss address[3:2] = 10

fetch sequence = {$8, $C, $0, $4}

if miss address[3:2] = 11

fetch sequence = {$C, $0, $4, $8}

Once an external fetch has been initiated and the data loaded into the line-fill buffer, the instruction cache
maintains a special “most-recently-used” indicator that tracks the contents of the fill buffer versus its
corresponding cache location. At the time of the miss, the hardware indicator is set, marking the fill buffer
as “most recently used.” If a subsequent access occurs to the cache location defined by bits [8:4] of the fill
buffer address, the data in the cache memory array is now most recently used, so the hardware indicator is
cleared. In all cases, the indicator defines whether the contents of the line fill buffer or the memory data
array are most recently used. At the time of the next cache miss, the contents of the line-fill buffer are
written into the memory array if the entire line is present, and the fill buffer data is still most recently used
compared to the memory array.

The fill buffer can also be used as temporary storage for line-sized bursts of non-cacheable references
under control of CACR[10]. With this bit set, a noncacheable instruction fetch is processed as defined by
Table 5-2. For this condition, the fill buffer is loaded and subsequent references can hit in the buffer, but
the data is never loaded into the memory array.

Table 5-2 shows the relationship between CACR bits 31 and 10 and the type of instruction fetch.

Table 5-1. Initial Fetch Offset versus CLNF Bits

CLNF[1:0]
Longword Address Bits

00 01 10 11

00 Line Line Line Longword

01 Line Line Longword Longword

1X Line Line Line Line

Instruction Cache

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 5-5

5.5 Instruction Cache Memory Map and Register Definitions
Three supervisor registers define the operation of the instruction cache and local bus controller: the Cache
Control Register (CACR) and two Access Control Registers (ACR0, ACR1).

5.5.1 Instruction Cache Registers Memory Map

Table 5-3 shows the memory map of the Instruction cache and access control registers.

The following list describes several key issues regarding the memory map table:

• The Cache Control Register and Access Control Registers can only be accessed in supervisor mode
using the MOVEC instruction with an Rc value of $002, $004 and $005, respectively.

• Addresses not assigned to the registers and undefined register bits are reserved for future
expansion. Write accesses to these reserved address spaces and reserved register bits have no effect;
read accesses will return zeros.

• The reset value column indicates the initial value of the register at reset. Certain registers may
contain random values after reset.

The access column indicates if the corresponding register allows both read/write functionality (R/W),
read-only functionality (R), or write-only functionality (W). If a read access to a write-only register is
attempted, zeros will be returned. If a write access to a read-only register is attempted the access will be
ignored and no write will occur.

Table 5-2. Instruction Cache Operation as Defined by CACR [31,10]

CACR[31] CACR[10]
Type of Instruction

Fetch
Description

0 0 N/A Instruction cache is completely disabled; all fetches are word, longword in size

0 1 N/A All fetches are word, longword in size

1 X Cacheable Fetch size is defined by Table 5-1 and contents of the line-fill buffer can be
written into the memory array

1 0 Noncacheable All fetches are longword in size, and not loaded into the line-fill buffer

1 1 Noncacheable Fetch size is defined by Table 5-1 and loaded into the line-fill buffer, but are never
written into the memory array

Table 5-3. Memory Map of I-Cache Registers

Address Name Width Description
 Reset
Value

Access

MOVEC with $002 CACR 32 Cache Control Register $0000 W

MOVEC with $004 ACR0 32 Access Control Register 0 $0000 W

MOVEC with $005 ACR1 32 Access Control Register 1 $0000 W

Instruction Cache

MCF5251 Reference Manual, Rev. 1

5-6 Freescale Semiconductor

5.5.2 Instruction Cache Register

5.5.2.1 Cache Control Register

The CACR controls the operation of the instruction cache. The CACR provides a set of default memory
access attributes used when a reference address does not map into the spaces defined by the ACRs.

The CACR is a 32-bit write-only supervisor control register. It is accessed in the CPU address space using
the MOVEC instruction with an Rc encoding of $002. The CACR can be read when in Background Debug
mode (BDM). At system reset, the entire register is cleared.

Address MOVEC with $002 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
CENB CPDI CFRZ

CINV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CEIB DCM DBWE DWP CLNF1 CLNF2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-2. Cache Control Register (CACR)

Table 5-4. Cache Control Register Field Descriptions

Bit Name Description

31
CENB

The Cache Enable bit generally provides longword references used for sequential fetches. If the processor branches
to an odd word address, a word-sized fetch is generated. The memory array of the instruction cache is enabled only
if CENB is asserted.
0 Cache disabled
1 Cache enabled

30–29 Reserved, should be cleared.

28
CPDI

When the disable CPUSHL Invalidation instruction is executed, the cache entry defined by bits [8:4] of the address
is invalidated if CPDI = 0. If CPDI = 1, no operation is performed.
0 Enable invalidation
1 Disable invalidation

27
CFRZ

 The Cache Freeze bit allows users to freeze the contents of the cache. When CFRZ is asserted line fetches can
be initiated and loaded into the line-fill buffer, but a valid cache entry can not be overwritten. If a given cache location
is invalid, the contents of the line-fill buffer can be written into the memory array while CFRZ is asserted.
0 Normal operation
1 Freeze valid cache lines

26–25 Reserved, should be cleared.

Instruction Cache

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 5-7

24
CINV

The Cache Invalidate bit forces the cache to invalidate each tag array entry. The invalidation process requires 32
machine cycles, with a single cache entry cleared per machine cycle. The state of this bit is always read as a zero.
After a hardware reset, the cache must be invalidated before it is enabled.
0 No operation
1 Invalidate all cache locations

23–11 Reserved, should be cleared.

10
CEIB

The Cache Enable Noncacheable Instruction Bursting bit enables the line-fill buffer to be loaded with burst transfers
under control of CLINF[1:0] for non-cacheable accesses. Noncacheable accesses are never written into the memory
array.
0 Disable burst fetches on noncacheable accesses
1 Enable burst fetches on noncacheable accesses

9
DCM

The Default Cache Mode bit defines the default cache mode: 0 is cacheable, 1 is noncacheable. For more
information on the selection of the effective memory attributes, see Section 5.4.2, “Memory Reference Attributes.”
0 Default cacheable
1 Default noncacheable

8
DBWE

The Default Buffered Write Enable bit defines the default value for enabling buffered writes. If DBWE = 0, the
termination of an operand write cycle on the processor's local bus is delayed until the external bus cycle is
completed. If DBWE = 1, the write cycle on the local bus is terminated immediately and the operation buffered in
the bus controller. In this mode, operand write cycles are effectively decoupled between the processor's local bus
and the external bus.
Generally, enabled buffered writes provide higher system performance but recovery from access errors can be more
difficult. For the ColdFire CPU, reporting access errors on operand writes is always imprecise and enabling buffered
writes simply further decouples the write instruction from the signaling of the fault.
0 Disable buffered writes
1 Enable buffered writes

7 Reserved, should be cleared.

6
DWP

Default Write Protection
0 Read and write accesses permitted
1 Only read accesses permitted

5–2 Reserved, should be cleared.

1–0
CLNF

The Cache Line Fill bits control the size of the memory request the cache issues to the bus controller for different
initial line access offsets. Table 5-5 shows the fetch size.

Table 5-5. External Fetch Size Based on Miss Address and CLNF

CLNF[1:0]
Longword Address Bits

00 01 10 11

00 Line Line Line Longword

01 Line Line Longword Longword

10 Line Line Line Line

11 Line Line Line Line

Table 5-4. Cache Control Register Field Descriptions (continued)

Bit Name Description

Instruction Cache

MCF5251 Reference Manual, Rev. 1

5-8 Freescale Semiconductor

5.5.2.2 Access Control Registers

The access control registers ACR0 and ACR1, provide a definition of memory reference attributes for two
memory regions (one per ACR). This set of effective attributes is defined for every memory reference using
the ACRs or the set of default attributes contained in the CACR. The ACRs are examined for every
memory reference that is NOT mapped to the SRAM module.

The ACRs are 32-bit write-only supervisor control registers. They are accessed in the CPU address space
using the MOVEC instruction with an Rc encoding of $004 and $005. The ACRs can be read when in
background debug mode (BDM). At system reset, the registers are cleared.

Address MOVEC with $004
MOVEC with $005

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BA31 BA30 BA29 BA28 BA27 BA26 BA25 BA24 BAM31 BAM30 BAM29 BAM28 BAM27 BAM26 BAM25 BAM24

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EN SM1 SM0 CM BWE WP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-3. Access Control Registers (ACR0, ACR1)

Table 5-6. Access Control Registers Field Descriptions

Bit Name Description

31–24
BA

The Base Address. An 8-bit field compared to the address bits [31:24] from the processor's local bus under control
of the ACR address mask. If the address matches, the attributes for the memory reference are sourced from the
given ACR.

23–16
BAM

The Base Address Mask [31:24] 8-bit field can mask any bit of the AB field comparison. If a bit in the AM field is set,
then the corresponding bit of the address field comparison is ignored.

15
EN

The Enable bit defines the ACR enable. Hardware reset clears this bit, disabling the ACR.
0 ACR disabled
1 ACR enabled

14–13
SM1, SM0

The Supervisor mode two-bit field allows the given ACR to be applied to references based on operating privilege
mode of the ColdFire processor. The field uses the ACR for user references only, supervisor references only, or all
accesses.
00 Match if user mode
01 Match if supervisor mode
1x Match always. Ignore user/supervisor mode

12–7 Reserved, should be cleared.

6
CM

The Cache Mode bit defines the cache mode: 0 is cacheable, 1 is noncacheable.
0 Caching enabled
1 Caching disabled

Instruction Cache

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 5-9

5
BWE

The Buffered Write Enable bit defines the value for enabling buffered writes. If BWE = 0, the termination of an
operand write cycle on the processor's local bus is delayed until the external bus cycle is completed. If BWE = 1,
the write cycle on the local bus is terminated immediately and the operation is then buffered in the bus controller. In
this mode, operand write cycles are effectively decoupled between the processor's local bus and the external bus.
Generally, the enabling of buffered writes provides higher system performance but recovery from access errors may
be more difficult. For the ColdFire CPU, the reporting of access errors on operand writes is always imprecise, and
enabling buffered writes simply decouples the write instruction from the signaling of the fault even more.
0 Don’t buffer writes
1 Buffer writes

4–3 Reserved, should be cleared.

2
WP

The Write Protect bit defines the write-protection attribute. If the effective memory attributes for a given access
select the WP bit, an access error terminates any attempted write with this bit set.
0 Read and write accesses permitted
1 Only read accesses permitted

1–0 Reserved, should be cleared.

Table 5-6. Access Control Registers Field Descriptions (continued)

Bit Name Description

Instruction Cache

MCF5251 Reference Manual, Rev. 1

5-10 Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 6-1

Chapter 6
Static RAM (SRAM)
This chapter describes the SRAM operation, memory map, register descriptions, initialization and SRAM
power management.

6.1 SRAM Features
• Two 64 Kbyte SRAMS

• Single-cycle access

• Physically located on processor's high-speed local bus

• Memory location programmable on any 64 Kbyte address boundary

• Byte, word, longword address capabilities

6.2 SRAM Operation
The SRAM module provides a general-purpose memory block that the ColdFire processor can access in a
single cycle. The location of the memory block can be specified to any modulo-64K address within the
4GB address space. The memory is ideal for storing critical code or data structures or for use as the system
stack. Because the SRAM module is physically connected to the processor's high-speed local bus.

Depending on configuration information, instruction fetches may be sent to both the cache and the SRAM
block simultaneously. If the reference is mapped into the region defined by the SRAM, the SRAM provides
the data back to the processor, and the cache data discarded. Accesses from the SRAM module are not
cached.

Only SRAM1 can be accessed by the DMA controller of the MCF5251. SRAM0 and SRAM1 are made
up of two memory arrays each consisting of 2048 lines, with 16 Bytes in each line.

As SRAM1 can be accessed by the DMA then the split in the array (Upper 32K bank and Lower 32K bank)
allows simultaneous access by both DMA and the CPU. Figure 1-1 shows this concept.

6.3 SRAM Memory Map and Register Definitions
The SRAM programming model includes a description of the SRAM base address register (RAMBAR),
SRAM initialization, and power management.

6.3.1 SRAM Base Address Register

The configuration information in the SRAM Base Address Register (RAMBAR[0:1]) controls the
operation of the SRAM module.

• There are 2 RAMBAR registers. One for SRAM0, the second for SRAM1.

Static RAM (SRAM)

MCF5251 Reference Manual, Rev. 1

6-2 Freescale Semiconductor

• The RAMBAR register holds the base address of the SRAM. The MOVEC instruction provides
write-only access to this register.

• The RAMBAR registers can be read or written from the Debug module in a similar manner.

• All undefined bits in the register are reserved. These bits are ignored during writes to the
RAMBAR, and return zeroes when read from the debug module.

• The RAMBAR valid bit is cleared by reset, disabling the SRAM module. All other bits are
unaffected.

The RAMBAR register contains several control fields. These fields are detailed in the following tables.

NOTE
All unused bits in the RAMBAR register must be initialized to zero

Address CPU + $C04 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R BA31 BA30 BA29 BA28 BA27 BA26 BA25 BA24 BA23 BA22 BA21 BA20 BA19 BA18 BA17 BA16

W

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BA15 BA14 WP C/I SC SD UC UD V

W

Reset – – – – – – – – – – – – – – – 0

Figure 6-1. SRAM Base Address Register (RAMBAR0)

Address CPU + $C05 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BA31 BA30 BA29 BA28 BA27 BA26 BA25 BA24 BA23 BA22 BA21 BA20 BA19 BA18 BA17 BA16

W

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BA15 BA14 PRI1 PRI2 SPV WP C/I SC SD UC UD V

W

Reset – – – – – – – – – – – – – – – 0

Figure 6-2. SRAM1 Base Address Register (RAMBAR1)

Static RAM (SRAM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 6-3

Table 6-1. SRAM(1) Base Address Register (RAMBARn) Field Descriptions

Bit Name Description

31–14
BA

The Base Address field defines the modulo-64K base address of the SRAM module. The SRAM memory
occupies a 64 Kbyte space defined by the contents of the Base Address field. By programming this field, the
SRAM may be located on any 64 Kbyte boundary within the processor’s four gigabyte address space.

13–12
(SRAM1)

13–9
(SRAM)

Reserved, should be cleared.

11–10
PRI1, PRI2

(SRAM1 Only)

The PRI1 priority bit determines if DMA or CPU has priority in upper 32k bank of memory. PRI2 determines if
DMA or CPU has priority in lower 32k bank of memory. If bit is set, DMA has priority. If bit is reset, CPU has
priority. Priority is determined by the following table:

9
SPV

(SRAM1 Only)

Allow DMA access
0 DMA access to memory is disabled.
1 DMA access to memory is enabled.

8
WP

The Write Protect field allows only read accesses to the SRAM. When this bit is set, any attempted write
access will generate an access error exception to the ColdFire processor core.
0 Allows read and write accesses to the SRAM module
1 Allows only read accesses to the SRAM module

7–6 Reserved, should be cleared.

5–1
C/I, SC, SD,

UC, UD

Address Space Masks (ASn)
These five bit fields allow certain types of accesses to be “masked,” or inhibited from accessing the SRAM
module. The address space mask bits are:

C/ICPU space/interrupt acknowledge cycle mask
SCSupervisor code address space mask
SDSupervisor data address space mask
UCUser code address space mask
UDUser data address space mask

For each address space bit:
0 An access to the SRAM module can occur for this address space
1 Disable this address space from the SRAM module. If a reference using this address space is made, it is
inhibited from accessing the SRAM module, and is processed like any other non-SRAM reference.
These bits are useful for power management as detailed in Section 6.3.4, “Power Management.”

0
V

The valid bit. A hardware reset clears this bit. When set, this bit enables the SRAM module; otherwise, the
module is disabled.
0 Contents of RAMBAR are not valid
1 Contents of RAMBAR are valid

PRI[1:2]
Upper Bank

Priority
Lower Bank

Priority

2’b00 CPU Accesses CPU Accesses

2’b01 CPU Accesses DMA Accesses

2’b10 DMA Accesses CPU Accesses

2’b11 DMA Accesses DMA Accesses

Static RAM (SRAM)

MCF5251 Reference Manual, Rev. 1

6-4 Freescale Semiconductor

6.3.2 SRAM Initialization

After a hardware reset, the contents of the SRAM module are undefined. The valid bit of the RAMBAR is
cleared, disabling the module. If the SRAM requires initialization with instructions or data, the following
steps should be performed:

1. Load the RAMBAR mapping the SRAM module to the desired location within the address space
and set the Valid bit.

2. Read the source data and write it to the SRAM. There are various instructions to support this
function, including memory-to-memory move instructions, or the MOVEM opcode. The MOVEM
instruction is optimized to generate line-sized burst fetches on modulo-64 addresses, so this opcode
generally provides maximum performance.

3. After the data has been loaded into the SRAM, it may be appropriate to load a revised value into
the RAMBAR with a new set of attributes. These attributes consist of the write-protect and address
space mask fields.

The ColdFire processor or an external emulator using the debug module can perform these initialization
functions.

6.3.3 SRAM Initialization Code

The following code segment describes how to initialize the SRAM. The code sets the base address of the
SRAM at $20000000 and then initializes the RAM to zeros.
RAMBASE EQU $20000000; set this variable to $20000000
RAMVALID EQU $00000001;
move.l #RAMBASE+RAMVALID,D0;load RAMBASE + valid bit into D0.
movec.l D0, RAMBAR;load RAMBAR and enable SRAM

The following loop initializes the entire SRAM to zero
lea.l RAMBASE,A0;load pointer to SRAM
move.l #4096,D0;load loop counter into D0

SRAM_INIT_LOOP:
clr.l (A0)+); clear 4 bytes of SRAM
subq.l #1,D0;decrement loop counter
bne.b SRAM_INIT_LOOP;if done, then exit; else continue looping

6.3.4 Power Management

As noted previously, depending on the configuration defined by the RAMBAR, instruction fetch and
operand read accesses may be sent to the SRAM and unified cache simultaneously. If the access is mapped
to the SRAM module, it sources the read data, and the unified cache access is discarded. If the SRAM is
used only for data operands, asserting the ASn bits associated with instruction fetches can decrease power
dissipation. Additionally, if the SRAM contains only instructions, masking data accesses can reduce power
dissipation. Table 6-2 shows some examples of typical RAMBAR settings.

Static RAM (SRAM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 6-5

.

Table 6-2. Typical RAMBAR Setting Examples

Data Contained in SRAM RAMBAR[7:0]

Code Only $2B

Data Only $35

Both Code And Data $21

Static RAM (SRAM)

MCF5251 Reference Manual, Rev. 1

6-6 Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 7-1

Chapter 7
Synchronous DRAM Controller Module
This chapter discusses the operation, memory map, register descriptions, signal and command
descriptions, and an interface example for the SDRAM controller.

7.1 SDRAM Features
The key features of the SDRAM controller include the following:

• Supports one block of SDRAM

• Interface to standard synchronous dynamic random access memory (SDRAM) components

• Programmable SDRAS, SDCAS, and refresh timing

• Support for page mode

• Support for 16- wide SDRAM blocks

7.1.1 Block Diagram

The basic components of the DRAM controller are shown in Figure 7-1.

Figure 7-1. Synchronous DRAM Controller Block Diagram

Memory Block 0 Hit Logic
DRAM Address/Control Register 0

 (DACR0)

A24, A[23:1]
Internal

Address

Control Logic
and

DRAM Controller Module

Refresh Counter

State Machine

Multiplexing

Page Hit
Logic

DRAM Control
Register (DCR)

 Bus

A[31:0]

SD_CS0

SDRAS
SDCAS
SDWE
SDUDQM
SDLDQM
BCLKE

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

7-2 Freescale Semiconductor

The DRAM controller’s major components, shown in Figure 7-1, are described as follows:

• DRAM address and control register (DACR0)—The DRAM controller consists of a configuration
register unit. DACR0 is accessed at MBAR + 0x0108;
The register information is passed on to the hit logic.

• Control logic and state machine—Generates all DRAM signals, taking bus cycle characteristic data
from the block logic, along with hit information to generate DRAM accesses. Handles refresh
requests from the refresh counter.

— DRAM control register (DCR)—Contains data to control refresh operation of the DRAM
controller. The memory block is refreshed concurrently as controlled by DCR[RC].

— Refresh counter—Determines when refresh should occur, determined by the value of
DCR[RC]. It generates a refresh request to the control block.

• Hit logic—Compares address and attribute signals of a current DRAM bus cycle to DACR to
determine if the DRAM block is being accessed. Hits are passed to the control logic along with
characteristics of the bus cycle to be generated.

• Page hit logic—Determines if the next DRAM access is in the same DRAM page as the previous
one. This information is passed on to the control logic.

• Address multiplexing—Multiplexes addresses to allow column and row addresses to share pins.
This allows glueless interface to DRAMs.

7.2 Synchronous Operation
By running synchronously with the system clock, the SDRAM can (after an initial latency period) be
accessed on every clock; 5-1-1-1 is a typical MCF5251 burst rate to SDRAM.

NOTE
Because the MCF5251 cannot have more than one page open at a time, it
does not support interleaving.

Table 7-1 lists common SDRAM commands.

Table 7-1. SDRAM Commands

Command Definition

ACTV Activate. Executed before READ or WRITE executes; SDRAM registers and decodes row address.

MRS Mode register set.

NOP No-op. Does not affect SDRAM state machine; DRAM controller control signals negated; SD_CS0 asserted.

PALL Precharge all. Precharges all internal banks of an SDRAM component; executed before new page is opened.

READ Read access. SDRAM registers column address and decodes that a read access is occurring.

REF Refresh. Refreshes internal bank rows of SDRAM.

SELF Self refresh. Refreshes internal bank rows of SDRAM when it is in low-power mode.

SELFX Exit self refresh. This command is sent to the DRAM controller when DCR[IS] is cleared.

WRITE Write access.

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 7-3

Commands are issued to memory using specific encoding on address and control pins. After system reset,
a command must be sent to the SDRAM mode register to configure SDRAM operating parameters.

NOTE
Synchronous operation is selected by setting DCR[SO], DRAM controller
registers reflect the synchronous operation.

7.2.1 DRAM Controller Signals in Synchronous Mode

Table 7-2 shows the behavior of DRAM signals in synchronous mode.

Figure 7-2 shows a typical signal configuration for synchronous mode.

Figure 7-2. MCF5251 SDRAM Interface

7.3 SDRAM Memory Map and Register Definitions
The memory map is shown in Table 7-3. Field and bit descriptions are shown in the following sections.

Table 7-2. Synchronous DRAM Signal Connections

Signal Description

SDRAS Synchronous row address strobe. Indicates a valid SDRAM row address is present and can be latched by the
SDRAM. SDRAS should be connected to the corresponding SDRAM SRAS.

SDCAS Synchronous column address strobe. Indicates a valid column address is present and can be latched by the
SDRAM. SDCAS should be connected to the corresponding signal labeled SCAS on the SDRAM.

SDWE DRAM read/write. Asserted for write operations and negated for read operations.

SD_CS0 Chip Select for the SDRAM memory block connected to the MCF5251.

BCLKE Synchronous DRAM clock enable. Connected directly to the CKE (clock enable) signal of SDRAMs. Enables and
disables the clock internal to SDRAM. When BCLKE is low, memory can enter a power-down mode where
operations are suspended or they can enter self-refresh mode. BCLKE functionality is controlled by DCR[COC].
For designs using external multiplexing, setting COC allows BCLKE to provide command-bit functionality.

UDQM
LDQM

Column address strobe. For synchronous operation, UDQM, LDQM function as byte enables to the SDRAMs.
They connect to the DQM signals (or mask qualifiers) of the SDRAMs.

BCLK Bus clock output. Connects to the CLK input of SDRAMs.

BCLK

A[31:0]

U/L DQM
SDWE

SDCAS
SDRAS
BCLKE CKE

CAS
RAS

DQM
WE

ADDRESS
DATA

CLK

MCF5251

D[31:16]

SDRAM

CSSD_CS0

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

7-4 Freescale Semiconductor

7.3.1 DRAM Controller Registers

The DRAM controller registers memory map is shown in Table 7-3.
.

7.3.1.1 DRAM Control Register (DCR) (Synchronous Mode)

The DRAM control register (DCR), Figure 7-3, controls refresh logic.

Table 7-3. DRAM Controller Registers

MBAR
Offset

[31:24] [23:16] [15:8] [7:0]

0x100 DRAM control register (DCR) [Section 7.3.1, “DRAM Controller Registers”] Reserved

0x104 Reserved

0x108 DRAM address and control register 0 (DACR0) [See Section 7.3.1.2, “DRAM Address and Control (DACR0)
(Synchronous Mode)”]

0x10C DRAM mask register block 0 (DMR0) [See Section 7.3.1.3, “DRAM Controller Mask Registers (DMR0)”]

0x110 Reserved

0x114 Reserved

Address MBAR + 0x100 Access: User read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SO NAM COC IS RTIM RC

W

Reset 0 – – – – – – – – – – – – – – –

Figure 7-3. DRAM Control Register (DCR) (Synchronous Mode)

Table 7-4. DRAM Control Register (DCR) Field Descriptions (Synchronous Mode)

Field Description

15
SO

Synchronous operation. Selects synchronous or asynchronous mode. When in synchronous mode, the DRAM
controller can be switched to ADRAM mode only by resetting the MCF5251.
0 Asynchronous DRAM. Default at reset. Do not use.
1 Synchronous DRAM
Note: bit setting SO = 0 is a legacy mode. Do not use. First action must always be to set this bit.

14 Reserved, should be cleared.

13
NAM

No address multiplexing. Some implementations require external multiplexing. For example, when linear addressing
is required, the DRAM should not multiplex addresses on DRAM accesses.
0 The DRAM controller multiplexes the external address bus to provide column addresses.
1 The DRAM controller does not multiplex the external address bus to provide column addresses.

12
COC

Command on SDRAM clock enable (BCLKE). Implementations that use external multiplexing (NAM = 1) must
support command information to be multiplexed onto the SDRAM address bus.
0 BCLKE functions as a clock enable; self-refresh is initiated by the DRAM controller through DCR[IS].
1 BCLKE drives command information. Because BCLKE is not a clock enable, self-refresh cannot be used (setting
DCR[IS]). Thus, external logic must be used if this functionality is desired. External multiplexing is also responsible
for putting the command information on the proper address bit.

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 7-5

7.3.1.2 DRAM Address and Control (DACR0) (Synchronous Mode)

The DRAM address and control register (DACR0), shown in Figure 7-4, contain the base address compare
value and the control bits for the memory block of the DRAM controller. Address and timing are also
controlled by bits in DACR0.

Table 7-5 describes DACR0 fields.

11
IS

Initiate self-refresh command.
0 Take no action or issue a SELFX command to exit self refresh.
1 If DCR[COC] = 0, the DRAM controller sends a SELF command to the SDRAMv to put it in low-power, self-refresh
state where they remain until IS is cleared, at which point the controller sends a SELFX command for the SDRAM to
exit self-refresh. The refresh counter is suspended while the SDRAM is in self-refresh; the SDRAM controls the
refresh period.

10–9
RTIM

Refresh timing. Determines the timing operation of auto-refresh in the DRAM controller. Specifically, it determines the
number of clocks inserted between a REF command and the next possible ACTV command. This corresponds to tRC
in the SDRAM specification.
00 3 clocks
01 6 clocks
1x 9 clocks

8–0
RC

Refresh count. Controls refresh frequency. The number of bus clocks between refresh cycles is (RC + 1) * 16. Refresh
can range from 16–8192 bus clocks to accommodate both standard and low-power DRAMs with bus clock operation
from less than 2 MHz to greater than 50 MHz.
The following example calculates RC for an auto-refresh period for 4096 rows to receive 64 mS of refresh every
15.625 µs for each row (625 bus clocks at 40 MHz).
of bus clocks = 625 = (RC field + 1) * 16
RC = (625 bus clocks/16) -1 = 38.06, which rounds to 38; therefore, RC = 0x26.

Address MBAR+0x108 (DACR0) Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BA RE CASL CBM IMRS PS IP PM

W

Reset – – – – – – – – – – – – – – – – 0 – – – – – – – – 0 – – – – – –

Figure 7-4. DRAM Address and Control Register (DACR0) (Synchronous Mode)

Table 7-5. DRAM Address and Control Register (DACR0) Field Descriptions (Synchronous Mode)

Field Description

31–18
BA

Base address register. With DMR[BAM], determines the address range in which the associated DRAM block is
located. Each BA bit is compared with the corresponding address of the current bus cycle. If all unmasked bits match,
the address hits in the associated DRAM block.

17–16 Reserved, should be cleared.

Table 7-4. DRAM Control Register (DCR) Field Descriptions (Synchronous Mode) (continued)

Field Description

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

7-6 Freescale Semiconductor

15
RE

Refresh enable. Determines when the DRAM controller generates a refresh cycle to the DRAM block.
0 Do not refresh associated DRAM block
1 Refresh associated DRAM block

14 Reserved, should be cleared.

13–12
CASL

CAS latency. Affects the following SDRAM timing specifications. Timing nomenclature varies with manufacturers.
Refer to the SDRAM specification for the appropriate timing nomenclature:
Note: The SDRAM controller only supports CAS latencies of 1 or 2. However very few SDRAM devices are available
that support CASL = 1. So we recommend to only use CASL = 2. Some fast SDRAM are now becoming available
and require a CASL = 3 which is not supported by this SDRAM controller.

11 Reserved, should be cleared.

10–8
CBM

Command (AP) and Bank Select MUX [2:0]. Because different SDRAM configurations cause the command and bank
select lines to correspond to different addresses, these resources are programmable. CBM determines the
addresses onto which these functions are multiplexed.
CBM Command Bit Bank Select Lines
000 17 18 and up
001 18 19 and up
010 19 20 and up
011 20 21 and up
100 21 22 and up
101 22 23 and up
110 23 24 and up
111 24 25 and up
This encoding and the address multiplexing scheme handle common SDRAM organizations. Bank select lines
include a base line and all address lines above for SDRAMs with multiple bank select lines.

7 Reserved, should be cleared.

6
IMRS

Initiate mode register set (MRS) command. Setting IMRS generates a MRS command to the associated SDRAM. In
initialization, IMRS should be set only after all DRAM controller registers are initialized and PALL and REFRESH
commands have been issued. After IMRS is set, the next access to an SDRAM block programs the SDRAM’s mode
register. Thus, the address of the access should be programmed to place the correct mode information on the
SDRAM address pins. Because the SDRAM does not register this information, it doesn’t matter if the IMRS access
is a read or a write. The DRAM controller clears IMRS after the MRS command finishes.
0 Take no action
1 Initiate MRS command

Table 7-5. DRAM Address and Control Register (DACR0) Field Descriptions (Synchronous Mode)
(continued)

Field Description

Parameter
Number of Bus Clocks

CASL = 00 CASL = 01 CASL = 10 CASL = 11

tRCD—SRAS assertion to SCAS assertion N/A 2 3 3

tCASL—SCAS assertion to data out N/A 1 2 2

tRAS—ACTV command to precharge command N/A 4 6 6

tRP—Precharge command to ACTV command N/A 2 3 3

tRWL,tRDL—Last data input to precharge command N/A 1 1 1

tEP—Last data out to precharge command) N/A 1 1 1

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 7-7

7.3.1.3 DRAM Controller Mask Registers (DMR0)

The DMR0, Figure 7-5, includes mask bits for the base address and for address attributes.

5–4
PS

Port size. Indicates the port size of the associated block of SDRAM, which allows for dynamic sizing of associated
SDRAM accesses.
1x 16-bit port
0x Do not use.

3
IP

Initiate precharge all (PALL) command. The DRAM controller clears IP after the PALL command is finished. Accesses
using IP should be no wider than the port size programmed in PS.
0 Take no action.
1 A PALL command is sent to the associated SDRAM block. During initialization, this command is executed after
all DRAM controller registers are programmed. After IP is set, the next write to an appropriate SDRAM address
generates the PALL command to the SDRAM block.

2
PM

Page mode. Indicates how the associated SDRAM block supports page-mode
operation.
0 Page mode on bursts only. The DRAM controller dynamically bursts the transfer if it falls within a single page and
the transfer size exceeds the port size of the SDRAM block. After the burst, the page closes and a precharge is
issued.
1 Continuous page mode. The page stays open and only SDCAS needs to be asserted for sequential SDRAM
accesses that hit in the same page, regardless of whether the access is a burst.

1–0 Reserved, should be cleared.

Address MBAR + 0x10C (DMR0) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BAM WP C/I AM SC SD UC UD V

W

Reset – 0

Figure 7-5. DRAM Controller Mask Register (DMR0)

Table 7-6. DRAM Controller Mask Register (DMR0) Field Descriptions

Bits Description

31–18
BAM

Base address mask. Masks DACR0[BA]. Lets the DRAM controller connect to various DRAM sizes. Mask bits need
not be contiguous (see Section 7.6, “SDRAM Example.”)
0 The associated address bit is used in decoding the DRAM hit to a memory block.
1 The associated address bit is not used in the DRAM hit decode.

17–9 Reserved, should be cleared.

8
WP

Write protect. Determines whether the associated block of DRAM is write protected.
0 Allow write accesses
1 Ignore write accesses. The DRAM controller ignores write accesses to the memory block and an address

exception occurs. Write accesses to a write-protected DRAM region are compared in the chip select module for a
hit. If no hit occurs, an external bus cycle is generated. If this external bus cycle is not acknowledged, an access
exception occurs.

Table 7-5. DRAM Address and Control Register (DACR0) Field Descriptions (Synchronous Mode)
(continued)

Field Description

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

7-8 Freescale Semiconductor

7.4 General Synchronous Operation Guidelines
To reduce system logic and to support a variety of SDRAM sizes, the DRAM controller provides SDRAM
control signals as well as a multiplexed row address and column address to the SDRAM.

When SDRAM blocks are accessed, the DRAM controller can operate in either burst or continuous page
mode. The following sections describe the DRAM controller interface to SDRAM, the supported bus
transfers, and initialization.

7.4.1 Address Multiplexing

Table 7-7, Table 7-8, Table 7-9, Table 7-10, and Table 7-11 provide a comprehensive, step-by-step method
to determine the correct address line connections for interfacing the MCF5251 to SDRAM. Note: that there
are separate connection tables for 4Mb to 128 Mb devices and 256 Mb devices.

Specifically for the 256Mb devices the tables change due to the fact that we need to have a A24 address
line. But with the MCF5251 A24 and A20 are shared on the same pin. This means that when we program
the A20/A24 pin to be A24. We no longer have A20 available to any memory device connected to the
memory bus.

To use the tables, find the one that corresponds to the number of column address lines on the SDRAM.
Most SDRAMs likely have fewer address lines than are shown in the tables, so follow only the connections
shown until all SDRAM address lines are connected.

7 Reserved, should be cleared.

6–1
AMx

Address modifier masks. Determine which accesses can occur in a given DRAM block.
0 Allow access type to hit in DRAM
1 Do not allow access type to hit in DRAM

0
V

Valid. Cleared at reset to ensure that the DRAM block is not erroneously decoded.
0 Do not decode DRAM accesses.
1 Registers controlling the DRAM block are initialized; DRAM accesses can be decoded.

Table 7-6. DRAM Controller Mask Register (DMR0) Field Descriptions (continued)

Bits Description

Bit Associated Access Type Access Definition

C/I CPU space/interrupt
acknowledge

MOVEC instruction or interrupt acknowledge cycle

AM Alternate master External or DMA master

SC Supervisor code Any supervisor-only instruction access

SD Supervisor data Any data fetched during the instruction access

UC User code Any user instruction

UD User data Any user data

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 7-9

It is important to ensure that the Command (CBM) or AP control signal is connected to correct Address
line on the selected SDRAM. The address line used (or position) for the AP control signal is programmable
via bits 10:8 of the DACRx register.

In the case of a Samsung SDRAM (K4S641633D-G) which has 8 column address lines the AP address pin
is A10 (the address line used for the CBM/AP control signal may differ on other manufacturer devices).
We choose to use A19 for the CBM/AP control signal and connect it to A10 on the SDRAM. We then set
DACRx bits 10:8 to 010b which selects A19 as the CBM/AP mapping the Bank Select pins above this.

Note: for SDRAM’s with more column address lines the position of the CBM / AP control signal moves
up one address line in each case.

The following SDRAM pin connection tables are for use with 4Mbit, 16Mbit, 64Mbit or 128Mbit devices
only.

)

The following SDRAM pin connection tables are for use with 256 Mbit devices only.

For the 256 Mbyte SDRAM, there is the restriction that address line A20 cannot be output. (we need A24).
If you want consistent mapping of the D-RAM in ColdFire memory space, A20 must be sent to the
D-RAM. To get this done, the only way is to make sure the D-RAM controller outputs A20 during the CAS
phase on A21, and ensure address pin A21 is connected to a D-RAM pin that uses both row and column
address. In this case, there is only one such pin, and this is A8 (CAS8/RAS8). Also, to get the column
address on A21, the AP bit must be set above this, lowest we can set it is A22. So, AP must be connected
to A22. Bank addresses are then A23 and above. (Bank addresses need equal address during CAS and RAS
phase). The remaining 3 D-RAM ras-only address lines are connected to A9, A11 and A12.

Table 7-7. SDRAM Interface (16-Bit Port, 8-Column Address Lines)

MCF5251 Pins A16 A15 A14 A13 A12 A11 A10 A9 A17 A18 A19 A20 A21 A22 A23

Row 16 15 14 13 12 11 10 9 17 18 19 20 21 22 23

Column 1 2 3 4 5 6 7 8 – – – – – – –

SDRAM Pins A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

Table 7-8. SDRAM Interface (16-Bit Port, 9-Column Address Lines)

MCF5251 Pins A16 A15 A14 A13 A12 A11 A10 A9 A18 A19 A20 A21 A22 A23

Row 16 15 14 13 12 11 10 9 18 19 20 21 22 23

Column 1 2 3 4 5 6 7 8 17 – – – – –

SDRAM Pins A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

Table 7-9. SDRAM Interface (16-Bit Port, 10-Column Address Lines

MCF5251 Pins A16 A15 A14 A13 A12 A11 A10 A9 A18 A20 A21 A22 A23

Row 16 15 14 13 12 11 10 9 18 20 21 22 23

Column 1 2 3 4 5 6 7 8 17 19 – – –

SDRAM Pins A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

7-10 Freescale Semiconductor

7.4.2 Interfacing Example

The tables in the previous section can be used to configure the interface in the following example. To
interface one 1M × 16-bit × 4 bank SDRAM component (8 columns) to the MCF5251, the connections
would be as shown in Table 7-11. Pin A20/A24 is programmed to A20 mode and A19 is programmed as
the AP / CMD.

7.4.3 Burst Page Mode

The SDRAM can efficiently provide data when an SDRAM page is opened. As soon as SDCAS is issued,
the SDRAM accepts a new address and asserts SDCAS every clock for as long as accesses are in that page.
In burst page mode, there are multiple read or write operations for every ACTV command in the SDRAM
if the requested transfer size exceeds the port size of the associated SDRAM. The first cycle of the transfer
generates the ACTV and READ or WRITE commands; additional cycles generate only READ or WRITE
commands. As soon as the transfer completes, the PALL command is generated to prepare for the next
access.

NOTE
In synchronous operation, burst mode and address incrementing during
burst cycles are controlled by the MCF5251 DRAM controller. Thus,
instead of the SDRAM enabling its internal burst incrementing capability,
the MCF5251 controls this function. This means that the burst function that
is enabled in the mode register of SDRAMs must be disabled when
interfacing to the MCF5251.

Figure 7-6 shows a burst read operation. In this example, DACR[CASL] = 01, for an SRAS-to-SCAS delay
(tRCD) of 1 BCLKO cycle. Because tRCD is one more than the read CAS latency (SCAS assertion to data
out), this value is 2 BCLK cycles. Notice that NOPs are executed until the last data is read. A PALL
command is executed one cycle after the last data transfer.

Table 7-10. SDRAM Interface (16-Bit Port, 9-Column Address Lines)

MCF5251 Pins A16 A15 A14 A13 A12 A11 A10 A9 A21 A17 A18 A19 A22 A23 A24

Row 16 15 14 13 12 11 10 9 21 17 18 19 22 23 24

Column 1 2 3 4 5 6 7 8 20 – – – – – –

Output during CAS A1 A2 A3 A14 A5 A6 A7 A8 A20 A16 A17 A18 AP A23 A24

Output during RAS A16 A15 A14 A13 A12 A11 A10 A9 A21 A17 A18 A19 A22 A23 A24

SDRAM Pins A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A11 A12 A10 A13 A14

Table 7-11. SDRAM Hardware Connections

SDRAM Pins A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10=CMD A11 BA0/A12 BA1/A13

MCF5251 Pins A16 A15 A14 A13 A12 A11 A10 A9 A17 A18 A19 A20/A24 A21 A22

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 7-11

Figure 7-6. Burst Read SDRAM Access

Figure 7-7 shows the burst write operation. In this example, DACR[CASL] = 01, which creates an
SRAS-to-SCAS delay (tRCD) of 2 BCLK cycles.

NOTE
Data is available upon SCAS assertion and a burst write cycle completes two
cycles sooner than a burst read cycle with the same tRCD. The next bus cycle
is initiated sooner, but cannot begin an SDRAM cycle until the
precharge-to-ACTV delay completes.

A[31:0]

SDRAS

SDCAS

SDWE

D[31:16]

tCASL = 1

actv read nopnop

SD_CS0

UDQM

nop pall

Row Column Column Column Column

tRCD = 2

tEP

BCLK

LDQM

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

7-12 Freescale Semiconductor

Figure 7-7. Burst Write SDRAM Access

Accesses in synchronous burst page mode always cause the following sequence:

1. ACTV command

2. NOP commands to assure SRAS-to-SCAS delay (if CAS latency is 1, there are no NOP commands)

3. Required number of READ or WRITE commands to service the transfer size with the given port size

4. Some transfers need more NOP commands to assure the ACTV-to-precharge delay

5. PALL command

6. Required number of idle clocks inserted to assure precharge-to-ACTV delay

7.4.4 Continuous Page Mode

Continuous page mode is identical to burst page mode, except that it allows the processor core to handle
successive bus cycles that hit the same page without having to close the page. When the current bus cycle
finishes, the MCF5251 core internal pipelined bus can predict whether the upcoming cycle will hit in the
same page.

• If the next bus cycle is not pending or misses in the page, the PALL command is generated to the
SDRAM.

• If the next bus cycle is pending and hits in the page, the page is left open, and the next SDRAM
access begins with a READ or WRITE command.

• Because of the nature of the internal CPU pipeline this condition does not occur often; however,
the use of continuous page mode is recommended because it can provide a slight performance
increase.

A[31:0]

SDRAS

SDCAS

SDWE

D[31:16]

ACTV WRITE PALLNOP

SD_CS0

XDQM

tCASL = 2

Row Column Column Column Column

tRP

tRWL

BCLK

NOP

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 7-13

Figure 7-8 shows two read accesses in continuous page mode.

NOTE
There is no precharge between the two accesses. Also, the second cycle
begins with a read operation with no ACTV command.

Figure 7-8. Synchronous, Continuous Page-Mode Access—Consecutive Reads

Figure 7-9 shows a write followed by a read in continuous page mode. Because the bus cycle is terminated
with a WRITE command, the second cycle begins sooner after the write than after the read. A read requires
data to be returned before the bus cycle can terminate.

NOTE
In continuous page mode, secondary accesses output the column address
only.

A[31:0]

SDRAS

SDCAS

SDWE

D[31:16]

actv nop readnop

SD_CS0

XDQM

read nop nop pall

tCASL = 1

tRCD = 2

tCASL = 1

tEP

Row Column Column

BCLK

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

7-14 Freescale Semiconductor

Figure 7-9. Synchronous, Continuous Page-Mode Access—Read after Write

7.4.5 Auto-Refresh Operation

The DRAM controller is equipped with a refresh counter and control. This logic is responsible for
providing timing and control to refresh the SDRAM. Once the refresh counter is set, and refresh is enabled,
the counter counts to zero. At this time, an internal refresh request flag is set and the counter begins
counting down again. The DRAM controller completes any active burst operation and then performs a
PALL operation. The DRAM controller then initiates a refresh cycle and clears the refresh request flag. This
refresh cycle includes a delay from any precharge to the auto-refresh command, the auto-refresh command,
and then a delay until any ACTV command is allowed. Any SDRAM access initiated during the auto-refresh
cycle is delayed until the cycle is completed.

Figure 7-10 shows the auto-refresh timing. In this case, there is an SDRAM access when the refresh
request becomes active. The request is delayed by the precharge to ACTV delay programmed into the active
SDRAM bank by the CAS bits. The REF command is then generated and the delay required by
DCR[RTIM] is inserted before the next ACTV command is generated. In this example, the next bus cycle
is initiated, but does not generate an SDRAM access until TRC is finished.

A[31:0]

SDRAS

SDCAS

SDWE

D[31:16]

ACTV NOP READNOP

SD_CS0]

XDQM

WRITE NOP NOP NOP PALL

Row Column Column

tCASL = 2

tRCD = 3 tEP

BCLK

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 7-15

Figure 7-10. Auto-Refresh Operation

7.4.6 Self-Refresh Operation

Self-refresh is a method of allowing the SDRAM to enter into a low-power state, while at the same time
to perform an internal refresh operation and to maintain the integrity of the data stored in the SDRAM. The
DRAM controller supports self-refresh with DCR[IS]. When IS is set, the SELF command is sent to the
SDRAM. When IS is cleared, the SELFX command is sent to the DRAM controller. Figure 7-11 shows the
self-refresh operation.

Figure 7-11. Self-Refresh Operation

A[31:0]

SDRAS

SDCAS

SDWE

PALL NOPNOP

SD_CS

REF ACTV

tRCD = 2
tRC = 6

BCLK

SDRAS

SDCAS

SDWE

PALL NOPNOP

SD_CS0

SELF
First

BCLKE

Possible
ACTV

SELFXSelf-
Refresh
Active

tRCD = 2
tRC = 6

BCLK

(DCR[COC] = 0)

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

7-16 Freescale Semiconductor

7.5 Initialization Sequence
Synchronous DRAMs have a prescribed initialization sequence. The DRAM controller supports this
sequence with the following procedure:

1. SDRAM control signals are reset to idle state. Wait the prescribed period after reset before any
action is taken on the SDRAMs. This is normally around 100 µs.

2. Initialize the DCR, DACR, and DMR in their operational configuration. Do not yet enable PALL or
REF commands.

3. Issue a PALL command to the SDRAMs by setting DCR[IP] and accessing a SDRAM location.
Wait the time (determined by tRP) before any other execution.

4. Enable refresh (set DACR[RE]) and wait for at least 8 refreshes to occur.

5. Before issuing the MRS command, determine if the DMR mask bits need to be modified to allow
the MRS to execute properly.

6. Issue the MRS command by setting DACR[IMRS] and accessing a location in the SDRAM.

NOTE
Mode register settings are driven on the SDRAM address bus, so care must
be taken to change DMR[BAM] if the mode register configuration does not
fall in the address range determined by the address mask bits. After the
mode register is set, DMR mask bits can be restored to their desired
configuration.

7.5.1 Mode Register Settings

It is possible to configure the operation of SDRAMs, namely their burst operation and CAS latency,
through the SDRAM mode register. CAS latency is a function of the speed of the SDRAM and the bus
clock of the DRAM controller. The DRAM controller operates at a CAS latency of 1 or 2.

Although the MCF5251 DRAM controller supports bursting operations, it does not use the bursting
features of the SDRAMs. Because the MCF5251 can burst operand sizes of 1, 2, 4, or 16 bytes long, the
concept of a fixed burst length in the SDRAMs mode register becomes problematic. Therefore, the
MCF5251 DRAM controller generates the burst cycles rather than the SDRAM device. Because the
MCF5251 generates a new address and a READ or WRITE command for each transfer within the burst, the
SDRAM mode register should be set either to a burst length of one or to not burst. This allows bursting to
be controlled by the MCF5251 instead.

The SDRAM mode register is written to by setting the associated block’s DACR[IMRS]. First, the base
address and mask registers must be set to the appropriate configuration to allow the mode register to be set.

NOTE
Improperly set DMR mask bits may prevent access to the mode register
address. Thus, the user should determine the mapping of the mode register
address to the MCF5251 address bits to find out if an access is blocked. If
the DMR setting prohibits mode register access, the DMR should be
reconfigured to enable the access and then set to its necessary configuration
after the MRS command executes.

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 7-17

The associated CBM bits should also be initialized. After DACR[IMRS] is set, the next access to the
SDRAM address space generates the MRS command to that SDRAM. The address of the access should be
selected to place the correct mode information on the SDRAM address pins. The address is not multiplexed
for the MRS command. The MRS access can be a read or write. The important thing is that the address output
of that access needs the correct mode programming information on the correct address bits.

Figure 7-12 shows the MRS command, which occurs in the first clock of the bus cycle.

Figure 7-12. Mode Register Set (MRS) Command

7.6 SDRAM Example
This example interfaces a Samsung K4S641633 1M x 16-bit x 4 bank SDRAM component to a MCF5251
operating at 80 MHz (40 MHz bus). Table 7-12 lists design specifications for this example.

Table 7-12. SDRAM Example Specifications

Parameter Specification

12 rows, 8 columns –

Two bank-select lines to access four internal banks –

ACTV-to-read/write delay (tRCD) 20 nS (min.)

Period between auto refresh and ACTV command (tRC) 70 nS

ACTV command to precharge command (tRAS) 48 nS (min.)

Precharge command to ACTV command (tRP) 20 nS (min.)

Last data input to PALL command (tRWL) 1 bus clock (25 nS)

Auto refresh period for 4096 rows (tREF) 64 mS

A[31:0]

SDRAS, SDCAS

SDWE

D[31:16]

MRS

SD_CS0

BCLK

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

7-18 Freescale Semiconductor

7.6.1 SDRAM Interface Configuration

To interface this component to the MCF5251 DRAM controller, use the connection table that corresponds
to a 16-bit port size with 8 columns (Figure 7-14). Two pins select one of four banks when the part is
functional. Table 7-13 shows the proper hardware hook-up.

7.6.2 DCR Initialization

At power-up, the DCR has the following configuration if synchronous operation and SDRAM address
multiplexing is desired.

This configuration results in a value of 0x8012 for DCR, as shown in Table 7-14.

Table 7-13. SDRAM Hardware Connections

MCF5251 Pins A16 A15 A14 A13 A12 A11 A10 A9 A17 A18 A19 A20/A24 A21 A22

SDRAM Pins A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 = CMD A11 BA0 BA1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field SO NAM COC IS RTIM RC

Setting 1 – 0 0 0 0 0 0 0 0 0 1 0 0 1 0

(hex) 8 0 1 2

Figure 7-13. Initialization Values for DCR

Table 7-14. DCR Initialization Values

Bits Setting Description

15
SO

1 Indicating synchronous operation

14 x Don’t care (reserved)

13
NAM

0 Indicating SDRAM controller multiplexes address lines internally

12
COC

0 BCLKE is used as clock enable instead of command bit because user is not multiplexing address lines
externally and requires external command feed.

11
IS

0 At power-up, allowing power self-refresh state is not appropriate because registers are being set up.

10–9
RTIM

00 Because tRC value is 70 nS, indicating a 3-clock refresh-to-ACTV timing.

8–0
RC

0x12 Specification indicates auto-refresh period for 4096 rows to be 64 mS or refresh every 15.625 µs for each row,
or 312 bus clocks at 40MHz. Because DCR[RC] is incremented by 1 and multiplied by 16, RC = (312 bus
clocks/16) -1 = 18.56 = 0x12

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 7-19

7.6.3 DACR Initialization

As shown in Figure 7-14, in this example the SDRAM is programmed to access only the second 512 Kbyte
block of each 1 Mbyte partition in the SDRAM (each 16 Mbyte). The starting address of the SDRAM is
0xFF80_0000. Continuous page mode feature is used.

Figure 7-14. SDRAM Configuration

This configuration results in a value of DACR0 = 0xFF88_1224, as described in Table 7-15.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Field BA

Setting 1111_1111_1000_10 – –

(hex) F F 8 8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field RE CASL CBM IMRS PS IP PM

Setting 0 – 01 – 010 – 0 10 0 1 – –

(hex) 1 2 2 4

Figure 7-15. DACR Register Configuration

Table 7-15. DACR Initialization Values

Field Setting Description

31–18
BA

– Base address. So DACR0[31–16] = 0xFF88, which places the starting address of the SDRAM accessible
memory at 0xFF88_0000.

17–16 – Reserved. Don’t care.

15
RE

0 0, which keeps auto-refresh disabled because registers are being set up at this time.

14 – Reserved. Don’t care.

13–12
CASL

01 Indicates a delay of data 1 cycle after CAS is asserted.

11 – Reserved. Don’t care.

10–8
CBM

010 Command bit is pin 19 and bank selects are 20 and up.

Bank 0

1 MB
512 Kbyte

512 Kbyte

SDRAM Component Accessible
Memory

Bank 1

1 MB
512 Kbyte

512 Kbyte

Bank 2

1 MB
512 Kbyte

512 Kbyte

Bank 3

1 MB
512 Kbyte

512 Kbyte

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

7-20 Freescale Semiconductor

7.6.4 DMR Initialization

In this example, only the second 512 Kbyte block of each 1 Mbyte space is accessed in each bank. In
addition the SDRAM component is mapped only to readable and writable supervisor and user data. The
DMRs have the following configuration.

With this configuration, the DMR0 = 0x0074_0075, as described in Table 7-16.

7 – Reserved. Don’t care.

6
IMRS

0 Indicates MRS command has not been initiated.

5–4
PS

10 16-bit port.

3
IP

0 Indicates precharge has not been initiated.

2
PM

1 Indicates continuous page mode.

1–0 – Reserved. Don’t care.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Field BAM

Setting 0 0 0 0 0 0 0 0 0 1 1 1 0 1 – –

(hex) 0 0 7 4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field WP C/I AM SC SD UC UD V

Setting – – – – – – – 0 – 1 1 1 0 1 0 1

(hex) 0 0 7 5

Figure 7-16. DMR0 Register

Table 7-16. DMR0 Initialization Values

Bits Setting Description

31–16
BAM

– With bits 17 and 16 as don’t cares, BAM = 0x0074, which leaves bank select bits and upper 512K select bits
unmasked.
Bits 22 and 21 are set because they are used as bank selects; bit 20 is set because it controls the 1-MB
boundary address.

15–9 – Reserved. Don’t care.

8
WP

0 Allow reads and writes

7 – Reserved

Table 7-15. DACR Initialization Values (continued)

Field Setting Description

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 7-21

7.6.5 Mode Register Initialization

When DACR[IMRS] is set, a bus cycle initializes the mode register. If the mode register setting is read on
A[9:0] of the SDRAM on the first bus cycle, the bit settings on the corresponding MCF5251 address pins
must be determined while being aware of masking requirements.

Table 7-17 lists the desired initialization setting:

6
C/I

1 Disable CPU space access

5
AM

1 Disable alternate master access

4
SC

1 Disable supervisor code accesses

3
SD

0 Enable supervisor data accesses

2
UC

1 Disable user code accesses

1
UD

0 Enable user data accesses

0
V

1 Enable accesses

Table 7-17. Mode Register Initialization

MCF5251 Pins SDRAM Pins Mode Register Initialization

A22 BA1 / A13 – 0

A21 BA0 / A12 – 0

A20 A11 Reserved 0

A19 command / A10 WB 0

A18 A9 Opmode 0

A17 A8 Opmode 0

A9 A7 – –

A10 A6 CASL 0

A11 A5 CASL 0

A12 A4 CASL 1

A13 A3 BT 0

A14 A2 BL 0

Table 7-16. DMR0 Initialization Values (continued)

Bits Setting Description

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

7-22 Freescale Semiconductor

Next, this information is mapped to an address to determine the hexadecimal value.

Although A[31:20] corresponds to the address programmed in DACR0, according to how DACR0 and
DMR0 are initialized, bit 19 must be set to hit in the SDRAM. Thus, before the mode register bit is set,
DMR0[19] must be set to enable masking.

7.6.6 Initialization Code

The following assembly code initializes the SDRAM example.

Power-Up Sequence:
move.w #0x8012, d0 //Initialize DCR
move.w d0, DCR
move.l #0xFF881220, d0 //Initialize DACR0
move.l d0, DACR0
move.l #0x00740075, d0 //Initialize DMR0
move.l d0, DMR0

Precharge Sequence:
move.l #0xFF881228, d0 //Set DACR0[IP]
move.l d0, DACR0
move.l #0xBEADDEED, d0 //Write to memory location to init. precharge
move.l d0, 0xFF880000

A15 A1 BL 0

A16 A0 BL 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Field

Setting – – – – – – – – – 0 0 0 0 0 0 0

(hex) 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field V

Setting 0 0 0 1 0 0 0 – – – – – – – – –

(hex) 1 0 0 0

Figure 7-17. Mode Register Mapping to MCF5251 A[31:0]

Table 7-17. Mode Register Initialization (continued)

MCF5251 Pins SDRAM Pins Mode Register Initialization

A22 BA1 / A13 – 0

A21 BA0 / A12 – 0

A20 A11 Reserved 0

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 7-23

Refresh Sequence:
move.l #0xFF889220, d0 //Enable refresh bit in DACR0
move.l d0, DACR0

Mode Register Initialization Sequence:
move.l #0x00600075, d0 //Mask bit 19 of address
move.l d0, DMR0
move.l #0xFF889260, d0 //Enable DACR0[IMRS]; DACR0[RE] remains set
move.l d0, DACR0
move.l #0x00000000, d0 //Access SDRAM address to initialize mode register
move.l d0, 0xFF801000
move.l #0x00740075, d0 //Set up DMR again
move.l d0, DMR0

Synchronous DRAM Controller Module

MCF5251 Reference Manual, Rev. 1

7-24 Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 8-1

Chapter 8
Bus Operation
This chapter describes bus functionality, the bus control signals, and the bus cycles provided for
data-transfer operations. Bus operation is defined for transfers initiated by the MCF5251 as a bus master
and for transfers initiated by an alternate bus master. This chapter includes descriptions of the error
conditions, bus arbitration, and the reset operation.

8.1 Bus Features
The MCF5251 bus operates using the following features:

• 24 bit address bus (24-bit for SDRAM access only 23-bit otherwise)

• 16 bit data bus

• 16 bit port size

• Generates byte, word, longword, and line size transfers

• Burst and burst-inhibited transfer support

• Internal termination generation (TA)

8.2 Bus and Control Signals
Although the timing of these signals is referenced to the BCLK, it is not considered a bus signal. It is
expected that the clock will be routed as needed to meet application requirements. Table 8-1 summarizes
the MCF5251 bus signals. A brief description of the function of each signal follows.

NOTE
An overbar indicates an active-low signal.

Table 8-1. MCF5251 Bus Signal Summary

Signal Name Direction Description

A[24:1] Out Address bus

RW Out Read-write control

D[31:16] In/Out Data bus

CS0/CS4 Out Chip select 0 / Chip select 4

CS1/QSPI_CS3/GPIO28 Out Chip select 1

OE Out Output enable

Bus Operation

MCF5251 Reference Manual, Rev. 1

8-2 Freescale Semiconductor

8.2.1 Address Bus

The address bus A[24:1] provides the address of the byte or most significant byte of the word or longword
being transferred.The address lines also serve as the SDRAM address pins, providing multiplexed row and
column address signals.

NOTE
For SDRAM access A24 is multiplexed with A20.

A0 is not available on the address bus. As a result, the MCF5251 supports only 16-bit port size.

8.2.2 Read/Write Control

The read/write (RW) control line will indicate that a bus cycle in progress is read or write. RW timing is
same as address timing.

8.2.3 Transfer Acknowledge (TA)

This active-low synchronous input signal indicates the successful completion of a requested data transfer
operation. During MCF5251-initiated transfers, transfer acknowledge (TA) is an asynchronous input
signal from the referenced slave device indicating completion of the transfer.

The MCF5251 edge-detects and re-times the TA input. This means that an additional wait state may or may
not be inserted. For example, if the active chip select is used to immediately generate the TA input, one or
two wait states may be inserted in the bus access.

The TA signal function is not available after reset. It must be enabled by configuring the appropriate pin
configuration register bit (it is multiplexed with GPIO12) along with the value of CSCRn[WS]. If TA is
not used, it should either have a pull-up resistor or be driven through gating logic that always ensures the
input is inactive. TA should be negated on the negating edge of the active chip select.

TA must always be negated before it can be recognized as asserted again. If held asserted into the following
bus cycle, it has no effect and does not terminate the bus cycle.

TA is not used for termination during SDRAM accesses.

8.2.4 Data Bus

The data bus D[31:16] is a bidirectional, non-multiplexed bus. Data is latched by the MCF5251 on the
rising BCLK clock edge. When interfacing with external memory or peripherals, the data bus port width,
wait states, and internal termination are initially defined.

The port width for each chip-select and DRAM bank are user programmable. If none of the chip-selects,
DRAM bank or System Bus Controller (SBC) spaces match the address decode, the memory cycle will

Table 8-2. Reset Port Settings

Reset Port Size 16 Bit

Reset cycle length Internal termination, 15 wait cycles

Bus Operation

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 8-3

terminate with error. The data bus can transfer byte or word-sized data. All 16 bits of the data bus are driven
during writes, regardless of port width or operand size.

8.2.5 Chip Selects

Chip select CS1 is shared with QSPI_CS3 and GPIO28.
Power-on reset function of CS1/QSPI_CS3/GPIO28 is CS1
The function can be programmed in the Pin Configuration register.

Chip select CS0 shares with CS4.
Its default mode is dependent on the state of address pin A23 at power-on reset.

This is determined as follows:

During power-on reset, logic level of pins A23 and A20/A24 are sensed. A pull-up / pull-down resistor
should be connected between these pins and VDD or GND. Depending whether a pull-up or pull-down is
mounted, different options are selected.

When the address decode matches one of the chip select spaces, the MCF5251 processor will pull low the
appropriate chip select low indicating an external bus access.

CS2 is also available but is associated with the IDE read and write strobes IDE_DIOR and IDE_DIOW.

Configuration registers for CS3 are present but no hardware pin exists for this CS on the MCF5251.
However it is possible to program BUFENB2 via the CS3 registers.

8.2.6 Output Enable

The OE pin on the MCF5251 will be pulled low during any read cycle from a device selected by CS0, CS1,
CS2, or CS4.

8.3 Clock and Reset Signals
These signals provide the external system interface for the MCF5251 (see Table 8-4).

Table 8-3. Chip Select Settings

Pin Description

A23 Pull-up: Boot from memory connected to CS0/CS4. CS0/CS4 function is CS0
Pull-down: Boot from on-chip boot ROM. CS0/CS4 function becomes CS4

Table 8-4. CF-Bus Signal Summary

Signal Name Direction Description

RSTI In Reset In

BCLK Out System Bus Clock Output (SYSCLK)

Bus Operation

MCF5251 Reference Manual, Rev. 1

8-4 Freescale Semiconductor

8.3.1 Reset In

Asserting RSTI causes the MCF5251 processor to enter reset exception processing. When RSTI is
recognized, the data bus is tri-stated, and OE, CS0, and CS1 are negated. See Section 8.7, “Reset
Operation.”

8.3.2 System Bus Clock Output

The BCLK output signal is generated by the internal PLL, and is the system bus clock output used as the
bus timing reference by the external devices. BCLK is always half the frequency of the processor clock.

8.4 Bus Characteristics
The external bus operates at the same speed as the bus clock rate, where all bus operations are synchronous
to the rising edge of BCLK, and the bus chip selects are synchronous to the falling edge of the BCLK,
which is shown in Figure 8-1. The bus characteristics may be somewhat different for interfacing with
external DRAM.

Figure 8-1. Signal Relationship to BCLK for Non-DRAM Access

8.5 Data Transfer Operation
Data transfer between the MCF5251 processor and other devices involves the following signals:

1. Address bus (A[23:1])

2. RW control

BCLK

OUTPUT

OUTPUT
CONTROL

INPUTS

tvo tho

tvo tho

tsi thi

tvo = Propagation delay of signal relative to BCLK edge
tho = Output hold time relative to BCLK edge
tsi = Required input setup time relative to BCLK edge
thi = Required input hold time relative to BCLK edge

SIGNALS

Bus Operation

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 8-5

3. Data bus (D[31:16])

4. Strobe (CSx, OE)

The bus signals transition on the rising edge of BCLK. The strobe signals CSx, OE make their transitions
on the falling edge of BCLK. Read data is latched on the rising edge of BCLK.

The bus supports byte, word, and longword operand transfers and uses a 16-bit data port. With the
MCF5251, the port size of all memory must be programmed to 16 bits, the internal transfer termination
must be enabled, and the number of wait states must be set for the external slave being accessed by
programming the Chip-Select Control Registers (CSCRs) and the DRAM Controller Control Registers
(DCRs). For more information on programming these registers, refer to Section 10.3, “Chip Select
Operation,” and Section 7.3.1, “DRAM Controller Registers.”

Figure 8-3 shows the byte lanes that external chip-select memory and DRAM should be connected to and
the sequential transfers that would occur for each memory if a longword was transferred to it. A 16-bit
memory should be connected to[31:16] of the MCF5251 data bus. For a longword transfer, the most
significant word D[31:16] will be transferred on lane D[31:16], followed by the least significant word
being transferred.

Figure 8-2. Connections for External Memory Port Sizes

8.5.1 Bus Cycle Execution

When a bus cycle is initiated, the processor compares the address of that bus cycle with the base address
and mask configurations programmed for various memory-mapped peripherals. These include SRAM0,
SRAM1, System Bus Controller 1 and 2, chip selects, and the DRAM. If no match is found, the cycle will

Processor External
Data Bus

D[31:24] D[23:16]

16-Bit Port Memory Byte 0 Byte 1

Byte 2 Byte 3

8-Bit Port Memory Byte 0

Driver with
Indeterminate Values

Byte 1

Byte 2

Byte 3

Bus Operation

MCF5251 Reference Manual, Rev. 1

8-6 Freescale Semiconductor

terminate in an error. If a match is found for any chip selects or DRAM, the bus cycle will be executed on
the external bus. Chip select accesses follow timing diagrams given in this section. DRAM accesses are
different. They are described in the section on the DRAM controller.

Table 8-5 shows the type of access as a function of match in various memory space programming registers.

Basic operation of the MCF5251 bus is a three-clock bus cycle. During the first clock, the address is driven.
CSx is asserted at the falling edge of the clock to indicate that address and attributes are valid and stable.
Data and TA are sampled during the second clock of a bus-read cycle. TA is generated internally in the
chip select module.

During a read, the external device provides data and is sampled at the rising edge at the end of the second
bus clock. This data is concurrent with TA, which is also sampled at the rising edge of the clock. During a
write, the MCF5251 drives data from the rising clock edge at the end of the first clock to the rising clock
edge at the end of the bus cycle.

Users can add wait states between the first and second clocks by delaying the assertion of TA. This refers
to internal transfers only and not the write cycles. This is done by programming the relevant chip select
registers. If “0000” is programmed in the WS field of the relevant chip select register, a no wait cycle
results. If n is programmed in the WS field, n wait cycles will result. The last clock of the bus cycle uses
what would be an idle clock between cycles to provide hold time for address and write data. Figure 8-4
and Figure 8-6 show the basic read and write operations.

8.5.2 Read Cycle

The Read cycle as shown in Figure 8-3, will occur if the wait cycle field (WS) in the Chip Select Control
Register (CSR) is programmed to value “0000”. The CS low time is increased with n clocks if n is
programmed into the WS field.

During a read cycle, the MCF5251 receives data from memory or from a peripheral device. The read cycle
flowchart is shown in Figure 8-3 while the read cycle timing diagram is shown in Figure 8-4.

Table 8-5. Accesses by Matches

KRAM
Matches

SBC 2
Matches

SBC 1
Matches

Number of
Chip Selects

Register
Matches

Number of
DRAM

Controller
Register
Matches

Type of Access

yes any any any any on-chip SRAM

no yes any any any SBC 2

no no yes none none SBC 1

no no no single none as defined by Chip-Select control register

no no no none single as defined by DRAM control register

no no no none none Undefined

All other combinations Undefined

Bus Operation

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 8-7

Figure 8-3. Read Cycle Flowchart

Figure 8-4. Basic Read Bus Cycle

A basic read bus cycle has six states (S0–S5). The signal timing relationship in the constituent states of a
basic read cycle is as follows:

Table 8-6. Read Cycle States

State
Name

Description1,2

STATE 0 The read cycle is initiated in state 0 (S0). On the rising edge of BCLK, the MCF5251 places a valid address on
the address bus and drives RW high, if it is not already high.

STATE 1 The appropriate CS and OE are asserted on the falling edge of BCLK.

STATE 2

External Memory/Device

1. Set RW to read
2. Place address on A[23:1]

1. Decode address and select appropriate device
2. Drive data on D[31:16]
3. CS unit asserts TA (internal termination)
or assert TA externally for 1 BCLK cycle (external
termination).

1. Sample TA low and latch data

1. Stop Driving D[31:16]

1. Start next cycle

MCF5251

BCLK

A[23:1]

RW

D[31:16]

TA

S0 S1 S2 S3 S4 S5

CSx

OE

Read

Bus Operation

MCF5251 Reference Manual, Rev. 1

8-8 Freescale Semiconductor

8.5.3 Write Cycle

The Write cycle as shown in Figure 8-6., will occur if the wait cycle field (WS) in the Chip Select Control
Register (CSR) is programmed to value “0000”. The CS low time is increased with n clocks if n is
programmed into the WS field.

During a write cycle, the MCF5251 sends data to the memory or to a peripheral device.

The write cycle flowchart is Figure 8-6. Write cycle timing diagram is Figure 8-7.

Figure 8-5. Write Cycle Flowchart

STATE 3 Data is made available by the external device and is sampled on the rising edge of BCLK with TA asserted. If TA
not asserted before the rising edge of BCLK at the end of the first clock cycle, the MCF5251 inserts wait states
(full clock cycles) until TA is asserted. If internal TA is requested (auto-acknowledge enabled in the chip select
control register, CSCR) then TA is generated internally by the chip select module.

STATE 4 During state 4, TA should be negated by the external device or if auto-acknowledge is enabled will be negated
internally by the chip select module.

STATE 5 CS and OE are negated on the falling edge of state 5 (S5). The MCF5251 stops driving the address lines and RW
on the rising edge of BCLK, terminating the read cycle. The external device must have its drive from the bus. The
external device must stop driving the bus.
The rising edge of BCLK may be the start of state 0 for the next access cycle.

1 The external device has a maximum of 1.5 BCLK cycles after the start of S4 to three-state the data bus after data is sampled
in S3 during a read cycle. This applies to basic read cycles and the last transfer of a burst.

2 The MCF5251 would not drive out data for a minimum of two BCLK cycles. However, another slave device may start driving
the bus as soon as its chip select is asserted. Chip select may be asserted at the beginning of S1, so bus drive must stop
before the end of S0. Under these conditions, data contention on the bus would not exist.

Table 8-6. Read Cycle States (continued)

State
Name

Description1,2

1. Set RW to Write
2. Place Address on A[23:1]
3. Drive Data on D[31:16]

1. Decode Address
2. Store Data on D[31:16]
3. CS unit asserts TA (internal termination) or assert TA
externally for 1 BCLK cycle
(external termination).

1. Sample TA Low
2. Tri-State Data on D[31:16]
3. Start Next Cycle

External Memory/Device

MCF5251

Bus Operation

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 8-9

Figure 8-6 shows the description for the six states of a basic write cycle.

Figure 8-6. Basic Write Bus Cycle

8.5.4 Back-to-Back Bus Cycles

The MCF5251 can accommodate back-to-back bus cycles. The processor runs back-to-back bus cycles
whenever possible. For example, when a longword read is started on a word-size bus, and burst read enable
is disabled into the relevant chip select register, the processor will perform two word reads back to back.
Figure 8-7 shows a read, followed by a write that occurs back to back.

Table 8-7. Write Cycle States

State Name Description

STATE 0 The write cycle is initiated in state 0 (S0). On the rising edge of BCLK, the MCF5251 places a valid address on
the address bus and drives RW low, if it is not already low.

STATE 1 The appropriate CS is asserted on the falling edge of BCLK.

STATE 2 The data bus is driven out of high impedance as data is placed on the bus on the rising edge of BCLK.

STATE 3 During state 3 (S3), the MCF5251 waits for a cycle termination signal (TA). If TA is not asserted before the rising
edge of BCLK at the end of the first clock cycle, the MCF5251 inserts wait states (full clock cycles) until TA is
asserted. TA is generated internally by the chip select module. If internal TA is requested (auto-acknowledge
enabled in the chip select control register, CSCR) then TA is generated internally by the chip select module.

STATE 4 During state 4, TA should be negated by the external device or if auto-acknowledge is enabled, negated internally
by the chip select module.

STATE 5 CS is negated on the falling edge of BCLK in state 5 (S5). The MCF5251 stops driving the address lines and RW,
terminating the write cycle. The data bus returns to high impedance on the rising edge of BCLK.
The rising edge of BCLK may be the start of state 0 for the next access cycle.

BCLK

A[23:1]

RW

D[31:16]

TA

S0 S1 S2 S3 S4 S5

CSx

Write

Bus Operation

MCF5251 Reference Manual, Rev. 1

8-10 Freescale Semiconductor

Figure 8-7. Back-to-Back Bus Cycle

8.5.5 Burst Cycles

When burst read enable or burst write enable is asserted into the relevant chip select register, the MCF5251
will initiate burst cycles any time a transfer size is larger than the port size the MCF5251 is transferring to.
A line transfer to a 16-bit port would constitute a burst cycle of eight words of data.

The MCF5251 bus can support 3-2-2-2 burst cycles to maximize cache performance and optimize DMA
transfers. Users can add wait states if desired by delaying termination of the cycle.

Through the chip select control registers, users can enable bursting on reads, bursting on writes or bursting
on both reads and writes if desired.

8.5.5.1 Line Transfers

A line is defined as a 16-byte value, aligned in memory on 16-byte boundaries. Although the line itself is
aligned on 16-byte boundaries, the line access does not necessarily begin on the aligned address.Therefore,
the bus interface supports line transfers on multiple address boundaries. The allowable patterns during a
line access are shown in Table 8-8.

8.5.5.2 Line Read Bus Cycles

Figure 8-8 shows a line access read with zero wait states.

Table 8-8. Allowable Line Access Patterns

Addr[3:2] Longword Accesses

00 0 - 4 - 8 - C

01 4 - 8 - C - 0

10 8 - C - 0 - 4

11 C - 0 - 4 - 8

BCLK

A[31:0]

RW

D[31:16]

TA

Read

S0 S1 S2 S3 S4 S5 S0 S1 S2 S3 S4 S5

Write

CSx

OE

Bus Operation

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 8-11

NOTE
The bus cycle begins similar to a basic read bus cycle with the first data
transfer being sampled on the rising edge of S4. However, also notice that
the next pipelined burst data is sampled one cycle later on the rising edge of
S6. Each subsequent pipelined data burst will be single cycle until the last
cycle which can be held for a maximum of 2 BCLK past the TA assertion.
CS and OE remain asserted throughout the burst transfer.

Figure 8-8 shows a line access read with one wait state. Wait states can be programmed in the chip select
control register (CSCRs) to give the peripheral or memory more time to return read data. This figure
follows the same execution as a zero-wait state read burst with the exception of an added wait state.

Figure 8-8. Line Read Burst (one wait cycle)

Figure 8-9. Line Read Burst (no wait cycles) Line Write Bus Cycles

Bus Operation

MCF5251 Reference Manual, Rev. 1

8-12 Freescale Semiconductor

Figure 8-10. Line Read Burst-Inhibited

Figure 8-11. Line Write Burst (no wait cycles)

NOTE
The bus cycle begins similar to a basic write bus cycle with data being driven
one clock after the address. Also notice that the next pipelined burst data is
driven one cycle after the write data has been registered (on the rising edge
of S6). Each subsequent pipelined write data burst will be a single cycle. CS
remains asserted throughout the burst transfer.

Bus Operation

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 8-13

Figure 8-12. Line Write Burst with One Wait State

Figure 8-13. Line Write Burst-Inhibited

8.6 Misaligned Operands
All MCF5251 data formats can be located in memory on any byte boundary. A byte operand is properly
aligned at any address; a word operand is misaligned at an odd address; and a longword is misaligned at
an address that is not evenly divisible by four. Unlike opcodes, because operands can reside at any byte
boundary, they are allowed to be misaligned. Although the MCF5251 does not enforce any alignment
restrictions for data operands (including program counter (PC) relative data addressing), some
performance degradation occurs when additional bus cycles are required for longword or word operands
that are misaligned. For maximum performance, data items should be aligned on their natural boundaries.
All instruction words and extension words (opcodes) must reside on word boundaries. An address error
exception will occur with any attempt to prefetch an instruction word at an odd address.

Bus Operation

MCF5251 Reference Manual, Rev. 1

8-14 Freescale Semiconductor

The MCF5251 converts misaligned operand accesses that are noncachable to a sequence of aligned
accesses. Figure 8-14 illustrates the transfer of a longword operand from a byte address to a 32-bit port,
requiring more than one bus cycle. The slave device supplies the byte and acknowledges the data transfer.
The next two bytes are transferred during the second cycle. During the third cycle, the byte offset is now
$0; the port supplies the final byte and the operation is complete. Figure 8-14 is similar to the example
illustrated in Figure 8-15 except that the operand is word-sized and the transfer requires only two bus
cycles.

Figure 8-14. Misaligned Longword Transfer

Figure 8-15. Misaligned Word Transfer

8.7 Reset Operation
The MCF5251 processor supports one type of reset which resets the entire MCF5251: the external master
reset input (RSTI).

To perform a master reset, an external device asserts the reset input pin (RSTI). When power is applied to
the system, external circuitry should assert RSTI for a minimum of 16 CRIN cycles after Vcc is within
tolerance. Figure 8-16 is a functional timing diagram of the master reset operation, illustrating
relationships among VDD, RSTI, mode selects, and bus signals. The crystal oscillation on CRIN, CROUT
must be stable by the time VDD reaches the minimum operating specification. The crystal should start
oscillating as VDD is ramped up to clear out contention internal to the MCF5251 processor caused by the
random states of internal flip-flops on power up. RSTI is internally synchronized for two CRIN cycles
before being used and must meet the specified setup and hold times in relationship to CRIN to be
recognized.

TRANSFER 1

TRANSFER 2

TRANSFER 3

–

–

OP 0

OP 3

–

–

–

OP 2

–

–

OP 1

–

31 24 23 16 15 8 7 0

TRANSFER 1

TRANSFER 2

–

OP 0

–

–

–

–

OP 1

–

31 24 23 16 15 8 7 0

Bus Operation

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 8-15

Figure 8-16. Master Reset Timing

During the master reset period, the data bus is being tri-stated, the address bus is driven to any value, and
all other bus signals are driven to their negated state. Once RSTI negates, the bus stays in this state until
the core begins the first bus cycle for reset exception processing. A master reset causes any bus cycle
(including DRAM refresh cycle) to terminate. In addition, master reset initializes registers appropriately
for a reset exception.

If at power-on reset, the MCF5251 is configured to boot from external memory connected to CS0. Then
CS0 is configured to address the external boot ROM / Flash. The configuration for CS0 at this time is
hard-wired inside the MCF5251.

Configuration is summarized in Table 8-9.

8.7.1 Software Watchdog Reset

The software watchdog reset is performed anytime the executing software does not provide the correct
write sequence with the enable-control bit set. This reset helps recovery from runaway software or
nonterminated bus cycles. During the software watchdog reset period all signals are driven either to a high
impedance state or a negated state as appropriate.

Table 8-9. Power-On Reset Configuration for CS0

Port Size 16 Bits

Cycle type Internal termination, 15 wait cycles
Burst inhibit asserted for both read and write cycles

VDD

RSTI

CRIN

D[31:16]

SDRAS, SDCAS

CS, OE

 >16
CLKIN CYCLES

SDWE, BCLKE

A[23:1], RW

Bus Operation

MCF5251 Reference Manual, Rev. 1

8-16 Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-1

Chapter 9
System Integration Module (SIM)

9.1 SIM Overview
This chapter describes the operation, memory map and register descriptions of the System Integration
Module (SIM) registers, including the interrupt controller and system-protection functions for the
MCF5251 processor. The SIM provides overall control of the internal and external buses and serves as the
interface between the ColdFire® core and the internal peripherals or external devices. The SIM also
configures the general purpose input/output and enables the CPU HALT instruction.

9.1.1 SIM Features
• Module Base Address Registers (MBAR and MBAR2)

— Base address location of all internal peripherals and SIM resources

— Address space masking to internal peripherals and SIM resources

• Interrupt Controller

— Two interrupt controllers

— Programmable interrupt level (1–7) for peripheral interrupts

• System Protection and Reset Status

— Reset status to indicate cause of last reset

— Software watchdog timer with optional secondary bus monitor functionality

• Bus Arbitration Control Register (MPARK)

— Enables display of internal accesses on the external bus for debug

• General purpose input/output registers

— Defines general-purpose inputs and outputs

— Edge interrupt triggers on general-purpose I/Os, 0 to 6

• Software interrupts

— Allow programmer to make interrupt pending under software control

9.2 SIM Memory Map and Register Definitions
This chapter provides the SIM register memory map, programming and configuration register descriptions,
interrupt interface register descriptions, secondary interrupt controller register descriptions, and software
interrupts.

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-2 Freescale Semiconductor

9.2.1 SIM Register Memory Map

Table 9-2 shows the memory map of all the SIM registers. The internal registers in the SIM are
memory-mapped registers offset from the MBAR or MBAR2 address pointers. The following should be
noted when programming the MBAR registers:

• The Module Base Address Registers are accessed in supervisor mode only using the MOVEC
instruction.

• The MBAR and MBAR2 are accessible using the debug module as read/write registers. See
Chapter 20, “Background Debug Mode (BDM) Interface,” for more details.

Table 9-1. MBAR Register Addresses

Address Name
Size

(Bytes)
Description

CPU + $C0F MBAR 4 Module base address register

CPU + $C0E MBAR2 4 Module base address register 2

Table 9-2. SIM Memory Map

Address Description 0 1 2 3

MBAR + $000 SYSTEM CONTROL REG RSR SYPCR SWIVR SWSR

MBAR + $004 – Reserved

MBAR + $008 – Reserved

MBAR + $00C BUS MASTER CONTROL REG MPARK Reserved

MBAR + $010 – Reserved

MBAR + $014 –

MBAR + $018 –

MBAR + $01C –

MBAR + $020 –

MBAR + $024 –

MBAR + $028 –

MBAR + $02C –

MBAR + $030 –

MBAR + $034 –

MBAR + $038 –

MBAR + $03C –

MBAR + $040 Primary interrupt Pending Reg IPR

MBAR + $044 Primary Interrupt Mask Reg IMR

MBAR + $04C Primary Interrupt Control Reg ICR0 ICR1 ICR2 ICR3

MBAR + $050 Primary Interrupt Control Reg ICR4 ICR5 ICR6 ICR7

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-3

9.3 SIM Module Programming Registers
This section provides the Module Base Address, DeviceID, and Interrupt Controller registers and their
descriptions.

9.3.1 Module Base Address Registers

The base address of all internal peripherals is determined by the MBAR and MBAR2 registers.

The MBAR and MBAR2 are 32-bit write-only supervisor control registers that physically reside in the
SIM. They are accessed in the CPU address spaces $C0F and $C0E using the MOVEC instruction. Refer
to the ColdFire Family Programmer’s Reference Manual for use of MOVEC instruction. The MBAR and
MBAR2 can be read when in debug mode using background debug commands.

At system reset, the MBAR valid bits (MBAR[0], MBAR2[0]) are cleared to prevent incorrect reference
to resources before the MBAR or MBAR2 are written. The remainder of the MBAR and MBAR2 bits are

MBAR + $054 Primary Interrupt Control Reg ICR8 ICR9 ICR10 ICR11

MBAR2 + $000 GPIO 0–31 input reg GPIO-READ (READ ONLY)

MBAR2 + $004 GPIO 0–31 output reg GPIO-OUT

MBAR2 + $008 GPIO 0–31 output enable reg GPIO-ENABLE

MBAR2 + $00C GPIO 0–31 function select GPIO-FUNCTION

MBAR + $0AC DeviceID Reg –

MBAR2 + $0B0 GPIO 32–63 input reg GPIO1-READ (READ ONLY)

MBAR2 + $0B4 GPIO 32–63 output reg GPIO1-OUT

MBAR2 + $0B8 GPIO 32–63 output enable reg GPIO1-ENABLE

MBAR2 + $0BC GPIO 32–63 function select GPIO1-FUNCTION

MBAR2 + $140 Secondary interrupts 0–7 priority INTPRI1

MBAR2 + $144 Secondary interrupts 8–15 priority INTPRI2

MBAR2 + $148 Secondary interrupts 16–23 priority INTPRI3

MBAR2 + $14C Secondary interrupts 24–31 priority INTPRI4

MBAR2 + $150 Secondary interrupts 32–39 priority INTPRI5

MBAR2 + $154 Secondary interrupts 40–47 priority INTPRI6

MBAR2 + $158 Secondary interrupts 48–55 priority INTPRI7

MBAR2 + $15C Secondary interrupts 56–63 priority INTPRI8

MBAR2 + $164 Spurious secondary interrupt vector SPURVEC

MBAR2 + $168 Secondary interrupt base vector register INTBASE

MBAR2 + $198 Software interrupts and interrupt monitor EXTRAINT

Table 9-2. SIM Memory Map (continued)

Address Description 0 1 2 3

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-4 Freescale Semiconductor

uninitialized. To access the MBAR and MBAR2 peripherals, users should write MBAR and MBAR2 with
the appropriate base address and set the valid bit after system reset.

The MBAR2 base address defines a single relocatable memory block on any 1024-Mbyte boundary. If the
MBAR2 valid bit is set, the base address field is compared to the upper two bits of the full 32-bit internal
address to determine if an MBAR2 peripheral is being accessed.

Any processor bus access is first compared for SRAM match (RAMBAR registers), then it is compared
against MBAR and MBAR2. If no match is found in any of these registers, the cycle will be mapped to the
Chip Select and SDRAM units.

Table 9-1 shows the bits in the module base address register (MBAR), and Table 9-2 shows the bits in the
MBAR2.

Address CPU + $C0F Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BA31 BA30 BA29 BA28 BA27 BA26 BA25 BA24 BA23 BA22 BA21 BA20 BA19 BA18 BA17 BA16

W

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BA15 BA14 BA13 BA12 WP AM C/I SC SD UC UD V

W

Reset – – – – – – – – – – – – – – – 0

Figure 9-1. Module Base Address Register (MBAR)

Table 9-3. Module Base Address Register (MBAR) Field Descriptions

Field Description

31–12
BA

The Base Address field defines the base address for a minimum 4 Kbyte address range.

11–9 Reserved.

8
WP

The Write Protect bit is the mask bit for write cycles in the MBAR-mapped register address range.
0 Module address range is read/write
1 Module address range is read only

7 Reserved.

 6
AM

AM–Alternate Master Mask.
When AM = 0 and an alternate master actually accesses the MBAR-mapped registers; bits SC, SD, UC, and UD
(MBAR[4:1]) are “don’t cares” in the address decoding.
0 Alternate master access allowed
1 Alternate master access masked

5
C/I

Mask CPU Space and Interrupt Acknowledge Cycle.
0 IACK cycle mapped to MBAR space
1 IACK cycle not responded to by MBAR peripherals

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-5

The following example shows how to set the MBAR to location $10000000 using the D0 register. A “1”
in the least significant bit validates the MBAR location. This example assumes that all accesses are valid:

move.1 #$10000001,DO
movec DO,MBAR

4
SC

Mask Supervisor Code space in MBAR address range.
0 Supervisor code access allowed
1 Supervisor code access masked

3
SD

Mask Supervisor Data space in MBAR address range.
0 Supervisor data access allowed
1 Supervisor data access masked

2
UC

Mask User Code space in MBAR address range.
0 User code access allowed
1 User code access masked

1
UD

Mask User Data space in MBAR address range.
0 User data space access allowed
1 User data space access masked

0
V

This bit defines when the base address is valid:
0 MBAR address space not visible by CPU
1 MBAR address space visible by CPU

Address CPU + $C0E Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BA31 BA30

W

Reset 0 0 – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
LS7 LS6 LS5 LS4 LS3 LS2 LS1 V

W

Reset – – – – – – – – 0 0 0 0 0 0 0 0

Figure 9-2. Second Module Base Address Register (MBAR2)

Table 9-4. Second Module Base Address Register (MBAR2)Field Descriptions

Field Description

31–30
BA

The Base Address field defines the base address for a 1024 Mbyte address range. If V-bit in MBAR2 is set, address
range Base Address to BaseAddress + $3FFF FFFF are mapped to MBAR2 space, and cannot be used for MBAR,
SDRAM or Chip Select.

29–8 Reserved, should be cleared.

Table 9-3. Module Base Address Register (MBAR) Field Descriptions (continued)

Field Description

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-6 Freescale Semiconductor

9.3.2 Device ID Register

The DeviceID register is a read only register that allows the software to determine what hardware it is
running on. The register contains the part number in the upper 24 bits, the mask revision number in the
lower 8 bits, and is read as 0x005251rr, where rr is the revision number.

This register allows developers the flexibility to write code to run on more than one device. The revision
number allows developers to distinguish between different mask versions that may have minor changes or
bug fixes. For example, developers may want to distribute a single code image or library for use on
different revisions of the silicon.

9.4 Interrupt Interface Registers
For legacy reasons, there are two interrupt controllers on the MCF5251. This section provides the
programming of the two interrupt controller registers and their register descriptions.

The primary interrupt controller is centralized, and services the following:

• Software Watchdog Timer (SWT)

• Timer modules

• I2C0 module

7–1
LS

If interrupts in both the “primary” and the “secondary” interrupt controllers have the same interrupt level pending
then bits LS[7:1] determine which interrupt controller gets priority.
If the bit is cleared, the primary interrupt controller gets priority. If the bit is set, the secondary interrupt controller
gets priority.
There are 7 LSn bits, one for each interrupt level.

0
V

The Valid bit defines if the CPU can access the MBAR2 mapped peripherals.
0 MBAR2 address space not visible by CPU
1 MBAR2 address space visible by CPU

Address MBAR2 + 0xAC Access: User read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Part Number

W

Reset 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Part Number Mask Revision

W

Reset 0 1 0 1 0 0 0 1 – – – – – – – 0

Figure 9-3. DeviceID Register (DeviceID)

Table 9-4. Second Module Base Address Register (MBAR2)Field Descriptions (continued)

Field Description

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-7

• UART0 and UART1 modules

• DMA modules

• QSPI module

The secondary interrupt controller is decentralized, and services the following:

• GPIO interrupts

• Audio interface module

• MemoryStick/SD module

• AD convertor module

• I2C1 module

• Software triggered Interrupts

• FlexCAN modules

• USB module

• ATA module

• UART2 module

9.4.1 Primary Interrupt Controller Registers

Primary internal interrupt sources have their own interrupt control registers ICR[11:0], IPR, and IMR.
Table 9-5 gives the location and description of each ICR.

Primary interrupts are programmed to a level and priority. All primary interrupts have a unique Interrupt
Control Register (ICR). There are 28 possible priority levels, for the primary interrupts.

Table 9-5. Primary Interrupt Control Register Memory Map

Address Name Width Description Reset Value Access

MBAR + $04C ICR0 8 SWT $00 R/W

MBAR + $04D ICR1 8 TIMER 0 $00 R/W

MBAR + $04E ICR2 8 TIMER 1 $00 R/W

MBAR + $04F ICR3 8 I2C0 $00 R/W

MBAR + $050 ICR4 8 UART 0 $00 R/W

MBAR + $051 ICR5 8 UART 1 $00 R/W

MBAR + $052 ICR6 8 DMA 0 $00 R/W

MBAR + $053 ICR7 8 DMA 1 $00 R/W

MBAR + $054 ICR8 8 DMA 2 $00 R/W

MBAR + $055 ICR9 8 DMA 3 $00 R/W

MBAR + $056 ICR10 8 QSPI $00 R/W

MBAR + $057 ICR11 8 Reserved – –

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-8 Freescale Semiconductor

Table 9-8 shows all possible primary source priority schemes for the MCF5251. The interrupt source in
this table can be any internal interrupt source programmed to the given level and priority. For example,
assume that two internal interrupt sources were programmed to IL[2:0] =110, one having a priority of
IP[1:0] = 01 and one having a priority of IP[1:0] = 10. If both assert an interrupt request at the same time,
the order of servicing would occur as follows:

1. Internal module with IL[2:0] =110 and IP[1:0] = 10 would be serviced first

2. Internal module with IL[2:0] = 110 and IP[1:0] = 01 would be serviced last

Address See Memory Map Table 9-5 Access: User read/write

 7 6 5 4 3 2 1 0

R
AVEC IL[2] IL[1] IL[0] IP[1] IP[0]

W

Reset 0 – – 0 0 0 0 0

Figure 9-4. Interrupt Control Register (ICR)

Table 9-6. Interrupt Control Register (ICR) Field Descriptions

Field Description

7
AVEC

The Autovector Enable bit determines whether the interrupt-acknowledge cycle requires an autovector response (for
the internal interrupt level indicated in IL[2:0] for each interrupt).
0 Interrupting source returns vector during interrupt-acknowledge cycle
1 SIM generates auto vector during interrupt acknowledge cycle

6–5 Reserved.

4–2
IL

The Interrupt Level bits indicate the interrupt level assigned to each interrupt input.

1–0
IP

The Interrupt Priority bits indicate the interrupt priority within the interrupt level assignment. Table 9-7 shows the
priority levels associated with the IP contents.

Table 9-7. Interrupt Priority Assignment

IP[1:0] Priority

00 Lower

01 Low

10 High

11 Higher

Table 9-8. Interrupt Priority Scheme

Interrupt Level
Internal Module ICR Reg

Interrupt Source
IL[2:0] IP[1] IP[0]

7 111 1 1 Internal Module

7 111 1 0 Internal Module

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-9

NOTE
Multiple internal modules should not be assigned to the same interrupt level
and same interrupt priority when configuring the ICR registers. This can
cause erratic chip behavior.

7 111 0 1 Internal Module

7 111 0 0 Internal Module

6 110 1 1 Internal Module

6 110 1 0 Internal Module

6 110 0 1 Internal Module

6 110 0 0 Internal Module

5 101 1 1 Internal Module

5 101 1 0 Internal Module

5 101 0 1 Internal Module

5 101 0 0 Internal Module

4 100 1 1 Internal Module

4 100 1 0 Internal Module

4 100 0 1 Internal Module

4 100 0 0 Internal Module

3 011 1 1 Internal Module

3 011 1 0 Internal Module

3 011 0 1 Internal Module

3 011 0 0 Internal Module

2 010 1 1 Internal Module

2 010 1 0 Internal Module

2 010 0 1 Internal Module

2 010 0 0 Internal Module

1 001 1 1 Internal Module

1 001 1 0 Internal Module

1 001 0 1 Internal Module

1 001 0 0 Internal Module

Table 9-8. Interrupt Priority Scheme (continued)

Interrupt Level
Internal Module ICR Reg

Interrupt Source
IL[2:0] IP[1] IP[0]

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-10 Freescale Semiconductor

9.4.1.1 Interrupt Mask Register

The IMR register is used to mask both internal and external interrupt sources from occurring.

9.4.1.2 Interrupt Pending Register

 The IPR makes visible the interrupt sources that have an interrupt pending.

Address MBAR + 0x44 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
QSPI DMA3 DMA2

W

Reset – – – – – – – – – – – – – 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DMA1 DMA0 UART1 UART0 I2C0 TIMER1 TIMER0 SWT

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 –

Figure 9-5. Interrupt Mask Register (IMR)

Table 9-9. Interrupt Mask Register (IMR) Field Descriptions

Field Description

31–18 Reserved.

17–8
IMR

Each Interrupt Mask bit corresponds to an interrupt source defined in the Interrupt Control Register (ICR). An
interrupt is masked by setting the corresponding bit in the IMR. When a masked interrupt occurs, the corresponding
bit in the IPR is still set, regardless of the setting of the IMR bit, but no interrupt request is passed to the core
processor. At system reset, all defined bits are initialized high, thereby masking all interrupts.
The proper procedure for masking interrupt sources is to first set the core’s status register interrupt mask level to
the level of the source being masked in the IMR. Then, the IMR bit can be masked.
An interrupt can be masked by setting the corresponding bit in the IMR and enable an interrupt by clearing the
corresponding bit in the IMR.

7–0 Reserved.

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-11

9.4.2 Secondary Interrupt Controller Registers

The secondary controller serves 64 interrupt sources with programmable interrupt levels. All 64 interrupts
are auto-vectored. Interrupt pending registers and interrupt mask registers are decentralized, and available
in the modules that own the interrupts.

Address MBAR + 0x40 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
QSPI DMA3 DMA2

W

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DMA1 DMA0 UAR1 UAR0 I2C TIMER1 TIMER0 SWT

W

Reset – – – – – – – – – – – – – – – –

Figure 9-6. Interrupt Pending Register (IPR)

Table 9-10. Interrupt Pending Register (IPR) Field Descriptions

Field Description

31–19 Reserved.

18–8
IPR

Each Interrupt Pending bit corresponds to an interrupt source defined by the Interrupt Control Register. At every
clock this register samples the signal generated by the interrupting source. The corresponding bit in this register
reflects the state of the interrupt signal even if the corresponding mask bit were set. The IPR is a read-only longword
register.
0 The corresponding interrupt source does not have an interrupt pending
1 The corresponding interrupt source has an interrupt pending

7–0 Reserved, should be cleared.

Table 9-11. Secondary Interrupt Controller Registers Memory Map

Address Name Width Description Reset Value Access

MBAR2 + $140 INTPRI1 32 Interrupts 0–7 priority $00 R/W

MBAR2 + $144 INTPRI2 32 Interrupts 8–15 priority $00 R/W

MBAR2 + $148 INTPRI3 32 Interrupts 16–23 priority $00 R/W

MBAR2 + $14C INTPRI4 32 Interrupts 24–31 priority $00 R/W

MBAR2 + $150 INTPRI5 32 Interrupts 32–39 priority $00 R/W

MBAR2 + $154 INTPRI6 32 Interrupts 40–47 priority $00 R/W

MBAR2 + $158 INTPRI7 32 Interrupts 48–55 priority $00 R/W

MBAR2 + $15C INTPRI8 32 Interrupts 56–63 priority $00 R/W

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-12 Freescale Semiconductor

9.4.2.1 Interrupt Level Selection

The interrupt level, intpri[1:7], of the 64 interrupts serviced by the secondary interrupt controller can be
programmed for every interrupt separately. Every interrupt is given a 4-bit field in one of the interrupt
priority register. This 4-bit field controls level setting for the interrupt. Values 1–7 correspond with
ColdFire interrupt priorities. Value 0 is off.

9.4.2.2 Interrupt Vector Generation Register

All secondary interrupts are autovectored. The vector number for interrupt 0 is given by register
INTBASE. The vector numbers for the other interrupts are offset from this number. Vector number for
interrupt 23 is e.g. INTBASE + 23. The secondary interrupt controller will generate vector numbers
INTBASE to INTBASE + 63 for its 64 interrupts.

MBAR2 + $16B INTBASE 8 Interrupt base vector $00 R/W

MBAR2 + $167 SPURVEC 8 spurious vector $00 R/W

Table 9-12. Secondary Interrupt Level Programming Bit Assignment

Address Name
Bit

31–28
Bit

27–24
Bit

23–20
Bit

19–16
Bit

15–12
Bit

11–8
Bit
7–4

Bit
3–0

MBAR2 + $140 INTPRI1 INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

MBAR2 + $144 INTPRI2 INT15 INT14 INT13 INT12 INT11 INT10 INT9 INT8

MBAR2 + $148 INTPRI3 INT23 INT22 INT21 INT20 INT19 INT18 INT17 INT16

MBAR2 + $14C INTPRI4 INT31 INT30 INT29 INT28 INT27 INT26 INT25 INT24

MBAR2 + $150 INTPRI5 INT39 INT38 INT37 INT36 INT35 INT34 INT33 INT32

MBAR2 + $154 INTPRI6 INT47 INT46 INT45 INT44 INT43 INT42 INT41 INT40

MBAR2 + $158 INTPRI7 INT55 INT54 INT53 INT52 INT51 INT50 INT49 INT48

MBAR2 + $15C INTPRI8 INT63 INT62 INT61 INT60 INT59 INT58 INT57 INT56

Address MBAR2 + $16B Access: User read/write

7 6 5 4 3 2 1 0

R
BASE[7] BASE[6] BASE[5] BASE[4] BASE[3] BASE[2] BASE[1] BASE[0]

W

Reset 0 0 0 0 0 0 0 0

Figure 9-7. INTBase Register

Table 9-11. Secondary Interrupt Controller Registers Memory Map (continued)

Address Name Width Description Reset Value Access

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-13

9.4.2.3 Spurious Vector Register

The SPURVEC register contains the interrupt vector number that is fed when a spurious interrupt event
occurs on the secondary interrupt controller. A spurious interrupt occurs when a pending interrupt causes
the ColdFire processor to feed an interrupt vector, but before the interrupt vector can be fed, the pending
interrupt disappears.

9.4.2.4 Secondary Interrupt Sources

The 64 secondary interrupts used by the MCF5251 modules are provided in Table 9-14.

Table 9-13. INTBase Register Field Descriptions

Field Description

7–0
BASE

This is the 8-bit interrupt vector for interrupt 0. Vector numbers for other interrupts are obtained by adding the
interrupt number to BASE. For example: Interrupt 23 vector is base + 23.

Address MBAR2 + $167 Access: User read/write

7 6 5 4 3 2 1 0

R
spurvec[7] spurvec[6] spurvec[5] spurvec[4] spurvec[3] spurvec[2] spurvec[1] spurvec[0]

W

Reset – – – – – – – –

Figure 9-8. Spurvec Register

Table 9-14. Secondary Interrupt Sources

Interrupt Interrupt Name Module Description

63 A/D A/D A to D convertor

62 IIC1 IIC1 iic1 interrupt

61 IPADDRESSERROR SIM IP address error cycle interrupt

60 See Table 9-15 FLASHINTER SD/MemoryStick interrupt

59 See Table 9-15 FLASHINTER SD/MemoryStick interrupt

58 See Table 9-15 FLASHINTER SD/MemoryStick interrupt

57 See Table 9-15 FLASHINTER SD/MemoryStick interrupt

56 CDROMNEWBLOCK AUDIO CD-ROM new block interrupt

55 CDROMILSYNC AUDIO CD-ROM ilsync interrupt

54 CDROMNOSYNC AUDIO CD-ROM nosync interrupt

53 CDROMCRCERR AUDIO CD-ROM crc error interrupt

52 USB USB USB controller

51 ATA ATA ATA module

50 SOFTINT3 AUXINT Software interrupt 3

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-14 Freescale Semiconductor

49 SOFTINT2 AUXINT Software interrupt 2

48 SOFTINT1 AUXINT Software interrupt 1

47 SOFTINT0 AUXINT Software interrupt 0

46 CAN0MESSAGE FLEXCAN0 Message buffer handler

45 CAN0STATUS FLEXCAN0 Error, Wakeup, Busoff interrupts

44 CAN1MESSAGE FLEXCAN1 Message buffer handler

43 CAN1STATUS FLEXCAN1 Error, Wakeup, Busoff interrupts

42 UART2 UART2 3rd UART interrupt

41 ATAUSBDMA ATADMA Special DMA channel intended for use with 16K SRAM
block associated with the USB and ATA modules

40 USBWUP USBPWR USB Wakeup

39 GPI7 (Not applicable, no GPI7 pin) SIM gpio interrupt

38 GPI6 SIM gpio interrupt

37 GPI5 SIM gpio interrupt

36 GPI4 SIM gpio interrupt

35 GPI3 SIM gpio interrupt

34 GPI2 SIM gpio interrupt

33 GPI1 SIM gpio interrupt

32 GPI0 SIM gpio interrupt

31 IIS1TXUNOV AUDIO iis1 transmit FIFO under / over

30 IIS1TXRESYN AUDIO iis1 transmit FIFO resync

29 IIS2TXUNOV AUDIO iis2 transmit FIFO under / over

28 IIS2TXRESYN AUDIO iis2 transmit FIFO resync

27 EBUTXUNOV AUDIO IEC958 transmit FIFO under / over

26 EBUTXRESYN AUDIO IEC958 transmit FIFO resync

25 IEC958-1 CNEW AUDIO IEC958-1 receives new C control channel frame

24 IEC958-1 VALNOGOOD AUDIO IEC958 validity flag no good

23 IEC958-1 PARITY OR SYMBOL ERROR AUDIO IEC958 receiver 1 bit or symbol error

22 PDIR3UNOV AUDIO Processor data in 3 under/over

21 UCHANTXEMPTY AUDIO U channel transmit register is empty

20 UCHANTXUNDER AUDIO U channel transmit register underrun

19 UCHANTXNEXTFIRST AUDIO U channel transmit register next byte will be first

18 IEC958-1 U/Q BUFFER ATTENTION AUDIO IEC 958 -1 U/Q channel buffer full interrupt

Table 9-14. Secondary Interrupt Sources (continued)

Interrupt Interrupt Name Module Description

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-15

17 IEC958-2 CNEW AUDIO New C-channel received on IEC958-2

16 IEC958-2 VALNOGOOD AUDIO Validity flag not good on IEC958-2

15 IEC958-2 PARITY ERROR OR SYMBOL
ERROR

AUDIO IEC958-2 receiver parity error or symbol error

14 IEC958-2 U/Q BUFFER ATTENTION AUDIO IEC958-2 U/Q channel buffer full interrupt

13 U1CHANRCVOVER
Q1CHANOVERRUN
UQ1CHANERR

AUDIO IEC958 receiver 1U/Q channel error

12 PDIR1UNOV AUDIO Processor data in 1 under / over

11 PDIR1RESYN AUDIO Processor data in 1 resync

10 PDIR2UNOV AUDIO Processor data in 2 under / over

9 PDIR2RESYN AUDIO Processor data in 2 resync

8 AUDIOTICK AUDIO “Tick” interrupt

7 U2CHANRCVOVER
Q2CHANOVERRUN
UQ2CHANERR

AUDIO IEC 958 receiver 2 U/Q channel error

6 PDIR3 RESYNC AUDIO Processor data in 3 resync

5 PDIR3 FULL AUDIO Processor data in 3 full

4 IIS1TXEMPTY AUDIO I2S1 transmit FIFO empty

3 IIS2TXEMPTY AUDIO I2S2 transmit FIFO empty

2 EBUTXEMPTY AUDIO EBU transmit FIFO empty

1 PDIR2 FULL AUDIO Processor data in 2 full

0 PDIR1 FULL AUDIO Processor data in 1 full

Table 9-15. FlashMedia Interrupt Interface

FlashMediaIntStat
FlashMediaIntEn

FlashMediaIntClear bits
Int Name Meaning

Reset
Interrupt

Associated
Interrupt

0 SHIFTBUSY1FALL Interrupt set on falling edge of shift_busy_1 intClear 60

1 SHIFTBUSY1RISE Interrupt set on rising edge of shift_busy_1 intClear 60

2 INTLEVEL1FALL Interrupt set on falling edge of int_level_1 intClear 60

3 INTLEVEL1RISE Interrupt set on rising edge of int_level_1 intClear 60

4 SHIFTBUSY2FALL Interrupt set on falling edge of shift_busy_2 intClear 59

5 SHIFTBUSY2RISE Interrupt set on rising edge of shift_busy_2 intClear 59

6 INTLEVEL2FALL Interrupt set on falling edge of int_level_2 intClear 59

7 INTLEVEL2RISE Interrupt set on rising edge of int_level_2 intClear 59

Table 9-14. Secondary Interrupt Sources (continued)

Interrupt Interrupt Name Module Description

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-16 Freescale Semiconductor

9.4.3 Software Interrupts

The MCF5251 supports four software interrupts. These interrupts are activated by writing a 1 to an
ExtraInt register bit. When active, the interrupts can generate a normal interrupt exception to the ColdFire
processor. The interrupt exception is only generated if the corresponding level register interrupt mask is
higher than the current processor interrupt mask.

9.4.4 Interrupt Monitor

To allow measuring interrupt latency during device debugging, two interrupt monitor pins INTMON1 and
INTMON2 are available. These pins can be programmed in the Extraint register to output on any of the 64
interrupts available on the secondary interrupt controller.

8 RCV1FULL Interrupt set if receive buffer reg 1 full Read data 58

9 TX1EMPTY Interrupt set if transmit buffer reg 1 empty Write data 58

10 RCV2FULL Interrupt set if receive buffer reg 2 full Read data 57

11 TX2EMPTY Interrupt set if transmit buffer reg 2 empty Write data 57

Table 9-16. Extraint Register Descriptions

ExtraInt
MBAR2 + 198

Bit Field
Name Access Description Int No Note

27:22 INTMON2 RW INTMON2 selector 1, 4

21:16 INTMON1 RW INTMON1 selector 1, 4

3, 7 SOFTINT3 R Read softint3 value 50 1, 2

2, 6 SOFTINT2 R Read softint2 value 49 1, 2

1, 5 SOFTINT1 R Read softint1 value 48 1, 2

0, 4 SOFTINT0 R Read softint0 value 47 1, 2

7 SOFTINT3_SET W Write one to this bit to set softint3 50 2, 3, 4

6 SOFTINT2_SET W Write one to this bit to set softint2 49 2, 3, 4

5 SOFTINT1_SET W Write one to this bit to set softint1 48 2, 3, 4

4 SOFTINT0_SET W Write one to this bit to set softint0 47 2, 3, 4

3 SOFTINT3_CLR W Write one to this bit to clear softint3 50 2, 3, 4

2 SOFTINT2_CLR W Write one to this bit to clear softint2 49 2, 3, 4

1 SOFTINT1_CLR W Write one to this bit to clear softint1 48 2, 3, 4

0 SOFTINT0_CLR W Write one to this bit to clear softint0 47 2, 3, 4

Table 9-15. FlashMedia Interrupt Interface (continued)

FlashMediaIntStat
FlashMediaIntEn

FlashMediaIntClear bits
Int Name Meaning

Reset
Interrupt

Associated
Interrupt

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-17

Notes:
1. INTMON1, INTMON2 registers are used to route an interrupt from the secondary interrupt controller (Section 9.3, “SIM Module

Programming Registers”) such that the interrupt status can be monitored on either the external INTMON1 or INTMON2 pin.
This feature is intended to help measure the latency of an interrupt service routine.

2. Bits 7–4 of the register can be read to obtain the value of the software interrupts 0–3. When written zero, the value of the
corresponding software interrupt will not change. When written one, the corresponding software interrupt is set to a 1.

3. Bits 3–0 of the register can be read to read the value of software interrupts 0–3. When written zero, the value of the
corresponding software interrupt will not change. When written one, the corresponding software interrupt is set to 0.

4. To write SOFTINT_SET and SOFTINT_CLR registers, while avoiding writing to the INTMONx fields, use word-size or byte-size
addressing to update only bits 0–7.

9.5 System Protection and Reset Status Registers
This section provides the system Reset Status register and information about the Software Watchdog Timer
and associated registers and descriptions.

9.5.1 Reset Status Register

The RSR contains a bit for each reset source to the SIM. A bit set to 1 indicates the last type of reset that
occurred. The RSR is updated by the reset control logic on completion of the reset operation. Only one bit
will be set at any given time in the RSR. If a reset occurs and the user failed to clear this register, reset
control logic will clear all bits and set the appropriate bit to indicate the current cause of reset. The RSR
programming model is illustrated as follows.

The Reset Status Register (RSR) is an 8-bit supervisor read-write register.

9.5.2 Software Watchdog Timer

The Software Watchdog Timer (SWT) prevents system lockup if the software become trapped in loops
with no controlled exit.

Address MBAR + $00 Access: User read/write

7 6 5 4 3 2 1 0

R
HRST SWTR

W

Reset 1 0 0 0 0 0 0 0

Figure 9-9. Reset Status Register (RSR)

Table 9-17. Reset Status Register (RSR) Field Descriptions

Field Description

HRST For the Hardware or System Reset, a 1 = An external device driving RSTI caused the last reset. Assertion of reset
by an external device causes the core processor to take a reset exception. All registers in internal peripherals and
the SIM are reset.

SWTR For the Software Watchdog Timer Reset, a 1 = The last reset was caused by the software watchdog timer. If SWRI
in the SYPCR is set and the software watchdog timer times out, a hardware reset occurs.

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-18 Freescale Semiconductor

The SWT can be enabled or disabled using the SWE bit in the SYPCR. If enabled, the SWT requires the
execution of a software watchdog servicing sequence periodically. If this periodic servicing action does
not occur, the SWT times-out resulting in a SWT IRQ or hardware reset, as programmed by the SWRI bit
in the SYPCR.

If the SWT times out and the software watchdog transfer acknowledge enable (SWTA = SYPCR[2]) bit is
set in the system protection control register, the SWT IRQ will assert. If after another timeout and the SWT
IACK cycle has not occurred, the SWT TA signal will assert in an attempt to terminate the bus cycle and
allow IACK cycle to proceed. The setting of the SWTAVAL flag bit (SYPCR[1]) in the system protection
control register indicates that the SWT TA signal was asserted. The SWTA function when terminating a
locked bus is shown in Figure 9-10.

Figure 9-10. MCF5251 Unterminated Access Recovery

When the SWT times out and SWRI register bit is programmed for a software reset, an internal reset will
be asserted, and the SWTR register bit will be set in the RSR.

To prevent SWT from interrupting or resetting, users must service the SWSR register. The SWT service
sequence consists of the following steps:

1. Write $55 to SWSR

2. Write $AA to the SWSR

CODE ENABLES SWT INTERRUPT AND

1. SWT TIMES-OUT DUE TO UN-TERMINATED BUS

2. UNABLE TO SERVICE SWT INTERRUPT DUE TO “HUNG” BUS
 CYCLE. WAIT ANOTHER SWT TIMEOUT BEFORE setTING SWTA.

SWT TIMEOUT

SWT TIMEOUT

SWTAVAL 2

SWT TA 1

SWT IRQ 1

 SWTA FUNCTIONALITY BY WRITING SYPCR

(BIT 1 IN SYPCR)

SWT IACK CYCLE

CODE IN SWT INTERRUPT HANDLER POLLS THE
SWTAVAL BIT IN THE SYPCR TO DETERMINE
WHETHER OR NOT SWT TA WAS NEEDED.
IF SO, EXECUTE CODE TO IDENTIFY BAD ADDRESS.

3. HELD UNTIL ANOTHER
BUS CYCLE STARTS

PROBLEM:

NOTE: RECOMMEND THAT SWT IRQ
BE SET TO THE HIGHEST LEVEL IN THE SYSTEM.

1 SWT IRQ AND SWT TA ARE ACTIVE-LOW signals.
2 SWTAVAL IS SET TO ‘1’ IF SWT TA SIGNAL is ASSERTED.

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-19

Both writes must occur in the order listed prior to the SWT timeout, but any number of instructions or
accesses to the SWSR can be executed between the two writes. This allows interrupts and exceptions to
occur, if necessary, between the two writes.

Caution should be exercised when changing system protection control register (SYPCR) values after the
software watchdog timer (SWT) has been enabled with the setting of the SWE register bit, because it is
difficult to determine the state of the SWT while the timer is running. The SWP and SWT[1:0] bits in
SYPCR determine the SWT timeout period. The countdown value determined by the SWP and SWT[1:0]
bits is constantly compared with that specified by these bits. Therefore, altering the contents of the SWP
and SWT[1:0] bits improperly will result in unpredictable processor behavior. The following steps must
be taken in order to change one of these values in the SYPCR:

1. Disable SWT by writing a 0 to the SWE bit in SYPCR.

2. Service the SWSR, write $55, then write $AA to SWSR. This action resets the counter.

3. Re-write new SWT[1:0] and SWP values to SYPCR register.

4. Re-enable SWT by writing a 1 to SWE bit in SYPCR. Users can perform this task in Step 3.

9.5.2.1 System Protection Control Register

The SYPCR controls the software watchdog timer, timeout periods, and software watchdog timer transfer
acknowledge.

The SYPCR is an 8-bit read-write register. The register can be read at any time, but can be written only if
SWT IRQ is not pending. At system reset, the software watchdog timer is disabled.

Address MBAR + $01 Access: User read/write

7 6 5 4 3 2 1 0

R
SWE SWRI SWP SWT[1] SWT[0] SWTA SWTAVAL

W

Reset 0 0 0 0 0 0 0 –

Figure 9-11. System Protection Control Register (SYPCR)

Table 9-18. System Protection Control Register (SYPCR) Field Descriptions

Field Description

7
SWE

Software Watchdog Enable
0 SWT disabled.
1 SWT enabled.

6
SWRI

Software Watchdog Reset/Interrupt Select
0 If SWT timeout occurs, SWT generates an interrupt to the core processor at the level programmed into the IL

bits of ICR0.
1 SWT causes soft reset to be asserted for all modules of the part.

5
SWP

Software Watchdog Prescalar
0 SWT clock not prescaled.
1 SWT clock prescaled by a value of 8192.

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-20 Freescale Semiconductor

NOTE
If the SWP and SWT bits are modified to select a new software timeout,
users must peform the software service sequence ($55 followed by $AA
written to the SWSR) before the new timeout period takes effect.

9.5.2.2 Software Watchdog Interrupt Vector Register

The SWIVR contains the 8-bit interrupt vector the SIM returns during an interrupt- acknowledge cycle in
response to a SWT-generated interrupt. The following register illustrates the SWIVR programming model.

The SWIVR is an 8-bit supervisor write-only register. This register is set to the uninitialized vector $0F at
system reset.

4–3
SWT

The Software Watchdog Timing Delay bits (along with the SWP bit) select the timeout period for the SWT as shown
in Table 9-19. At system reset, the software watchdog timer is set to the minimum timeout period.

2
SWTA

Software Watchdog Transfer Acknowledge Enable
0 SWTA Transfer Acknowledge disabled.
1 SWTA Assert Transfer Acknowledge enabled.
After 1 SWT timeout period of the unacknowledged assertion of the SWT interrupt, the Software Watchdog Transfer
Acknowledge will assert, which allows SWT to terminate a bus cycle and allow the IACK to occur.

1
SWTAVAL

Software Watchdog Transfer Acknowledge Valid
0 SWTA Transfer Acknowledge has NOT occurred.
1 SWTA Transfer Acknowledge has occurred. Write a 1 to clear this flag bit.

0 Reserved, should be cleared.

Table 9-19. SWT Timeout Period

SWP SWT[1:0] SWT TIMEOUT PERIOD

0 00 29 / BCLK

0 01 211 / BCLK

0 10 213 / BCLK

0 11 215 / BCLK

1 00 222 / BCLK

1 01 224 / BCLK

1 10 226 / BCLK

1 11 228/ BCLK

Table 9-18. System Protection Control Register (SYPCR) Field Descriptions (continued)

Field Description

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-21

.

9.5.2.3 Software Watchdog Service Register

The SWSR is where the SWT servicing sequence should be written. To prevent an SWT timeout, users
should write a $55 followed by a $AA to this register. Both writes must be performed in the order listed
prior to the SWT timeout, but any number of instructions or accesses to the SWSR can be executed
between the two writes. If the SWT has already timed out, writing to this register will have no effect in
negating the SWT interrupt. The following register illustrates the SWSR programming model.

The SWSR is an 8-bit write-only register. At system reset, the contents of SWSR are uninitialized.

9.6 CPU HALT Instruction
Executing the CPU HALT instruction stops the core but does not disable any system clocks.

9.7 MCF5251 Bus Arbitration Control Registers
This section contains the Default Bus Master Park register, the internal arbitration operation, and the
configuration of the PARK register bit.

9.7.1 Default Bus Master Park Register

The MPARK register determines the default bus master arbitration applied between internal transfers. This
arbitration is needed because there are two bus masters inside the MCF5251. One is the CPU, the other is
the DMA unit. Both can access internal registers within the MCF5251 peripherals. Table 9-14 shows the
MPARK register bit encoding.

The MPARK is an 8-bit read-write register.

Address MBAR + $02 Access: User read/write

7 6 5 4 3 2 1 0

R
SWIV7 SWIV6 SWIV5 SWIV4 SWIV3 SWIV2 SWIV1 SWIV0

W

Reset 0 0 0 0 1 1 1 1

Figure 9-12. Software Watchdog Interrupt Vector Register (SWIVR)

Address MBAR + $03 Access: User read/write

7 6 5 4 3 2 1 0

R
SWSR7 SWSR6 SWSR5 SWSR4 SWSR3 SWSR2 SWSR1 SWSR0

W

Reset – – – – – – – –

Figure 9-13. Software Watchdog Service Register (SWSR)

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-22 Freescale Semiconductor

9.7.1.1 Internal Arbitration Operation

PARK register field bits [1:0] are programmed to indicate the priority of internal transfers. The possible
masters that can initiate internal transfers are the core and the on-chip DMAs. Since the priority between
DMAs is resolved by their relative priority amongst each other and by programming the BWC bits in their
respective DMA control registers (see Section 14.4, “DMA Memory Map and Register Definitions”), the
MPARK bits need only arbitrate priority between the core and the DMA module (which contains all four
DMA channels) for internally generated transfers.

There are four arbitration schemes that the MPARK[1:0] bits can be programmed to with respect to
internally generated transfers. The following summarizes these schemes when EARBCTRL=0:

1. Round Robin Scheme (PARK[1:0]=00)—In this scenario, depending on which master has priority
in the current transfer, the other master has priority in the next transfer once the current master has
finished. When the processor is initialized, the core has first priority.

So for example, if the core is the bus master and is finishing a bus transfer and DMA channels
0 and 1 (both set to BWC=010) are asserting an internal bus request signal, then the DMA
channel 0 would gain ownership of the bus after the core; but after channel 0 finishes its
transfer, the core would have ownership of the bus if its request was asserted.

NOTE
The Internal DMA has higher priority than the ColdFire Core if the internal
DMA has its bandwidth BWC[2:0] bits set to 000 (maximum bandwidth).

2. Park on Master Core Priority (PARK[1:0]=01)—Any time arbitration is occurring or the bus is idle,
the core has priority. The DMA module can arbitrate a transfer only when the core’s internal bus
request signal is negated.

3. Park on Master DMA Priority (PARK[1:0]=10)—Any time arbitration is occurring or the bus is
idle, the DMA has priority. The core can arbitrate a transfer only when the DMA’s internal bus
request signal is negated.

4. Park on Current Master Priority (PARK[1:0]=11)—Whatever the current master is, they have
priority. Only when the bus is idle can the other master gain ownership and priority of the bus. For
example, if out of reset the core has priority it will continue to have priority until the bus becomes
idle. Then when the DMA asserts its internal bus request signal, it will then have priority.

Address MBAR + $0c Access: User read/write

7 6 5 4 3 2 1 0

R
PARK[1] PARK[0] IARBCTRL EARBCTRL SHOWDATA BCR24BIT

W

Reset 0 0 0 0 0 0 0 0

Figure 9-14. Default Bus Master Register (MPARK)

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-23

9.7.1.2 PARK Register Bit Configuration

The following tables show the encoding for the PARK[1:0] bit of the MPARK register along with the
priority schemes for each encoding.

Table 9-22 shows the round robin configuration of internal module arbitration. Depending on which
master has current ownership of the bus (i.e. has highest priority), the next arbitration cycle will switch
priority to master that had lowest priority on that prior current cycle.

Table 9-20. Default Bus Master Selected with PARK[1:0]

Park[1:0] Default Bus Master Number

00 Round Robin between DMA and ColdFire Core

01 Park on master ColdFire Core

10 Park on master DMA Module

11 Park on current master

Table 9-21. Round Robin (PARK[1:0] = 00)

Current Highest
Priority Master

Current Lowest
Priority Master

Next Arbitration Cycle Highest
Priority Master

Next Arbitration Cycle Lowest
Priority Master

Core DMA DMA Core

DMA Core Core DMA

Table 9-22. Park on Master Core Priority (PARK[1:0] = 01)

Priority Bus Master Name

Highest ColdFire Core

Lowest Internal DMA

Table 9-23. Park on Master DMA Module Priority (PARK[1:0] = 10)

Priority Bus Master Name

Highest Internal DMA

Lowest ColdFire Core

Table 9-24. Park on Current Master Priority (PARK[1:0] = 11)

Current Highest
Priority Master

Current Lowest
Priority Master

Next Arbitration Cycle Highest
Priority Master

Next Arbitration Cycle Lowest
Priority Master

Core DMA Core DMA

DMA Core DMA Core

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-24 Freescale Semiconductor

NOTE
When using the park on current master setting, the first master to arbitrate
for the bus becomes the current master. The corresponding priority scheme
should be interpreted as the priority of the next master once the current
master finishes.

9.8 General Purpose I/OS

The MCF5251 has up to 57 programmable general-purpose outputs and up to 60 programmable
general-purpose inputs. Two groups of 32-bit registers control these GPIOs.

Table 9-25. Park Bit Descriptions

Bit Name Description

IARBCTRL Legacy bit.
0 Normal use
1 do not use

EARBCTRL Legacy bit.
0 Normal use
1 do not use

SHOWDATA Not used

BCR24BIT This bit controls the BCR and address mapping for the DMA. The bit allows the byte count register to be used
as a 24-bit register. See Section 14.4, “DMA Memory Map and Register Definitions” for memory maps and bit
positions for the BCRs.
0 DMA BCRs function as 16-bit counters.
1 DMA BCRs function as 24-bit counters.

Table 9-26. General Purpose I/O

Address Name Width Description Reset Value Access

MBAR2 + $0x000 GPIO-READ 32 gpio input value R

MBAR2 + $0x004 GPIO-OUT 32 gpio output value 0 R/W

MBAR2 + $0x008 GPIO-EN 32 output enable 0 R/W

MBAR2 + $0x00C GPIO-FUNCTION 32 function select 0 R/W

MBAR2 + $0x0B0 GPIO1-READ 32 gpio input value – R

MBAR2 + $0x0B4 GPIO1-OUT 32 gpio output value 0 R/W

MBAR2 + $0x0B8 GPIO1-EN 32 output enable 0 R/W

MBAR2 + $0x0BC GPIO1-FUNCTION 32 function select 0 R/W

MBAR2 + $0x0C0 GPIO-INT-STAT 32 interrupt status – R

MBAR2 + $0x0C0 GPIO-INT-CLEAR 32 interrupt clear – W

MBAR2 + $0x0C4 GPIO-INT-EN 32 interrupt enable 0 R/W

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-25

9.8.1 General Purpose Inputs

There are 60 possible general purpose inputs. They can be read in registers GPIO-READ and
GPIO-READ1. These bits reflect the logical value of the pin they are associated with. The GPIO-READ
and GPIO-READ1 registers always reflect the pin values, independent of the settings in the
GPIO-FUNCTION, GPIO-EN, GPIO1-FUNCTION and GPIO1-EN registers. It does not matter if the pin
is driving data out, or is being driven. The GPIO-READ and GPIO-READ1 bit to pin association is
detailed in Table 9-27.

Table 9-27. General Purpose Input to Pin Mapping

General
Purpose Input

Read From Pin General Purpose Input Read From Pin

GPIO-READ(31) IDE_DIOR/GPIO31 GPIO1-READ(63) BCLKE/GPIO63

GPIO-READ(30) BUFENB2/GPIO30 GPIO1-READ(62) none

GPIO-READ(29) BUFENB1/GPIO29 GPIO1-READ(61) none

GPIO-READ(28) CS1/QSPICS3/GPIO28 GPIO1-READ(60) SDCS0/GPIO60

GPIO-READ(27) QSPIDOUT/SFSY/GPIO27 GPIO1-READ(59) SDRAS/GPIO59

GPIO-READ(26) RCK/QSPIDIN/QSPIDOUT/GPIO26 GPIO1-READ(58) ADOUT/SCLK4/GPIO58

GPIO-READ(25) QSPICLK/SUBR/GPIO25 GPIO1-READ(57) ADIN5/GPI57

GPIO-READ(24) QSPICS2/MCLK2/GPIO24 GPIO1-READ(56) ADIN4/GPI56

GPIO-READ(23) LRCK2/GPIO23 GPIO1-READ(55) ADIN3/GPI55

GPIO-READ(22) SCLK2/GPIO22 GPIO1-READ(54) ADIN2/GPI54

GPIO-READ(21) WAKEUP/GPIO21 GPIO1-READ(53) ADIN1/GPI53

GPIO-READ(20) SCLK1/GPIO20 GPIO1-READ(52) ADIN0/GPI52

GPIO-READ(19) LRCK1/GPIO19 GPIO1-READ(51) PSTCLK/GPIO51

GPIO-READ(18) SDATAO1/TOUT0/GPIO18 GPIO1-READ(50) PST0/GPIO50

GPIO-READ(17) SDATAI1/GPIO17 GPIO1-READ(49) PST1/GPIO49

GPIO-READ(16) QSPICS1/EBUOUT2/GPIO16 GPIO1-READ(48) PST2/INTMON2/GPIO48

GPIO-READ(15) QSPICS0/EBUIN4/GPIO15 GPIO1-READ(47) PST3/INTMON1/GPIO47

GPIO-READ(14) EBUIN3/CMD_SDIO2/GPIO14 GPIO1-READ(46) RXD0/GPIO46

GPIO-READ(13) EBUIN2/SCLKOUT/GPIO13 GPIO1-READ(45) TXD0/GPIO45

GPIO-READ(12) TA/GPIO12 GPIO1-READ(44) SDA1/RXD1/GPIO44

GPIO-READ(11) MCLK1/GPIO11 GPIO1-READ(43) LRCK3/AUDIOCLK/GPIO43

GPIO-READ(10) SCL1/TXD1/GPIO10 GPIO1-READ(42) SDA0/SDATA3/GPIO42

GPIO-READ(9) none GPIO1-READ(41) SCL0/SDATA1_BS1/GPIO41

GPIO-READ(8) SDATAI3/GPIO8 GPIO1-READ(40) BCLK/GPIO40

GPIO-READ(7) none GPIO1-READ(39) SDCAS/GPIO39

GPIO-READ(6) EF/RXD2/GPIO6 GPIO1-READ(38) SDWE/GPIO38

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-26 Freescale Semiconductor

NOTE
MCLK1 will output a clock signal just after reset and before it can be
configured as a GPIO if so desired. The frequency of the clock will be the
same as CRIN prior to initialization of the PLL.

NOTE
EBUOUT1 will output a clock signal just after reset and before they can be
configured as GPIO. The frequency of the clock output will be CRIN/16.

These two pins can still be used for GPIO. The user needs to ensure that
when one of these two pins is assigned as a GPIO control within the system,
that its use will not cause the application to exhibit problems when the clock
is active just after reset and before the boot code sets them to GPIO mode,
e.g., do not use these pins to switch a critical circuit on/off.

9.8.1.1 General Purpose Input Interrupts

There are seven general purpose inputs, those associated with GPIO-READ(6:0), have interrupt capability.
On every low-to-high edge transition of these inputs, one of the bits 0–6 of register GPIO-INT-STAT is set.
On every high-to-low edge of the inputs, one of the bits 8–14 is set. Write 1 to clear to the corresponding
bit in GPIO-INT-CLEAR register. If any bit in GPIO-INT-STAT is set, and the corresponding bit in
GPIO-INT-EN is set, an interrupt will be made pending on the secondary interrupt controller.

NOTE
The registers GPIO-INT-STAT, GPIO-INT-CLEAR and GPIO-INT-EN also
control some audio interrupts.

Set the GPIO_FUNCTION register bit to 1 or 0 for interrupts, as applicable.

GPIO-READ(5) CFLG/GPIO5 GPIO1-READ(37) EBUOUT1/GPIO37

GPIO-READ(4) DDATA3/RTS0/GPIO4 GPIO1-READ(36) EBUIN1/GPIO36

GPIO-READ(3) DDATA2/CTSO/GPIO3 GPIO1-READ(35) SCLK3/GPIO35

GPIO-READ(2) DDATA1/RTS1/SDATA2_BS2/GPIO2 GPIO1-READ(34) SDATAO2/GPIO34

GPIO-READ(1) DDATA0/CTS1/SDATA0_SDIO1/GPIO1 GPIO1-READ(33) IDE_IORDY/GPIO33

GPIO-READ(0) XTRIM/TXD2/GPIO0 GPIO1-READ(32) IDE_DIOW/GPIO32

Table 9-27. General Purpose Input to Pin Mapping (continued)

General
Purpose Input

Read From Pin General Purpose Input Read From Pin

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-27

9.8.2 General Purpose Outputs

There are 57 possible general purpose outputs. They are controlled by registers GPIO-OUT, GPIO-EN,
GPIO-FUNCTION, GPIO1-OUT, GPIO1-EN and GPIO1-FUNCTION. Three bits are needed to control
a single general-purpose output. As an example, the logic that drives pin SCLK3/GPIO35 is shown in
Figure 9-15.
The primary output function of the pin is the SCLK3 function it can be configured as a general-purpose
output (GPIO35) by setting its controlling bit (35) in the GPIO1-FUNCTION register.

Table 9-28. GPIO-INT-STAT, GPIO-INT-CLEAR and GPIO-INT-EN Interrupts

Event
GPIO-INT-STAT,

GPIO-INT-CLEAR, GPIO-INT-EN
Bit Number

Secondary Interrupt
Controller Number

GPI0 L–H 0 32

GPI1 L–H 1 33

GPI2 L–H 2 34

GPI3 L–H 3 35

GPI4 L–H 4 36

GPI5 L–H 5 37

GPI6 L–H 6 38

GPI7 L–H N/A 39

GPI0 H–L 8 32

GPI1 H–L 9 33

GPI2 H–L 10 34

GPI3 H–L 11 35

GPI4 H–L 12 36

GPI5 H–L 13 37

GPI6 H–L 14 38

GPI7 H–L N/A 39

CD-ROM DECODER NEWBLOCK 16 56

CD-ROM DECODER ILSYNC 17 55

CD-ROM DECODER NOSYNC 18 54

CD-ROM DECODER CRCERROR 19 53

CD-ROM ENCODER NEWBLOCK 20 56

CD-ROM ENCODER ILSYNC 21 55

CD-ROM ENCODER NOSYNC 22 54

reserved 23 -

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-28 Freescale Semiconductor

At power-on, the function is always the primary function. When a ‘0’ is programmed in any bit of
GPIO-FUNCTION or GPIO1-FUNCTION, the corresponding pin gets its primary function. In this case,
output drive strength and output value are determined by the primary function logic. When a ‘1’ is
programmed the corresponding pin is in GPO-mode, drive direction is determined by value in GPIO-EN
or GPIO1-EN. When a ‘0’ is programmed in any bit, the corresponding pin is driven to high-impedance
state. When a ‘1’ is programmed, the corresponding pin is driven low or high.

When a pin is in GPO-mode, and being driven low-impedance, the actual drive value of the pin is
determined by what is programmed in the corresponding bit of registers GPIO-OUT or GPIO1-OUT. If ‘0’
is programmed here, the pin is driven low. If ‘1’ is programmed, the pin is driven high.

Figure 9-15. General-Purpose Pin Logic for Pin SCLK3/GPIO35

Table 9-29. General-Purpose Output Register Bits to Pins Mapping

GPIO-Function
GPIO-EN

GPIO-OUT
Bit Number

Associated Pin Pin Type

GPIO1-Function
GPIO1-EN

GPIO1-OUT
Bit Number

Associated Pin Pin Type

31 IDE_DIOR/GPIO31 I/O 63 BCLKE/GPIO63 I/O

30 BUFENB2/GPIO30 I/O 62 none I/O

29 BUFENB1/GPIO29 I/O 61 none I/O

28 CS1/QSPICS3/GPIO28 I/O 60 SD_CS0/GPIO60 I/O

27 QSPIDOUT/SFSY/GPIO27 I/O 59 SDRAS/GPIO59 I/O

26 RCK/QSPIDIN/QSPI
DOUT/GPIO26

I/O 58 ADOUT/SCLK4/GPIO58 I/O

25 QSPICLK/SUBR/GPIO25 I/O 57 none I/O

24 QSPICS2/MCLK2/GPIO24 I/O 56 none I/O

23 LRCK2/GPIO23 I/O 55 none I/O

22 SCLK2/GPIO22 I/O 54 A23/GPO54 O

21 WAKEUP/GPIO21 I/O 53 SDUDQM/GPO53 O

20 SCLK1/GPIO20 I/O 52 SDLDQM/GPO52 O

19 LRCK1/GPIO19 I/O 51 PSTCLK/GPIO51 I/O

18 SDATAO1/TOUT0/GPIO18 I/O 50 PST0/GPIO50 I/O

17 SDATAI1/GPIO17 I/O 49 PST1/GPIO49 I/O

GPIO1-READ

SCLK3 Input Value

SCLK3 Drive Value

GPIO1-OUT

SCLK3 Drive Strength

GPIO1-EN

GPIO1-FUNCTION

0

1

0

1

SCLK3/GPIO35

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-29

9.9 Multiplexed Pin Configuration
The MCF5251 has a number of pins which are multiplexed with both a primary function, a secondary
function, and a GPIO function (triple functionality). Two pins have 3 major functions (a primary and two
secondary functions). Two pins also have their multiplexed functions selected at power-on reset via
external pull-up / pull-down resistors.

At Power-on RESET the primary function (the function listed first in the pin name) is enabled. The GPIO
function is selected as required by setting the appropriate bit in the GPIO-FUNCTION or
GPIO1-FUNCTION registers as described in Section 9.8, “General Purpose I/Os”.
To enable the secondary function the appropriate Pin Configuration register bit needs to be set.

Note: in all cases the GPIO FUNCTION register setting has priority. Therefore it is necessary to set the
appropriate GPIO FUNCTION bit to 0 to enable the primary or secondary function.

16 QSPICS1/EBUOUT2/GPIO16 I/O 48 PST2/INTMON2/GPIO48 I/O

15 QSPICS0/EBUIN4/GPIO15 I/O 47 PST3/INTMON1/GPIO47 I/O

14 EBUIN3/CMD_SDIO2/GPIO14 I/O 46 RXD0/GPIO46 I/O

13 EBUIN2/SCLKOUT/GPIO13 I/O 45 TXD0/GPIO45 I/O

12 TA/GPIO12 I/O 44 SDA1/RXD1/GPIO44 I/O

11 MCLK1/GPIO11 I/O 43 LRCK3/AUDIOCLK/GPIO43 I/O

10 SCL1/TXD1/GPIO10 I/O 42 SDA0/SDATA3/GPIO42 I/O

9 none 41 SCL0/SDATA1_BS1/GPIO41 I/O

8 SDATAI3/GPIO8 I/O 40 BCLK/GPIO40 I/O

7 none I/O 39 SDCAS/GPIO39 I/O

6 EF/RXD2/GPIO6 I/O 38 SDWE/GPIO38 I/O

5 CFLG/GPIO5 I/O 37 EBUOUT1/GPIO37 I/O

4 DDATA3/RTS0/GPIO4 I/O 36 EBUIN1/GPIO36 I/O

3 DDATA2/CTS0/GPIO3 I/O 35 SCLK3/GPIO35 I/O

2 DDATA1/RTS1/SDATA2_
BS2/GPIO2

I/O 34 SDATAO2/GPIO34 I/O

1 DDATA0/CTS1/SDATA0_
SDIO1/GPIO1

I/O 33 IDE_IORDY/GPIO33 I/O

0 XTRIM/TXD2/GPIO0 I/O 32 IDE_DIOW/GPIO32 I/O

Table 9-29. General-Purpose Output Register Bits to Pins Mapping (continued)

GPIO-Function
GPIO-EN

GPIO-OUT
Bit Number

Associated Pin Pin Type

GPIO1-Function
GPIO1-EN

GPIO1-OUT
Bit Number

Associated Pin Pin Type

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-30 Freescale Semiconductor

Table 9-30 lists the pins which have a triple multiplexed function and the associated Pin Configuration bit.
(Pins configured at power-on reset by pull-up / pull-down resistors are listed for reference).

Address MBAR2 + $19c Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
A24

EBU
IN4

EBU
OUT2

MCLK2 SUBR
QSPI_DIN/

DOUT
QSPI_
CS3

RTS1
SDATA2

_BS2
CTS0 RTS0 TXD1 RXD1

INT
MON1

INT
MON2

sclk
_outW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R cmd
_sdio2

CTS1
SDATA0
_SDIO1

SDATA1
_BS1

SDATA3 SFSY SCLK4 TOUT0 RXD2 TXD2
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-16. Pin Configuration Register

Table 9-30. Triple Multiplexed Pins

Pin Bit Name Description

J3 CS0/CS4 Function select with pull-up/pull-down resistor connected to A23 pin.

M10 LRCK3/AUDIOCLK/GPIO43
Audioclock input selected by pull-up/pull-down resistor connected to
A20/A24.

R6 0 XTRIM/TXD2/GPIO0
0 XTRIM
1 TXD2

R9 1 EF/RXD2/GPIO6
0 EF
1 RXD2

R8 8 SDATAO1/TOUT0/GPIO18
0 SDATAO1
1 TOUT0

J5 9 ADOUT/SCLK4/GPIO58
0 ADOUT
1 SCLK4

M8 10 QSPIDOUT/SFSY/GPIO27
0 QSPIDOUT
1 SFSY

K9 11 SDA0/SDATA3/GPIO42
0 SDA0
1 SDATA3

P10 12 SCL0/SDATA1_BS1/GPIO41
0 SCL0
1 SDATA1_BS1

K10 13 + 14 DDATA0/CTS1/SDATA0_SDIO1/GPIO1

14–13
0: 0 DDATA0
0: 1 SDATA0SDIO1
1: 0 CTS1
1: 1 CTS1

K7 15 EBUIN3/CMD_SDIO2/GPIO14
0 EBUIN3
1 CMDSDIO2

M6 16 EBUIN2/SCLKOUT/GPIO13
0 EBUIN2
1 SCLKOUT

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 9-31

H14 17 PST2/INTMON2/GPIO48
0 PST2
1 INTMON2

H13 18 PST3/INTMON1/GPIO47
0 PST3
1 INTMON1

J15 19 SDA1/RXD1/GPIO44
0 SDA1
1 RXD0

J13 20 SCL1/TXD1/GPIO10
0 SCL1
1 TXD0

J12 21 DDATA3/RTS0/GPIO4
0 DDATA3
1 RTS0

J14 22 DDATA2/CTS0/GPIO3
0 DDATA2
1 CTS0

R11 23 + 24 DDATA1/RTS1/SDATA2BS2/GPIO2

24: 23
0: 0 DDATA1
0: 1 SDATA2BS2
1: 0 RTS1
1: 1 RTS1

M7 25 CS1/QSPICS3/GPIO28
0 CS1
1 QSPICS3

N7 26 RCK/QSPIDIN/QSPIDOUT/GPIO26

0 RCK
1 QSPIDIN / QSPIDOUT
Note: QSPIDOUT is selected when CS3 is active, otherwise QSPIDIN
is enabled.

P7 27 QSPICLK/SUBR/GPIO25
0 QSPICLK
1 SUBR

P9 28 QSPICS2/MCLK2/GPIO24
0 QSPICS2
1 MCLK2

N8 29 QSPICS1/EBUOUT2/GPIO16
0 QSPICS1
1 EBUOUT2

R7 30 QSPICS0/EBUIN4/GPIO15
0 QSPICS0
1 EBUIN4

F6 31 A20/A24
0 A20
1 A24

Table 9-30. Triple Multiplexed Pins (continued)

Pin Bit Name Description

System Integration Module (SIM)

MCF5251 Reference Manual, Rev. 1

9-32 Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 10-1

Chapter 10
Chip Select Module
The Chip Select Module provides user-programmable control of the three chip select outputs, two buffer
enable outputs and one output-enable signal. This chapter describes the operation, memory map, and
register descriptions of the Chip Select module, including the chip select address, mask, and control
registers.

10.1 Chip Select Features
• Three programmable chip select outputs (CS0/CS4, CS1 and CS2 (IDE_DIOR and IDE_DIOW))

• IORDY and TA handshake pins

• Two programmable buffers enable signals for glueless interface to bus buffers

• Address masking for memory block sizes from 64 Kbytes to 4Gbytes

• Programmable wait states

• Port size is 16 bits

10.2 Chip Select Signals
The MCF5251 provides three programmable chip selects that can directly interface with SRAM, EPROM,
EEPROM, and peripherals. Chip select CS2 provides separate read and write strobes for an AT-bus
peripheral interface, and uses IORDY signalling to insert wait states.

10.2.1 CS0/CS4

CS0 is the first chip select and it addresses either the on-chip or external boot memory. At power-on reset,
all bus cycles are mapped to the CS0. This allows the boot memory to be defined at any address space. CS0
is the only chip select initialized at reset.

During power-on reset, pin A23 is sensed. A resistor should be connected between this pin and VDD or
GND. Depending whether a pull-up or pull-down is mounted, different options are selected as described
in Table 10-1.

Table 10-1. CS0 Operation

Pin Description

A23 Pull-up: Boot from memory connected to CS0/CS4. CS0/CS4 function is CS0
Pull-down: Boot from on-chip boot ROM. CS0/CS4 function becomes CS4

Chip Select Module

MCF5251 Reference Manual, Rev. 1

10-2 Freescale Semiconductor

10.2.2 CS1/QSPI_CS3/GPIO28

CS1 has a programmable address range, wait state generation, and internal/external termination. A reset
clears all chip select programming. It is multiplexed with QSPI_CS3 and GPIO28.

10.2.3 CS2 — IDE_DIOR/GPIO31 and IDE_DIOW/GPIO32

CS2 provides two separate control signals for read and write operations. These two signals go active during
CS2 cycles. IDE_DIOR can be programmed to go active on read and write cycles, or only to go active on
read cycles. IDE_DIOW operates only on write cycles.

IDE_DIOR and IDE_DIOW can be used as enables to access an IDE drive or another AT-bus peripheral.
This added functionality allows users to insert more than 16 wait states on IDE_DIOR, IDE_DIOW, and
allows dynamic cycle termination using the IDE_IORDY signal.

10.2.4 CS3

There is no physical output pin. However, the registers for CS3 are available and can be used to enable the
BUFENx outputs. These BUFENx outputs could then be used as a physical CS3. This would require
programming the CS3 registers and then setting the appropriate bits in the IDECONFIG1 register. See
Table 13-2, IDEConfig1 Register Field Descriptions for bit 18 or 21 settings.

10.2.5 Output Enable Signal OE

The OE signal enables read accesses to memory and/or peripherals. It is asserted and negated on the falling
edge of the clock. This signal is asserted when there is a match with one of the chip selects.

10.2.6 Buffer Enable – BUFENB1 and BUFENB2 Signals

The BUFENB1/GPIO29 and BUFENB2/GPIO30 signals are intended to enable bus buffers which will
provide isolation / buffering between the MCF5251 high speed memory bus and additional external
memory mapped devices.

BUFENB1 is always active on CS0.
BUFENB2 is always inactive on CS0. It is programmable to be active on CS1, CS2, CS3 (special case)
and CS4 as desired.

10.2.7 Bus Termination Signal – IDE_IORDY

The IDE_IORDY signal controls the insertion of wait states on CS2.

Chip Select Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 10-3

10.3 Chip Select Operation
The chip select module provides a glueless interface to many types of external memory. The module
contains the necessary external control signals to interface to SRAM, PROM, EPROM, EEPROM, FLASH
and peripherals.

Some features of the chip selects are controlled by the IDECONFIG1 and IDECONFIG2 registers. These
are described in Section 10.4, “Chip Select Memory Map and Register Definitions.”

Each of the three chip select outputs has an associated mask register and control register.

Chip selects (CS0/CS4, CS1/QSPI_CS3/GPIO28, IDE_DIOR / IDE_DIOW (CS2):

• Each has a 16-bit base address register.

• Each has a 32-bit mask register, which provides 16-bit address masking and access control.

• Each has a 16-bit control register, which provides port size, burst capability, wait state generation
and automatic acknowledge generation.

CS0 provides special functionality. It is a “global” chip select after reset and provides relocatable boot
ROM capability.

In addition to the two external chip select outputs, the module contains one chip select (CS2) for use with
AT-bus peripherals such as IDE drives and Flash Card interfaces. Capabilities for CS2 are like CS1, but
there are some enhancements for typical AT-bus features. The enhancements are described in Section 10.4,
“Chip Select Memory Map and Register Definitions.”

10.3.1 General-Purpose Chip Select Operation

The general-purpose chip selects are controlled by the chip select mask register (CSMR), the chip select
control register (CSCR), and by the chip select address register (CSAR). There is one CSAR, CSMR, and
CSCR for each of the chip selects (CS0, CS1, CS2 and CS4).

Chip Selects:

• The chip select address register controls the base address space of the chip select.

• The chip select mask register controls the memory block size and addressing attributes of the chip
select.

• The chip select control register programs the features of the chip select signals.

10.3.2 Port Sizing

The MCF5251 only supports a 16-bit wide port size (PS). The size of the port controlled by a chip-select
is programmable. The port size is specified by the (PS) bits in the chip select control register (CSCR). It
should always be programmed as a 16-bit wide port. See Section 10.4.2.3, “Chip Select Control Register,”
for details.

Chip Select Module

MCF5251 Reference Manual, Rev. 1

10-4 Freescale Semiconductor

10.3.3 Global Chip-Select Operation

CS0 is the global (boot) chip select and it allows address decoding for the boot ROM before system
initialization occurs. Its operation differs from the other external chip-select outputs following a system
reset. Its operation is also dependent on the pull-up or pull-down status of address line A23 at power-on
reset, see Section 10.2.1, “CS0/CS4,” for details.

NOTE
CS0/CS4 are multiplexed, when CS0 is enabled for on-chip boot ROM
access, CS0 is used for these access and CS4 is automatically enabled as the
output for the CS0/CS4 pin.

After system reset, CS0 is asserted for every external access. Internal accesses can be made to go external
by setting the internal bus arbitration control (IARBCTRL) bit of the default bus master (MPARK) register
in the system integration module (SIM). No other chip-select can be used while CS0 is a global chip select.
CS0 operates in this manner until the valid bit is set in chip select mask register CSMR0[0], at which point
CS1 may be used. At reset, the port size and automatic acknowledge functions of the global chip-select are
determined.

The reset state of CS0 is always auto-acknowledge (AA) with 15 wait states and the port size is 16-bits.

Provided the required address range is first loaded into chip select address register (CSAR), CS0 can be
programmed to continue to decode for a range of addresses after the valid (V) bit is set. After the V-bit is
set for CS0, global chip-select can be restored only with another system reset.

10.4 Chip Select Memory Map and Register Definitions
The Chip Select module registers and their field descriptions are provided in this section followed by a
code example to initialize the chip selects.

10.4.1 Chip Select Register Memory Map

Table 10-2 shows the memory map of all the chip-select registers. Reading reserved locations returns
zeros.

The CSCRs should be accessed through a MOV.L to longword address offset they belong to, while reading
and writing to the lower 16-bits of the longword data transfer (DATA[15:0]).

NOTE
All of these accesses are longword in length, instead of word length, even
though both the CSARs and CSCRs use only 16 bits in the 32-bits registers.

Table 10-2. Memory Map of Chip-Select Registers

Address1 Name Width Description Reset2 Access

MBAR + 0x80 CSAR0 16 Chip-Select Address Register–Bank 0 Uninitialized R/W

MBAR + 0x84 CSMR0 32 Chip-Select Mask Register–Bank 0 Uninitialized
(except V = 0)

R/W

Chip Select Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 10-5

10.4.2 Chip Select Module Registers

The various chip select registers in the module are described in this section.

10.4.2.1 Chip Select Address Register

The Chip Select Address registers (CSARx) determine the base address of the corresponding chip select
pin. These read/write registers are 32-bit in length.

MBAR + 0x88 CSCR0 16 Chip-Select Control Register–Bank 0 BEM = 1;
BSTR = BSTW = 0;

AA =;
PS1 =;
PS0 =;

WS3 = WS2 = WS1 = WS0 = 1

R/W

MBAR + 0x8C CSAR1 16 Chip-Select Address Register–Bank 1 Uninitialized R/W

MBAR + 0x90 CSMR1 32 Chip-Select Mask Register–Bank 1 Uninitialized
(except V = 0)

R/W

MBAR + 0x94 CSCR1 16 Chip-Select Control Register–Bank 1 Uninitialized R/W

MBAR + 0x98 CSAR2 16 Chip-Select Address Register–IDE Uninitialized R/W

MBAR + 0x9C CSMR2 32 Chip-Select Mask Register–IDE Uninitialized
(except V = 0)

R/W

MBAR + 0xA0 CSCR2 16 Chip-Select Control Register–IDE Uninitialized R/W

MBAR + 0xA4 CSAR3 16 Chip-Select Address Register Uninitialized R/W

MBAR + 0xA8 CSMR3 32 Chip-Select Mask Register Uninitialized
(except V = 0)

R/W

MBAR + 0xAC CSCR3 16 Chip-Select Control Register Uninitialized R/W

MBAR + 0xB0 CSAR4 16 Chip-Select Address Register–Bank 4 Uninitialized R/W

MBAR + 0xB4 CSMR4 32 Chip-Select Mask Register–Bank 4 Uninitialized
(except V = 0)

R/W

MBAR + 0xB8 CSCR4 16 Chip-Select Control Register–Bank 4 Uninitialized R/W

1 Addresses not assigned to a register and undefined register bits are reserved for future expansion. Write accesses to these
reserved address spaces and reserved register bits are undefined.

2 The reset value column indicates the register initial value at reset.

Table 10-2. Memory Map of Chip-Select Registers (continued)

Address1 Name Width Description Reset2 Access

Chip Select Module

MCF5251 Reference Manual, Rev. 1

10-6 Freescale Semiconductor

10.4.2.2 Chip Select Mask Register

The chip select mask registers CSMRx determine the address mask. In addition, they determine what type
of access is allowed for these signals. Each CSMR is a 32-bit read/write control register that physically
resides in the chip select module. With the exception of bit 0 (V-bit), which is initialized to 0 on reset, all
other bits in CSMRx are uninitialized by reset.

Address MBAR + 0x80
MBAR + 0x8C
MBAR + 0x98
MBAR + 0xA4

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BA31 BA30 BA29 BA28 BA27 BA26 BA25 BA24 BA23 BA22 BA21 BA20 BA19 BA18 BA17 BA16

W

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset – – – – – – – – – – – – – – – –

Figure 10-1. Chip Select Address Register (CSARx)

Table 10-3. Chip Select Register (CSARx) Field Descriptions

Field Description

31–16
BA

The Base Address field defines the base address location of memory dedicated to chip select CS[3:0]. These bits
are compared to bits 31–16 on the internal core address bus to determine if the chip select memory is being
accessed.

15–0 Reserved

Chip Select Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 10-7

Address MBAR + 0x84
MBAR + 0x90
MBAR + 0x9C
MBAR + 0xA8

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R BAM
31

BAM
30

BAM
29

BAM
28

BAM
27

BAM
26

BAM
25

BAM
24

BAM
23

BAM
22

BAM
21

BAM
20

BAM
19

BAM
18

BAM
17

BAM
16W

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
WP AM C/I SC SD UC UD V

W

Reset – – – – – – – – – – – – – – – 0

Figure 10-2. Chip Select Mask Register (CSMRx)

Table 10-4. Chip Select Mask Register (CSMRx) Field Descriptions

Field Description

31–16
BAM

The Base Address Mask field defines the chip select block size through the use of address mask bits. Any
set bit masks the corresponding base address register (CSAR) bit (the base address bit becomes a don’t
care in the decode).
0 Corresponding address bit is used in chip select decode
1 Corresponding address bit is a don’t care in chip select decode
The block size for all CS are equal to 2n, where n = (number of bits set in the base address mask field of
the respective CSMR + 16).
For example, if CSAR0 were set at $0000 and CSMR0 were set at $0008, then chip select CS0 would
address two discontinuous memory blocks of 64Kbytes each: the first block would be from $00000000 to
$0000FFFF and the second block would be from $00080000 to $0008FFFF. Stated another way, if any of
the upper 16-bits in the CSMR0 were set, then the corresponding address bit is a don’t care in the chip
select decode.
Another example might be if CS0 were to access 32MBs of address space starting at location $0 and CS1
has to begin at the next byte after CS0 for an address space of 16MB. Then:
CSAR0 = $0000, (upper 16 bits of) CSMR0 = $01FF, and
CSAR1 = $0200, (upper 16 bits of) CSMR1 = $00FF.

15–9, 7 Reserved

Address Space Mask Bits

8
WP

The Write Protect bit can restrict write accesses to the address range in a CSAR. An attempt to write to the
range of addresses specified in a CSAR that has this bit set results in the appropriate chip select not being
selected. No exception occurs.
0 Both read and write accesses are allowed.
1 Only read access is allowed.

Chip Select Module

MCF5251 Reference Manual, Rev. 1

10-8 Freescale Semiconductor

10.4.2.3 Chip Select Control Register

CSCRx control the auto acknowledge, external master support, port size, burst capability, and activation
of each of the chip selects.

For CSCR0, bits BSTR, and BSTW are initialized to 0 by reset; bits WS[3:0] and BEM are initialized to
1 by reset; while AA, PS1, and PS0 are loaded with “110”, respectively at reset. For CSCR1 to CSCR4
none of the bits are initialized at reset. These are shown in Figure 10-3 and Figure 10-4.

CS0 is the global (boot) chip select which allows address decoding for boot ROM before system
initialization occurs. Its operation differs from the other external chip select outputs following a system
reset.

6–1
AM, C/I, SC,
SD, UC, UD

These fields mask specific address spaces.
If an address space mask bit were cleared, an access to a location in that address space can activate the
corresponding chip select. If an address space mask bit were set, an access to a location in that address
space becomes a regular external bus access, and no chip select is activated.
AM: Alternate master access (DMA)
C/I: Interrupt cycle access
SC: Supervisor code access
SD: Supervisor data access
UC: User code access
UD: User data access
For each address space mask bit (AM, C/I, SC, SD, UC, UD):
0 Do not mask this address space for the chip select. An access using the chip select can occur for this

address space.
1 Mask this address space from the chip select activation. If this address space is accessed, no chip select

activation occurs on the external cycle.

0
V

The Valid bit indicates that the contents of its address register, mask register, and control register are valid.
The programmed chip selects do not assert until the V-bit is set (except for CS0 which acts as the global
(boot) chip select—see Section 10.3.3, “Global Chip-Select Operation.”)
A reset clears the V-bit in each CSMR.
0 Chip select invalid
1 Chip select valid

Address MBAR + 0x8A Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
WS3 WS2 WS1 WS0 AA PS1 PS0 BSTR BSTW

W

Reset – – 1 1 1 1 – 1 1 0 – 0 0 – – 0

Figure 10-3. Chip Select Control Register (CSCR0)

Table 10-4. Chip Select Mask Register (CSMRx) Field Descriptions (continued)

Field Description

Chip Select Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 10-9

Address MBAR +0x96
MBAR +0xA2
MBAR +0xAE

Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
WS3 WS2 WS1 WS0 AA PS1 PS0 BSTR BSTW

W

Reset – – – – – – – – – – – – – – – 0

Figure 10-4. Chip Select Control Registers (CSCRx)

Table 10-5. Chip Select Control Register (CSCRx) Field Descriptions

Field Description

15–14 Reserved.

13–10
WS

The Wait States field defines the number of wait states that are inserted before an internal transfer acknowledge is
generated. If the AA bit is cleared, TA must be asserted by the external system regardless of the number of wait
states generated.

9 Reserved.

8
AA

The Auto-Acknowledge Enable field determines the assertion of the internal transfer-acknowledge for accesses
specified by the chip select address.
0 No internal transfer acknowledge (TA) is asserted.
1 Internal acknowledge (TA) is asserted as specified by WS[3:0].

7–6
PS

The Port Size field specifies the width of the data associated with each chip select. It determines where data is driven
during write cycles and where data is sampled during read cycles. Port size should always be programmed to
16-bits.
00 Reserved.
01 Reserved.
10 16-bit port size–Data sampled and driven on D[31:16] only.
11 16-bit port size–Data sampled and driven on D[31:16] only.
Note: A0 is not available on the external bus.

5 Reserved.

4
BSTR

The Burst Read Enable field specifies whether burst reads are used for the memory associated with each chip
select.
0 Breaks data larger than the specified port size into individual non-burst reads that equals the specified port size.

For example, a longword read from an 16-bit port would be broken into two individual wordreads.
1 Enables burst read of data larger than the specified port size.

3
BSTW

The Burst Write Enable field specifies whether burst writes are used for the memory associated with each chip
select.
0 Break data larger than the specified port size into individual non-burst writes that equals the specified port size.

For example, a longword write to an 16-bit port would be broken into two individual word writes.
1 Enables burst write of data larger than the specified port size.

2–0 Reserved.

Chip Select Module

MCF5251 Reference Manual, Rev. 1

10-10 Freescale Semiconductor

10.4.2.4 Code Example

The following code provides an example of how to initialize the chip-selects.
CSAR0 EQU MBARx+$080;Chip Select 0 address register
CSMR0 EQU MBARx+$084;Chip Select 0 mask register
CSCR0 EQU MBARx+$088;Chip Select 0 control register

CSAR1 EQU MBARx+$08C;Chip Select 1 address register
CSMR1 EQU MBARx+$090;Chip Select 1 mask register
CSCR1 EQU MBARx+$094;Chip Select 1 control register

; All other chip selects should be programmed and made valid before global
; chip select is de-activated by validating CS0
; Program Chip Select 1 Registers

move.l#$00000000,D0;CSAR1 base addresses $00000000 (to $001FFFFF)
move.lD0,CSAR1;and $80000000 (to $801FFFFF)

move.l#$000009B0,D0;CSCR1 = 2 wait states, AA=1, PS=16-bit, BEM=1,
move.lD0,CSCR1;BSTR=1, BSTW=0

move.l#801F0001,D0;Address range from $00000000 to $001FFFFF and
move.lD0,CSMR1;$80000000 to $801FFFFF
;WP,EM,C/I,SC,SD,UC,UD=0, V=1

;Program Chip Select 0 Registers
move.l#$00800000,D0;CSAR0 base address $00800000 (to $009FFFFF)
move.lD0,CSAR0

move.l#$00000D80,D0;CSCR0 = 3 wait states, AA=1, PS=16-bit, BEM=0,
move.lD0,CSCR0;BSTR=0, BSTW=0

; Program Chip Select 0 Mask Register (validate chip selects)
move.l#001F0001,D0;Address range from $00800000 to $009FFFFF
move.lD0,CSMR0;WP,EM,C/I,SC,SD,UC,UD=0; V=1

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 11-1

Chapter 11
General Purpose Timer Modules
This chapter describes the configuration and operation of the two general purpose timer modules (Timer0
and Timer1) in the MCF5251. The memory map, register descriptions, and example initialization code are
also provided.

11.1 Timer Module Overview
The MCF5251 incorporates two independent, general-purpose 16-bit timers. The output of an 8-bit
prescaler clocks each 16-bit timer. The prescaler input can be the system clock or the system clock divided
by 16. Timer0 output pin is multiplexed with SDATAO1/TOUT0/GPIO18. Upon reset, this pin is
programmed as SDATAO1. To use the TOUT0 pin function it is necessary to program the Pin
Configuration register appropriately.

NOTE
The maximum system clock (SYSCLK) is 1/2 CPU clock.

11.2 Timer Features
Each of the general purpose 16-bit timers provide the following features:

• Maximum period of 3.83 seconds at 70 MHz SYSCLK (BCLK)

• 14.3 ns minimum resolution at 70 MHz

• Programmable sources for the clock input

• Output-compare with programmable mode for the output pin (Timer0 only)

• Free run and restart modes

• Maskable interrupt on reference-compare

• Programmable to count and compare to a reference value stored in a register

• An 8-bit prescalar output clocks the timers

• Users can program the prescalar clock input

• Programmed events generate interrupts

• Users can configure the TOUT0 pin to toggle or to pulse on an event

The minimum resolution of each timer is one system clock (SYSCLK) cycle (14.3 ns at 70 MHz). The
maximum timeout period (16 × 256 × 65536) ÷ 70 MHz = 3.83 seconds. ($0 - $FFFF = 65536 decimal.)

11.3 Block Diagram
Figure 11-1 is a block diagram of the timer module.

General Purpose Timer Modules

MCF5251 Reference Manual, Rev. 1

11-2 Freescale Semiconductor

Figure 11-1. Timer Block Diagram Module Operation

11.4 Timer Signal Output
Only Timer0 has an output pin. The timer output pin is SDATAO1/TOUT0/GPO18. At reset, the function
is set to SDATAO1.

11.5 Timer Operation
This section provides information to select the timer module’s prescaler and to configure the timer.

11.5.1 Selecting the Prescaler

Users can select the prescalar clock from the SYSCLK (divided by 1 or by 16).
The CLK bits of the corresponding Timer Mode Register (TMR) select the clock input source. The
prescaler is programmed to divide the clock input by values from 1 to 256. The prescalar output is used as
an input to the 16-bit counter.

11.5.2 Configuring the Timer for Reference Compare

Users can configure the timer to count until it reaches a reference value at which time it either starts a new
time count immediately or continues to run. The free run/restart (FRR) bit of the TMR selects either mode.

TIMER
CLOCK

GENERATOR

DIVIDER

MODE REGISTER
PRESCALER MODE BITS

TIMER COUNTER

15

0

REFERENCE REGISTER

15 0

7 0
EVENT REG

SYSTEM CLOCK OR
SYSTEM
CLOCK/16

TOUT

D
AT

A
 B

U
S

 (
16

)

GENERAL-PURPOSE TIMER

CLOCK

IR
Q

B
U

S

15

0

General Purpose Timer Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 11-3

When the timer reaches the reference value, the REF bit in the TER register is set and issues an interrupt
if the output reference interrupt (ORI) enable bit in TMR is set.

11.5.3 Configuring the Timer for Output Mode (TIMER0)

Timer0 can send an output signal on the timer output (TOUT0) pin when it reaches the reference value as
selected by the output mode (OM) bit in the TMR. This signal can be an active-low pulse or a toggle of the
current output under program control.

11.6 General-Purpose Timer Memory Map and Register Definitions
Users can modify the timer registers at any time. Table 11-1 shows the timer memory map.

11.6.1 Timer Mode Registers (TMR0, TMR1)

The TMR is a 16-bit memory-mapped register. This register programs the various timer modes and is
cleared by reset.

Table 11-1. Memory Map for General-Purpose Timers

Timer 0 Address Timer 1 Address Timer Module Registers

MBAR+$140 MBAR+$180 Timer Mode Register (TMRn)

MBAR+$144 MBAR+$184 Timer Reference Register (TRRn)

MBAR+$148 MBAR+$188 Timer Capture Register (TCRn)

MBAR+$14C MBAR+$18C Timer Counter (TCNn)

MBAR+$151 MBAR+$191 Reserved Timer Event Register (TERn)

Address MBAR+$140
MBAR+$180

Access: Supervisor or User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PRESCALER VALUE (PS7–PS0) CE1 CE0 OM ORI FRR CLK1 CLK0 RESET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-2. Timer Mode Register (TMRn)

Table 11-2. Timer Mode Register (TMRn) Field Descriptions

Bit Name Description

15–8
PS

The Prescaler Value is programmed to divide the clock input by values from 1 to 256. The value 00000000 divides
the clock by 1; the value 11111111 divides the clock by 256.
Prescalar value = $[PS7 – PS0] + 1

7–6
CE

These bits have no function and should be set to 00.

General Purpose Timer Modules

MCF5251 Reference Manual, Rev. 1

11-4 Freescale Semiconductor

11.6.2 Timer Reference Registers (TRR0, TRR1)

The TRR is a 16-bit register that contains the reference value that is compared with its respective,
free-running timer counter (TCN), as part of the output-compare function. TRR is a memory-mapped
read/write register.

TRR is set at reset. The reference value is not matched until TCN equals TRR, and the prescaler indicates
that the TCN should be incremented again. Thus, the reference register is matched after (TRR+1) time
intervals.

5
OM

 Output Mode
1 Toggle output
0 Active-low pulse for one system clock cycle (16.666 ns at 60 MHz)

4
ORI

 Output Reference Interrupt Enable
1 Enable interrupt upon reaching the reference value
0 Disable interrupt for reference reached (does not affect interrupt on capture function)
If ORI is set when the REF event is asserted in the Timer Event Register (TER), an immediate interrupt occurs.
If ORI is cleared while an interrupt is asserted, the interrupt negates.

3
FRR

 Free Run/Restart
1 Restart: Timer count is reset immediately after reaching the reference value
0 Free run: Timer count continues to increment after reaching the reference value

2–1
CLK

 Input Clock Source for the Timer
11 Invalid
10 SYSCLK divided by 16
The clock source is synchronized with the timer. However, the divider is not reset to 0 when the timer is stopped,
thus successive time-outs may vary slightly in length.
01 SYSCLK
00 Stops counter. After the counter is stopped, the value in the Timer Counter (TCN) register remains constant.

0
RST

The Reset Timer bit performs a software timer reset identical to that of an external reset. All timer registers take
on their corresponding reset values. While this bit is zero, the other register values can still be written, if
necessary. A transition of this bit from one to zero is what resets the register values. The counter/timer/prescaler
is not clocked unless the timer is enabled.
1 Enable timer
0 Reset timer (software reset)

Address MBAR+$144
MBAR+$184

Access: Supervisor or User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
REFERENCE COMPARE VALUE (REF15–REF0)

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 11-3. Timer Reference Register (TRRn)

Table 11-2. Timer Mode Register (TMRn) Field Descriptions (continued)

Bit Name Description

General Purpose Timer Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 11-5

11.6.3 Timer Counters (TCN0, TCN1)

TCN is a memory-mapped 16-bit up counter that users can read at any time. A read cycle to TCN yields
the current timer value and does not affect the counting operation.

A write of any value to TCN causes it to reset to all zeros.

11.6.4 Timer Event Registers (TER0, TER1)

The TER is an 8-bit register that reports events the timer recognizes. When the timer recognizes an event,
it sets the appropriate bit in the TER, regardless of the corresponding interrupt-enable bits (ORI and CE)
in the TMR.

TER appears as a memory-mapped register and can be read at any time.

Writing a one to a bit will clear it (writing a zero does not affect the bit value); more than one bit can be
cleared at a time. The REF and CAP bits must be cleared before the timer will negate the IRQ to the
interrupt controller. Reset clears this register.

Address MBAR+$14C
MBAR+$18C

Access: Supervisor or User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
16-BIT TIMER COUNTER VALUE (COUNT15–COUNT0)

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-4. Timer Counter (TCNn)

Address MBAR+$151
MBAR+$191

Access: Supervisor or User read/write

7 6 5 4 3 2 1 0

R
REF CAP

W

Reset 0 0 0 0 0 0 0 0

Figure 11-5. Timer Event Register (TERn)

Table 11-3. Timer Event Register (TERn) Field Descriptions

Field Description

7–2 Reserved for future use. These bits are currently 0 when read.

1
REF

If a one is read from the Output Reference Event bit, the counter has reached the TRR value. The ORI bit in the
TMR enables the interrupt request caused by this event. Writing a one to this bit will clear the event condition.

0
CAP

Not applicable

General Purpose Timer Modules

MCF5251 Reference Manual, Rev. 1

11-6 Freescale Semiconductor

11.6.5 Timer Initialization Example Code

There are two timers on the MCF5251. With a 70 MHz clock, the maximum period is 3.83 seconds and a
resolution of 14.3 ns. The timers can be free running or count to a value and reset. The following examples
set up the timers:

Timer0 will count to $AFAF, toggle its output, and reset back to $0000. This will continue infinitely until
the timer is disabled or a reset occurs. No interrupts are set. Prescale is set at 256 and the system clock is
divided by 16, therefore resolution is (16 × (256))/70 MHz = 58.51us. Timeout period is
(16 × 256 × 44976)/70 MHz = 2.63s ($0 - $AFAF = 44976 decimal).

NOTE
The timers were initialized in the SIM to have interrupt values. The
following examples have the interrupts disabled. The initialization in the
SIM configuration was for reference. The Timers CANNOT provide
interrupt vectors, only autovectors.

Autovectors and ICRs have been set up as follows. The interrupt levels and priorities were chosen by
random for demonstrative purposes. Users should define the interrupt level and priorities for their specific
application.

11.6.5.1 Timer0 (Timer Mode Register)

Bits 15:8 sets the prescale to 256 ($FF)

Bits 7:6 set for no interrupt (“00”)

Bits 5:4 sets output mode for “toggle”. No interrupts(“10”)

Bits 3 set for “restart” (“1”)

Bits 2:1 set the clocking source to system clock/16 (“10”)

Bit 0 enables/disables the timer (“0”)
move.w #$FF2C,D0;Setup the Timer mode register (TMR0)
move.w D0,TMR1; Bit 1 is set to 0 to disable the timer
move.w #$0000,D0; writing to the timer counter with any value resets it to zero
move.w D0,TCN1;

11.6.5.2 Timer0 (Timer Reference Register0)

The TRR register is set to $AFAF. The timer will count up to this value (TCN = TRR), toggle the “TOUT”
pin, and reset the TCN to $0000.

move.w #$AFAF,D0;Setup the Timer reference register (TRR0)
move.w D0,TRR1

Other registers used for TIMER 0

TCR0;TIMER0 Capture Register, 16-bit, R

TER0;TIMER0 Event Register, 8-bit, R/W

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 12-1

Chapter 12
Analog to Digital Converter (ADC)
This chapter explains the ADC operation, memory map and register descriptions, and setup
recommendations of the ADC to external components.

12.1 Overview
The ADC functionality is based on the sigma-delta concept using 12-bit resolution with a measurement
frequency of ADCLK / 4096.

12.1.1 Block Diagram

The ADC block diagram and external circuit example is shown in the below figure.

Figure 12-1. ADC Block Diagram and External Components

12.2 External Signal Description
The ADC has six muxed inputs with the following pin names.

1. ADIN0/GPI52

2. ADIN1/GPI53

3. ADIN2/GPI54

Analog to Digital Converter (ADC)

MCF5251 Reference Manual, Rev. 1

12-2 Freescale Semiconductor

4. ADIN3/GPI55

5. ADIN4/GPI56

6. ADIN5/GPI57

The ADOUT signal on the ADOUT/SCLK4/GPIO58 pin provides the ADC comparators (ramping)
reference voltage in PWM format. This output requires an external integrator circuit (resistor/capacitor) to
convert the PWM source to a DC level which is then input to the ADREF pin. A circuit example is shown
in Figure 12-1.

Only one ADC input can be converted at any one time. The input to be converted is selected via the source
select bits of the ADconfig register. An interrupt can be provided when the ADC measurement cycle is
complete.

12.3 ADC Memory Map and Register Definitions
This section discusses the two user-accessible ADC registers, ADconfig and ADvalue.

12.3.1 AD Configuration Register (ADconfig)

The device will select one of the six inputs using multiplexer (7) as shown in Figure 12-1. ADOUT is
calculated via flip-flop (8) and buffer (9). The feed-back loop (1-7-8-9) will keep the voltage on the
external integrator capacitor close to ADIN0, and in this way, the voltage on ADIN0 is proportional to the
duty cycle of the signal on ADOUT.

The circuit will measure the duty cycle of the ADOUT signal. Every time ADOUT is high, counter (10)
will increment. Every 4096 AD_CLK clock pulses the value from counter (10) is latched into register (11),
and ADInterrupt is generated. Counter (10) is also reset.

On reception of ADInterrupt, the processor will read ADvalue(12:0) from the ADvalue register. This value
is in range 0-4096, and indicates duty cycle of ADOUT. See Figure 12-2 for illustration of valid bits in the
ADconfig register and Table 12-2 for description of the bit fields.

Table 12-1. ADC Memory Map

MBAR2
Offset

Register Width Access Reset Value Section/Page

0x402 ADconfig—AD configuration register 16 R/W Undefined 12.3.1/12-2

0x406 ADvalue—AD value register 16 R Undefined 12.3.2/12-3

Address MBAR2 + 0x402 (ADCONFIG) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Source Select

INTCLR
INTEN ADOUT_DRIVE ADCLK_SEL

W w1c

Reset – – – – – 0 0 0 – – – – – – – –

Figure 12-2. AD Configuration Register (ADconfig)

Analog to Digital Converter (ADC)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 12-3

12.3.2 AD Value Register (ADvalue)

See Figure 12-2 for illustration of valid bits in the ADvalue Register and Table 12-2 for description of the
bit fields.

Table 12-2. ADconfig Register Field Descriptions

Field Description

15–11 Reserved, should be cleared.

10–8
Source Select

ADC source select.
000 ADIN0
001 ADIN1
010 ADIN2
011 ADIN3
100 ADIN4
101 ADIN5
Note: Only one channel can be measured at any one time.

7
INTCLR

ADC interrupt pending. Indicates that an interrupt is pending. Write one to clear; writing zero has no affect.
0 No ADC interrupt pending
1 ADC Interrupt pending

6
INTEN

ADC interrupt enable.
0 Interrupt disabled
1 Interrupt enabled

5–4
ADOUT_DRIVE

00 ADOUT drives +Vdd for Hi, GND for low
01 ADOUT tri-state
10 ADOUT drives HI_Z for Hi, GND for low
11 ADOUT drives +Vdd for Hi, HI_Z for low
Note: For the circuit shown in Figure 12-1, the ADOUT_DRIVE should be set to 00. Other circuits can use

settings 10 or 11.

3–0
ADCLK_SEL

ADCLK source select. Selects the clock source for the ADC as a function of BUSCLK.
0000 BUSCLK
0001 BUSCLK / 2
0010 BUSCLK / 4
0011 BUSCLK / 8
0100 BUSCLK / 16
0101 BUSCLK / 32
0110 BUSCLK / 64
0111 BUSCLK / 128
1000 BUSCLK / 256
Else Reserved

Address MBAR2 + 0x406 (ADVALUE) Access: User read-only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R OF ADVALUE

W

Reset – – – – – – – – – – – – – – – –

Figure 12-3. AD Value Register (ADvalue)

Analog to Digital Converter (ADC)

MCF5251 Reference Manual, Rev. 1

12-4 Freescale Semiconductor

12.4 Functional Description
Each ADC input channel has its own on-chip comparator the output of which is multiplexed with the
digital section.The reason to have separate comparators for each channel allows for the inputs to be used
as GPI’s. In this mode the ADREF should be a fixed level (typically VDD/2) and each comparator is then
being used to indicate if its input is above or below this reference (HIGH or LOW). The state of each GPI
in this case is read using the GPIO_READ registers.

NOTE
It is possible to mix the use of each of these inputs between ADC and GPI
function as the ADOUT/SCLK4/GPIO58 pin can be switched between
providing the ramping ADOUT signal (ADC mode) to providing a fixed
level (VDD/2) by switching its operation to SCLK4 mode when appropriate.
SCLK4 will output a 50% duty cycle clock. Which when integrated will
produce a reference voltage close to VDD/2. The output frequency of
SCLK4 can be varied by programming the IIS4 Audio register. See
Section 17.5, “Serial Audio Interface (I2S/EIAJ) Register Descriptions.”

The ADC uses the sigma-delta modulation principle. The ADC external components required are an
integrator circuit comprising of a resistor and capacitor. The desired values for this integrator network are
dependent on the BUSCLK clock frequency and the associated setting of the ADconfig[ADCLK_SEL]
bits, which determine the maximum ADOUT PWM frequency.

12.4.1 Recommendations to Set-up of ADC and External Components

Do not run the ADC clock any faster than 10 MHz. This results in a maximum sampling frequency of
2441 Hz (10 MHz/4096).

To calculate the external component values use the following equation:

Eqn. 12-1

where K is a constant. If K is small, the ripple on the comparator input will be quite large, and there will
be some mis-measurement because the average value on both comparator pins is not equal. If K is small,
the comparator will have difficulty determining if the result is negative or positive. The circuit becomes
sensitive to noise. Therefore, we recommend to set K between 20 and 50.

Table 12-3. ADvalue Register Field Descriptions

Field Description

15–13 Reserved, should be cleared.

12
OF

Overflow. Indicates the input voltage is out of range. The ADC block does not support full rail-to-rail
conversions.
0 No overflow condition.
1 Overflow. Input signal is outside the operating voltage range of the ADC.

11–0
ADVALUE

AD measurement result.

RC K t×=

Analog to Digital Converter (ADC)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 12-5

Eqn. 12-2

The ADCCLOCK should be such that the comparator can take the decision whether its output needs to be
positive or negative in time t.

When K is high it means that RC is high relative to the clock period of the ADC and the voltage step over
C per clock cycle becomes small. Therefore, the ADC becomes slow in responding to changes of the input
voltage and this affects the accuracy of the measurement.

For a correct measurement, the voltage over C should be equal to the input voltage during the entire
measurement cycle (1024 ADC clocks). Therefore for the first conversion or when switching channels, two
consecutive measurements should be made and the first one ignored. This then allows the capacitor (C) to
charge to the average value of the channel. If voltages between the channels are significantly different, the
first measurement will be inaccurate because the capacitor may not have charged to the new level in time.
When reading the same channel, it is not necessary to ignore every other measurement.

We therefore recommend to use R = 33kΩ, C = 10nF with ADCLK = BUSCLK/256. This should produce
good results for typical system clock frequencies between 30 MHz and 70 MHz.

t 1
ADCCLOCK
-----------------------------------=

Analog to Digital Converter (ADC)

MCF5251 Reference Manual, Rev. 1

12-6 Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-1

Chapter 13
IDE and Flash Media Interface
This chapter describes the operation of the bus interface to IDE and Flash Media, the interface setup,
timing and operation are provided as well as commonly used commands.

13.1 IDE and SmartMedia Overview
The MCF5251 memory bus allows connection of an IDE hard disk drive or SmartMedia flash card with a
minimum of external hardware. Figure 13-1 shows the bus set-up for the MCF5251 device. The figure
illustrates an interface with both an IDE device and a SmartMedia device connected although both cannot
be supported simultaneously as the IDE_DIOR and IDE_DIOW signals can only be used to interface to
one or the other.

NOTE
SmartMedia refers to Flash memory cards such as Compact Flash. For other
Flash Media such as Secure Digital (SD), MultiMedia Card (MMC) or
Memory Stick, refer to Section 13.4, “Flash Media Interface.”

For support as a Flash Media Interface, this solution is recommended.

This IDE and Flash Media Interface is not recommended for new IDE
designs. All new IDE designs should use the ATA Interface, refer to
Chapter 22, “USB, ATA DMA, and Clock Integration Module”. Older hard
drive IDE designs may still be supported through this legacy IDE Interface.

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-2 Freescale Semiconductor

Figure 13-1. Bus Setup with IDE and SmartMedia Interface

In this example there is only one buffer between the MCF5251 memory bus and the IDE / SmartMedia
interface. The SDRAM (if used) is connected directly to the memory bus along with the Flash memory (if
used). The buffer therefore provides isolation (and signal buffering) between the memory bus components
and the slow, high capacitance and low impedance IDE bus. Thus allowing access to the SDRAM at the
highest memory bus speed (70MHz) possible. The buffer also prevents the SDRAM and Flash ROM
signals from going to/from the IDE / SmartMedia interfaces.

In some systems where the Flash ROM load may be excessively high or there is the requirement for
additional devices on the memory bus such as an additional SRAM or Ethernet controller. It maybe
necessary to provide further isolation and buffering of the memory bus between the MCF5251 / SDRAM.
There is provision for an additional buffer control signal in the system. The “first” bus buffer isolates the
MCF5251 / SDRAM bus from the flash ROM and any other additional devices (SRAM, Ethernet
Controller, etc.). The “second” bus buffer prevents the flash ROM signals from going to/from IDE and
SmartMedia interfaces. The IDE and SmartMedia interfaces share most signals with the ColdFire address
and data bus.

MCF5251

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-3

To support this bus set-up, a number of signals are available.
• BUFENB1—active-low external buffer enable. This enable is always active when the CS0/CS4

pin is active, and should enable a buffer going to the external boot Flash / ROM and any additional
memories or controllers.

• When CS0 is being used internally as the Chip Select for the boot ROM, the CS0/CS4 pin operates
with the CS4 settings, BUFENB1 settings then apply to CS4.

• BUFENB2—active-low external buffer enable. This enable is always inactive when the CS0/CS4
pin is active, and should enable a buffer for the IDE / SmartMedia Interface.

• IDE_DIOR, IDE_DIOW—active-low IDE bus read and write strobe can also be used to implement
a SmartMedia interface.

• IDE_IORDY—active-high “ready” indication from IDE device to MCF5251.

NOTE
Either of the buffer enables can be programmed to be active on CS1 or CS2

The extra bus signals, and their configuration are detailed in the following section.

13.1.1 Buffer Enables BUFENB1, BUFENB2, and Associated Logic

Buffer enables BUFENB1 and BUFENB2 allow a seamless interface to external bus buffers. The buffers
are placed on the address and the data bus.

Figure 13-2. Buffer Enables (BUFENB1 and BUFENB2)

As shown in Figure 13-2, the buffer enables BUFENB1 and BUFENB2 will go active at time CSPRE
before the falling edge of the Chip Select signal, and continue to be active for a time CSPOST after the
rising edge of the chip select signal. The pre-drive time CSPRE is realized by delaying the falling edge of
the select signal. If pre-drive time CSPRE is programmed non-zero, and internal ColdFire cycle
termination is used, chip select length will be CSPRE shorter than the programmed length. Times CSPRE,
CSPOST are the same for both BUFENB1 AND BUFENB2. Times CSPRE, CSPOST are independently
programmable for every Chip Select.

Buffer enable configuration is programmable using the IDE_CONFIG1 register.

CSx_core

bufenx_b

cspre

CS0, CS1,
DIOR, DIOW, SRE, SWE

cspost

BUFENBx

CSPRE CSPOST

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-4 Freescale Semiconductor

Table 13-1. IDEConfig1 Register

Address Access
Size
Bits

Name Description

MBAR2 + 0x18c RW 32 IDE CONFIG1 Configuration of buffer enable generation

Table 13-2. IDEConfig1 Register Field Descriptions

Field Description Res

2–0
CS0/CS4PRE

Pre-drive for CS0/CS4
000 No predrive
0011 clock
0102 clocks
0113 clocks
1004 clocks
1015 clocks

0

4–3
CS0/CS4POST

Post-drive for CS0/CS4
00 No post-drive
01 1 clock post-drive
10 2 clock post drive
11 3 clock post drive

0

7–5
cs1pre

Pre-drive for CS0/CS4
000 No predrive
001 1 clock
010 2 clocks
011 3 clocks
100 4 clocks
101 5 clocks

0

9–8
cs1post

Post-drive for CS1
00 No post-drive
01 1 clock post-drive
10 2 clock post drive
11 3 clock post drive

0

12–10
cs2pre

Pre-drive for IDE_DIOR, IDE_DIOW
000 No predrive
001 1 clock
010 2 clocks
011 3 clocks
100 4 clocks
101 5 clocks

0

14–13
cs2post

Post-drive for CS2
00 No post-drive
01 1 clock post-drive
10 2 clock post drive
11 3 clock post drive

0

16
bufen1cs1en

0 BUFENB1 inactive on CS1 cycles
1 BUFENB1 active on CS1 cycles

0

17
bufen1cs2en

0 BUFENB1 inactive on IDE_DIOR, IDE_DIOW cycles
1 BUFENB1 active on IDE_DIOR, IDE_DIOW cycles

0

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-5

13.1.2 Generation of IDE_DIOR and IDE_DIOW

IDE_DIOR and IDE_DIOW are created by gating CS2 with RW.

IDE_DIOR is programmable to go active on write cycles. It therefore can be used as an extra Chip Select
(CS2), if required.

18
bufen1cs3en

0 BUFENB1 inactive on CS3 cycles
1 BUFENB1 active on CS3 cycles

0

19
bufen2cs1en

0 BUFENB2 inactive on CS1 cycles
1 BUFENB2 active on CS1 cycles

0

20
bufen2cs2en

0 BUFENB2 inactive on IDE_DIOR, IDE_DIOW cycles
1 BUFENB2 active on IDE_DIOR, IDE_DIOW cycles

0

21
bufen2cs3en

0 BUFENB2 inactive on CS3 cycles
1 BUFENB2 active on CS3 cycles

0

24–22
cs3pre

Pre-drive for CS3
000 no predrive
001 1 clock
010 2 clocks
011 3 clocks
100 4 clocks
101 5 clocks

0

26–25
cs3post

Post-drive for CS3
00 no post-drive
01 1 clock post-drive
10 2 clock post drive
11 3 clock post drive

0

27
DIOR on write

0 IDE_DIOR not active during write cycles
1 IDE_DIOR active during write cycles

0

28
N/A

N/A 0

Table 13-2. IDEConfig1 Register Field Descriptions (continued)

Field Description Res

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-6 Freescale Semiconductor

Figure 13-3. IDE_DIOR Timing Diagram

13.1.3 Cycle Termination on CS2 (IDE_DIOR, IDE_DIOW)

Dedicated logic has been added to the MCF5251 to allow IDE compliant cycles on the bus. The logic can
generate the transfer acknowledge (TA) signal for CS2 access. The manner in which the TA signal is
generated is programmable using the IDE config 2 register, and is compatible with IDE/SmartMedia
requirements.

The timing diagram for a non-IORDY controlled IDE/SmartMedia TA generation is shown in Figure 13-4

Table 13-3. IDEConfig2 Register

Address Access
Size
Bits

Name Description

MBAR2 + 0x190 RW 32 IDE config2 Configuration of TA generation on CS2

Table 13-4. IDEConfig2 Register Field Description

Field Description RES

19
IORDY ENABLE 2

1 Allow IORDY to delay TA generation for CS2
0 Do not look at IORDY for CS2 TA generation

0

18
TA ENABLE 2

1 Generate TA for CS2 accesses
0 Do not generate TA for CS2

0

17
IORDY ENABLE 3

Reserved set to 0 0

16
TA ENABLE 3

Reserved set to 0 0

15–8
WAITCOUNT2

CS2 delay count. Controls TA timing for read cycles 0

7–0
WAITCOUNT3

CS2 delay count. Controls TA timing for write cycles 0

CS2 pin

CS3 pin

RWb

dior
(writes disabled)

diow

sre
(writes disabled)

swe

dior
(writes enabled)

sre
(writes enabled)

DIOR

DIOR

DIOW

SRE

SRE

SWE

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-7

Figure 13-4. Non-IORDY Controlled IDE/SmartMedia TA Timing

The system also supports dynamic lengthening of CS2 (IDE_DIOR, IDE_DIOW) cycles using the
IDE_IORDY signal. The timing diagram is shown in Figure 13-5.

Figure 13-5. CS2 (IDE_DIOR, IDE_DIOW)

13.2 SmartMedia Interface Setup
The SmartMedia block must be connected to the bus as follows:

• RE input connect to MCF5251 IDE_DIOR output
• WE input connect to MCF5251 IDE_DIOW output
• D0–7 connect to MCF5251 data bus wires 31–24
• CE connect to always low
• ALE connect to general purpose output
• CLE connect to general purpose output
• R/B connect to general purpose input

Table 13-5. IDE_DIOR, IDE_DIOW, and IDE_IORDY Timing Parameters

Timing
Parameter

Description Min Typ Max

t1 IDE_DIOR, IDE_DIOW low to TA – Read (waitCount2 + 2.5)T
Write (waitCount3 + 2.5)T

–

t21

1 t2 is relevant for IDE_IORDY controlled cycles only.

IDE_DIOR, IDE_DIOW low to
IDE_IORDY low

0
0

– Read (waitCount2 + 1.5)T
Write (waitCount3 + 1.5)T

t3 IDE_IORDY high to TA 2T – 3T

CSx_pin

TA_b
t1

TA

CSx_pin

TA_b t2

IORDY

t3
TA

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-8 Freescale Semiconductor

NOTE
A SmartMedia interface and an IDE interface cannot be implemented
simultaneously in the same hardware application as they both share the
same read and write strobe signals on the MCF5251.

To set up the SmartMedia interface perform the following tasks.
1. Program the three Chip Select registers inside the chip select modules (CSAR2, CSMR2, CSCR2)

as follows:
— CSCR2 bit fields must be programmed as follows:

– AA—0 (TA signal generated by IDEconfig2 register logic)
– WS[3:0]—not relevant
– PS[1:0]—01 (8 bit port size)
– BSTR, BSTW—00 (no burst read/write cycles)

2. Program the IDE config1 register. Only fields CS2PRE, CS2POST, BUFEN1CS2EN,
BUFEN2CS2EN. The values required for the buffer enable signals BUFEN1CS2EN and
BUFEN2CS2EN depend on the hardware configuration. If two buffers are used in cascade, both
bits must be 1. Fields CS2PRE and CS2POST are relevant and are detailed later in this section.

3. Program the IDE config2 register as follows:
— TA enable 2 = ‘1.’
— IDE_IORDY enable 2 = ‘0.’
— WAITCOUNT2 is required and is explained later in this section.

13.2.1 SmartMedia Timing

Figure 13-6. SmartMedia Timing

Table 13-6. SmartMedia Timing Values

SmartMedia
Timing
Symbol

Typical Value
nS

Controlled by
Setting

Equation (Approximately) Comment

tCLS, tCLH,
tALS, tALH

20, 40 – CS2PRE > t1 - tbuf Realized in software because CLE
and ALE are driven by gpio.

Clk

BufEnb

SWE

Write data
t11 t12 t13

Address
BUFENB

DIOW

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-9

Under typical circumstances, CS2PRE = 0 clocks, waitCount2 = 1 or 2.

NOTE
If CS2POST is set to 2, every write cycle is lengthened with 1 clock. If
CS2POST is set to 3, every write cycle is lengthened with 2 clocks.

13.3 Setting Up The IDE Interface
To set up the IDE interface, complete the following tasks.

NOTE
A SmartMedia interface and an IDE interface cannot be implemented
simultaneously in the same hardware application as they both share the
same read and write strobe signals on the MCF5251.

1. Program the Chip Select 2 registers inside the chip select modules. (CSAR2, CSMR2, CSCR2).
— CSAR2, CSMR2 must be programmed to see the IDE interface in the correct part of the

ColdFire address map.
— CSCR2 bit fields must be programmed as follows:

• AA—0 (TA signal generated by IDECONFIG2 register logic)
• WS[3:0]—not relevant
• PS[1:0]—10 (16 bit port size)
• BSTR, BSTW—00 (no burst read/write cycles)
2. Program the IDE config1 register. Fields CS2PRE, CS2POST, BUFEN1CS2EN,

BUFEN2CS2EN, and DIOR active during write are relevant. The values required for the buffer
enable signals BUFEN1CS2EN and BUFEN2CS2EN depend on the hardware configuration. If
two buffers are used in cascade, both bits must be 1. Fields CS2PRE and CS2POST are relevant
and are explained later in this section.

3. Program IDECONFIG2 register. Program this register as follows:
— TA enable 2 = ‘1’.
— IDE_IORDY enable 2 = ‘1’ if IDE_IORDY is connected from the IDE drive to the MCF5251

chip.
— IDE_IORDY enable 2 = ‘0’ if IDE_IORDY wait handshake is not used.
— WAITCOUNT2 is required and is explained later in this section.

tREA 45 WAITCOUNT2 (waitCount2 + 3.5)T > tREA –

tDH 20 CS2POST CS2POST > tDH To meet this timing, typical value for
cs2post is 20 ns

Table 13-6. SmartMedia Timing Values (continued)

SmartMedia
Timing
Symbol

Typical Value
nS

Controlled by
Setting

Equation (Approximately) Comment

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-10 Freescale Semiconductor

13.3.1 IDE Timing Diagram

Figure 13-7. IDE Timing

Table 13-7. IDE Timing Values

ATA
Timing
Symbol

ATA4
Value

Controlled by Setting Equation (Approximately) Comment

t1 25 CS2PRE CS2PRE > t1 - tbuf tbuf is external buffer enable time.
cs2pre must be set high enough to provide
sufficient address-to-DIOR, DIOW setup time.
Typical cs2pre values will range from 3 to 5 SCLK
clocks.

t2 70 WAITCOUNT2 (WAITCOUNT2+ 4)T > t2 t2 is the DIOR, DIOW low period. To meet 70 nS t2
period, waitCount2 must be set to 3.

t5a 50 WAITCOUNT2 (WAITCOUNT2 + 3.5)T > t5a +
tio + tbuf

tio = Input/output delay of device. Typ. 10 nS
tbuf = External buffer delay. Typ. 15 nS
To meet this timing, waitCount2 must be set to 4-5

tA 35 WAITCOUNT2 (WAITCOUNT2 + 1.5)T >
tA + tio

To meet this timing, waitCount2 must be set 3-4.

tR 0 – 3T > tbuf + tdel - tR tdel = time difference between path from IORDY
and from read data
Read data in device must be valid 3 clocks after
IORDY going high.

t9 10 CS2POST CS2POST > t9 To meet this timing, typical value for cs2post is 10
nS.

BCLK

Address

enb1, bufenb2

DIOR, DIOW

IORDY

TA

Read data

Write data

t1tbuf

cs2pre

t5

t2 t9

tRtA

data in
time

(waitCount2 + 3.5)T

t5a

BUFENB2
BUFENB1

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-11

NOTE
If CS2POST is set to 2, every write cycle is lengthened with 1 clock. If
CS2POST is set to 3, every write cycle is lengthened with 2 clocks. This
marginally reduces throughput.

NOTE
A 3-clock cycle hold time to any MCF5251 external access has been added.
As a result, hold time address to TA and write data to TA is not an issue.

13.4 Flash Media Interface
The MCF5251 is capable of interfacing with Sony Memory Stick and Multi-Media Card (MMC) / Secure
Digital (SD) flash cards. The interface can handle one of them at any given time, but not both at the same
time.

Figure 13-8. Flash Media Block Diagram

In the Flash Media interface there are four blocks:
1. The clock generator generates the clock to the flash device
2. The Processor interface handles interrupts and processor I/O
3. Interface shift register 1
4. Interface shift register 2

Each interface shift register is a serial interface to the Flash Media device. The two interfaces share the
clock generating circuitry.

The flash media interface can operate in two modes.
1. MemoryStick mode. In this mode it is possible to connect two Sony Memory Stick cards. Each

interface can handle one Memory Stick card. The two interfaces share only the clock generating
logic, all other logic is fully independent.

Clock
Generator Interface shift

register 1

Interface shift
register 2

Processor
Interface

sclk_out_pin

bs1_pin

sdata3_pin

sdata2_pin

sdata1_pin

sdata0_sdio1_pin

bs2_pin

cmd_sdio2_pin

stopclock1
stopclock2

SCLKOUT

BS1

SDATA3

SDATA2

SDATA1

SDATA0_SDIO1

BS2

CMD_SDIO2

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-12 Freescale Semiconductor

2. SecureDigital mode. In this mode it is possible to connect one SD card. The SD card has a
command line and 1 or 4 serial data lines. The interface shift register 1 will handle communication
on the serial data lines, the interface shift register 2 will handle communication on the command
line. From a software point of view, the two interfaces operate independently.

13.5 Flash Media Interface Memory Map and Register Definitions
The Flash Media interface contains eight 32-bit registers.

.

13.5.1 Flash Media Clock Generation and Configuration

Clock generation and selection of the card type is accomplished by programming the
FLASHMEDIACONFIG register as shown in Figure 13-9.

Table 13-8. Flash Media Registers

Address Access
Size
Bits

Name Description

MBAR2+ 0x460 RW 32 FLASHMEDIACONFIG Clock and general configuration

MBAR2+ 0x464 RW 32 FLASHMEDIACMD1 Command register for interface 1

MBAR2+ 0x468 RW 32 FLASHMEDIACMD2 Command register for interface 2

MBAR2+ 0x46C RW 32 FLASHMEDIADATA1 Data register for interface 1

MBAR2+ 0x470 RW 32 FLASHMEDIADATA2 Data register for interface 2

MBAR2+ 0x474 RW 32 FLASHMEDIASTATUS Status register

MBAR2+ 0x478 RW 32 FLASHMEDIAINTEN Interrupt enable register

MBAR2+ 0x47C R 32 FLASHMEDIAINTSTAT Interrupt status register

MBAR2+ 0x47C W 32 FLASHMEDIAINTCLEAR Interrupt clear register

Address MBAR2 + 0x460 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CARDTYPE RECEIVEEDGE STOPCLOCK

W

Reset – – – – – – – – – – 0 0 0 0 – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CLOCKCOUNT1 CLOCKCOUNT0

W

Reset – – – – – – – – – – – – – – – –

Figure 13-9. Flash Media Configuration Register (FLASHMEDIACONFIG)

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-13

13.5.2 Flash Media Interface Operation

The Flash Media interface is built around two Interface Shift Registers, each of which work independently.
Figure 13-10 shows a block diagram of one interface shift register.

Figure 13-10. Shift Register

Table 13-9. Flash Media Configuration Register Field Descriptions

Field Description Res

31–22 Reserved –

21–20
CARDTYPE

Card Type
00 Sony Memory Stick
01 SecureDigital, 1-bit serial data
11 SecureDigital, 4-bit serial data

0

19
RECEIVEEDGE

Receive Edge1

1 Receive data on falling edge of SCLKOUT pin
0 Receive data on rising edge of SCLKOUT pin

1 In SD mode, this bit should be programmed 1. In MemoryStick mode, programming 1 gives more relaxed timing, however
Memory Stick specs stipulate it should be 0.

0

18 Reserved 0

17–16
STOPCLOCK

Stop Clock3

00 Normal operation
01 Freeze clock low
10 Freeze clock high

01

15–8
CLOCKCOUNT1

CLOCKCOUNT1+12, 3 is the sclk_out_pin high period in number of bus clocks 15

7–0
CLOCKCOUNT0

CLOCKCOUNT0+12, 3 is the sclk_out_pin low period in number of bus clocks

2 The clock generator will increase the length of some SCLKOUT clock cycles to avoid bus contention when the SDIO pin
switches from input to output, or from output to input mode. The clock generator will stop the SCLKOUT clock if this is
necessary to avoid buffer overrun or buffer underrun.

3 It is acceptable to reprogram these bits while the interface is running. No glitch will occur on sclk_out.

15

Interface
Shift
Register

BS (MemoryStick mode only)

Serial data

CommandBits
bitCounter

shift_busy
int_level

crc_is_0

TxBufferEmpty
RcvBufferFull

loadTxShiftReg
storeRcvShiftReg

stopclock
(to clock generator)

RxBufferFull

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-14 Freescale Semiconductor

The processor interface sends commands to the interface shift register. One command instructs the
interface shift register to do one of the following:

• Transmit a packet of N bits to the Flash Media device. The number of bits N is programmable. It
is also programmable if bits 15:0, or bits 47:0 in SD wide bus mode, need to be replaced with a
valid CRC or not. CRC insertion is possible for Memory Stick data packet and SecureDigital data
packets. CRC insertion is not possible for SecureDigital command packets.

• Receive a packet of N bits from the Flash Media device. The number of bits N is programmable.
After reception of all bits, the interface shift register will display on status line CRC_IS_0 if CRC
check was successful or not. CRC check is done for Memory Stick data packets and for
SecureDigital data packets. No CRC check is available for SD command packets.

• Wait for an interrupt event from the Flash Media device.

After writing a command to the interface shift register, the processor needs to monitor TxBUFFEREMPTY
or RxBUFFERFULL, and read or write data to the interface as required.

• When the transmit shift register is empty, new data is loaded from the TxBUFFERREG. If the
transmit buffer register is empty, the interface shift register will stop the SCLKOUT clock, and wait
for new data to be written in the TxBUFFERREG.

• When the receive shift register is full, data is transferred to the RxBUFFERREG. If the receive
buffer register is full, the interface shift register will stop the SCLKOUT clock, and wait until the
RxBUFFERREG is read.

• If the number of bits in the packet to send/receive from the Flash Media is greater than 32, multiple
longword transfers to the buffer register are needed. All of these, except the first, contain 32 packet
bits. The last data word for the transfer always contains packet bits 31-0, even if CRC transmit or
check is on.
If e.g. a 48-bit transfer is requested to the Flash Media, the first data word will contain 16 bits, the
second one will contain 32 bits. The first word is LSB aligned for receive data, MSB aligned for
transmit data.
This is also true if CRC insertion is involved. If a 4096 bit packet + 16 bit CRC need to be
transmitted to the Flash Media, 129 long-word transfers are needed. The first long-word will
contain packet bits 4095:4080, MSB aligned. The last longword will contain packet bits 15:0
padded with 16 zeros or ones. The padded value will be replaced with the CRC by the transmit
interface (if the interface is programmed to do so).

During and after transmission of a command, the processor can monitor the Interface Shift Register status
by looking at some status signals.

• SHIFT_BUSY This signal is high while the data transmission is in progress.
• INT_LEVEL During interrupt commands, a high on this signal indicates an interrupt event coming

from the Flash Media.
• CRC_IS_0 After a read transmission is completed, this signal indicates if the packet CRC was 0 or

not.
• BITCOUNTER. This counter indicates the number of bits still to be exchange with the Flash Media

card.

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-15

13.5.2.1 Flash Media Command Registers in Memory Stick Mode

13.5.2.2 Flash Media Command Register 1 in Secure Digital Mode

Address MBAR2 + 0x464
MBAR2 + 0x468

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R SEND
CRC

NEXT
BS

CMDCODE

W

Reset – – – – – – – – – – 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BITCOUNTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-11. Flash Media Command Registers 1 & 2 (FLASHMEDIACMD) (MemoryStick Mode)

Table 13-10. Flash Media Command Registers 1 & 2 Field Description (MemoryStick Mode)

Field Description

31–22 Reserved

21
SENDCRC

0 No CRC inserted
1 Packet bits 0-15 will be replaced with CRC

20
NEXT BS

Next value to output on BS pin (Memory Stick)

19–16
CMDCODE

0001 Read data (Memory Stick)
0010 Write data (Memory Stick)
1000 Wait for INT (Memory Stick)

15–0
BITCOUNTER

Write to this field the number of bits to be exchanged with the flash card.
Read value is the number of bits remaining.

Address MBAR2 + 0x464 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R WIDE
SHIFT

SEND
CRC

NEXT
BS

CMDCODE

W

Reset – – – – – – – – – 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BITCOUNTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-12. Flash Media Command Register 1 (FLASHMEDIACMD) (Secure Digital Mode)

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-16 Freescale Semiconductor

13.5.2.3 Flash Media Command Register 2 in Secure Digital Mode

Table 13-11. Flash Media Command Register 1 Field Descriptions1 (Secure Digital Mode)

Field Description

31–23 Reserved

22
WIDESHIFT

0 1-bit data bus
1 4-bit data bus

21
SENDCRC

0 No CRC inserted
1 packet bits 0-15 will be replaced with CRC

20
NEXT BS

Next value to output on BS pin (Memory Stick)

19–16
CMDCODE

–

15–0
BITCOUNTER

Write to this field the number of bits to be exchanged with the flash card.
Read value is the number of bits remaining.

1 The following codes are relevant for FlashMedia command register 1:

FLASHMEDIACMD1[22:16] = 0x44: wait for read, 4-bit wide
FLASHMEDIACMD1[22:16] = 0x04: wait for read, 1-bit wide

FLASHMEDIACMD1[22:16] = 0x66: write data, 4-bit wide

FLASHMEDIACMD1[22:16] = 0x26: write data, 1-bit wide
FLASHMEDIACMD1[22:16] = 0x00: receive handshake

FLASHMEDIACMD1[22:16] = 0x08: wait for busy signalling

Address MBAR2 + 0x468 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R DRIVE
DATA

DRIVE
CMD

SEND
CRC

NEXT
BS

CMDCODE

W

Reset – – – – – – – – – 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BITCOUNTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-13. Flash Media Command Register 2 (FLASHMEDIACMD) (Secure Digital Mode)

Table 13-12. Flash Media Command Register 2 Field Descriptions1 (Secure Digital Mode)

Field Description

31–22 Reserved

23
DRIVEDATA

0 Do not drive data line
1 Start driving data line after command transmission end

22
DRIVECMD

0 Do not drive command line
1 Start driving command line after receiving card status response

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-17

The commands and their meanings are described in detail later in this section.

13.5.3 Flash Media Data Registers

21
SENDCRC

Reserved, should be 0

20
NEXT BS

Next value to output on BS pin (Memory Stick)

19–16
CMDCODE

–

15–0
BITCOUNTER

Write to this field the number of bits to be exchanged with the flash card.
Read value is the number of bits remaining.

1 The following codes are relevant for FlashMedia command register 2:
FLASHMEDIACMD2[23:16] = 0x46: Send read data command to SD.
(drive cmd line after receiving flash status, do not drive data lines)
FLASHMEDIACMD2[23:16] = 0x40: Receive status for read data command from SD

FLASHMEDIACMD2[23:16] = 0xC6: Send write data command to SD.
(Drive cmd line after receiving flash status. Drive data line after sending command.)

FLASHMEDIACMD2[23:16] = 0xC0: Receive status for write data command from SD

FLASHMEDIACMD2[23:16] = 0x06: Send non-data command to SD
FLASHMEDIACMD2[23:16] = 0x00: Receive status for non-data command, stop driving cmd and data lines.

Address MBAR2 + 0x46C
MBAR2 + 0x470

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RCVBUFFERREG

W TXBUFFERREG

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RCVBUFFERREG

W TXBUFFERREG

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-14. Flash Media Data Registers 1 & 2 (FLASHMEDIACMD) (Secure Digital Mode)

Table 13-13. Flash Media Data Registers 1 & 2 Field Descriptions

Field Description

31–0
RCVBUFFERREG

Read receive data from this register.

31–0
TXBUFFERREG

Data written to this register will be transmitted.

Table 13-12. Flash Media Command Register 2 Field Descriptions1 (Secure Digital Mode) (continued)

Field Description

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-18 Freescale Semiconductor

13.5.3.1 Flash Media Status Register

13.5.4 Flash Media Interrupt Register

There are 12 interrupt sources associated with the Flash Media interface. REGISTER
FLASHMEDIAINTSTAT allows the viewing of pending interrupts. Register FLASHMEDIAINTEN
allows the enabling of interrupts (‘1’ = enabled, ‘0’ = disabled). Some interrupts can be cleared by writing
a ‘1’ to the corresponding bit of the FLASHMEDIAINTCLEAR register.

Address MBAR2 + 0x474 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

IN
T

_L
E

V
E

L2

S
H

IF
T

_B
U

S
Y

2

C
R

C
_I

S
_0

_2

IN
T

_L
E

V
E

L1

S
H

IF
T

_B
U

S
Y

1

C
R

C
_I

S
_0

_1

W

Reset – – – – – – – – – – – – 0 0 0 0

Figure 13-15. Flash Media Status Register (FLASHMEDIASTAT)

Table 13-14. Flash Media Status Register Field Descriptions

Field Description

31–6 Reserved

5
INT_LEVEL2

Interface 2 interrupt indicator. ‘1’ indicates interrupt condition, requiring attention, ‘0’ indicates no interrupt

4
SHIFT_BUSY2

Interface 2 shift status. ‘1’ indicates interface busy shifting data, ‘0’ indicates interface idle

3
CRC_IS_0_2

Interface 2 CRC status. Valid after read phase end. ‘1’ indicates CRC OK, ‘0’ indicates CRC fail

2
INT_LEVEL1

Interface 1 interrupt indicator. ‘1’ indicates interrupt condition, requiring attention, ‘0’ indicates no interrupt

1
SHIFT_BUSY1

Interface 1 shift status. ‘1’ indicates interface busy shifting data, ‘0’ indicates interface idle

0
CRC_IS_0_1

Interface 1 CRC status. Valid after read phase end. ‘1’ indicates CRC OK, ‘0’ indicates CRC fail

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-19

Address MBAR2 + 0x478 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

T
X

2E
M

P
T

Y

R
C

V
2F

U
LL

T
X

1E
M

P
T

Y

R
C

V
1F

U
LL

IN
T

LE
V

E
L2

R
IS

E

IN
T

LE
V

E
L2

FA
LL

S
H

IF
T

B
U

S
Y

2R
IS

E

S
H

IF
T

B
U

S
Y

2F
A

LL

IN
T

LE
V

E
L1

R
IS

E

IN
T

LE
V

E
L1

FA
LL

S
H

IF
T

B
U

S
Y

1R
IS

E

S
H

IF
T

B
U

S
Y

1F
A

LL

W

Reset – – – – – – – – – – – – – – – –

Figure 13-16. Flash Media Interrupt Register

Table 13-15. Flash Media Interrupt Register Field Descriptions

Field Description Reset Interrupt
Associated

Interrupt

31–12 Reserved – –

11
TX2EMPTY

Interrupt set if transmit buffer reg 2 empty Write data 57

10
RCV2FULL

Interrupt set if receive buffer reg 2 full Read data 57

9
TX1EMPTY

Interrupt set if transmit buffer reg 1 empty Write data 58

8
RCV1FULL

Interrupt set if receive buffer reg 1 full Read data 58

7
INTLEVEL2RISE

Interrupt set on rising edge of int_level_2 IntClear 59

6
INTLEVEL2FALL

Interrupt set on falling edge of int_level_2 IntClear 59

5
SHIFTBUSY2RISE

Interrupt set on rising edge of shift_busy_2 IntClear 59

4
SHIFTBUSY2FALL

Interrupt set on falling edge of shift_busy_2 IntClear 59

3
INTLEVEL1RISE

Interrupt set on rising edge of int_level_1 IntClear 60

2
INTLEVEL1FALL

Interrupt set on falling edge of int_level_1 IntClear 60

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-20 Freescale Semiconductor

13.5.5 Flash Media Interface Operation in Memory Stick Mode

Before any data exchange is possible with the Memory Stick, the FLASHMEDIACONFIG register must
be written to set up the clock and the card type. After this, the card is accessed by issuing one of three
possible command sequences. Each new command sent to the card, must toggle the BS line going out. The
“handshake” phase of the Memory Stick can be implemented as a 16-bit read. There is no specific
handshake command.

NOTE
The Flash Media interface can handle two Memory Stick cards. One is
attached to the primary interface, the other to the secondary interface. There
is one potential issue. If there is a buffer full or a buffer empty on one
interface, the system will freeze the outgoing SCLK signal, which causes
the second interface to go into a wait-state as well.

1
SHIFTBUSY1RISE

Interrupt set on rising edge of shift_busy_1 IntClear 60

0
SHIFTBUSY1FALL

Interrupt set on falling edge of shift_busy_1 IntClear 60

Table 13-15. Flash Media Interrupt Register Field Descriptions (continued)

Field Description Reset Interrupt
Associated

Interrupt

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-21

13.5.5.1 Reading Data from the Memory Stick

Figure 13-17. Reading Data from Memory Stick

Figure 13-18. Reading Data from Memory Stick Timing

In the timing diagram, the assumption is made that the processor reads the full receive buffer register
before the next 32 bits are received. If this is not the case, the Flash Media interface will stop the outgoing
sclk clock, which prevents data overrun.

write cmd_reg(19:16) = 0001
write cmd_reg(15:0) : no. of bits to read from stick
write cmd_reg(20): new value on BS pin
write cmd_reg(21): 0

cmd_reg(15:0) = 0 ? or
fall. edge on shiftBusy ?

read bit crc_is_0 in status reg

end

YES

rcv_data_reg full ?

NO

read rcv_data_reg

YES

NO
rcv_data_reg full ?

read rcv_data_reg

YES

NO

write to CMD register

bitcounter 480

bs_pin

sdio_out

shift_busy

sdio_in

47 33 32 31 1 0

47 46 45 33 32 31 1 030

rcv_data_reg_full

Memory Stick interface timing diagram for cmd_reg(19:16) = 0001
(Read data from stick)

sclk_outSCLKOUT

WRITE TO CMD REGISTER

BITCOUNTER

BS_PIN

SDIO_OUT

SDIO_IN

SHIFT_BUSY

RCV_DATA_REG_FULL

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-22 Freescale Semiconductor

13.5.5.2 Writing Data to the Memory Stick

Figure 13-19. Writing Data to Memory Stick

In Figure 13-20 the assumption is made the processor writes the empty transmit buffer register before the
next 32 bits are transmitted. If this is not the case, the Flash Media interface will stop the outgoing sclk
clock, and in this way prevent data underrun.

Figure 13-20. Writing Data to Memory Stick Timing

write cmd_reg(19:16) = 0010
write cmd_reg(15:0) : no. of bits to write to stick
write cmd_reg(20): new value on BS pin
write cmd_reg(21): 0 : no crc will be inserted
write cmd_reg(21): 1 : crc will be inserted

cmd_reg(15:0) = 0 ? or
fall. edge on shiftBusy ?

end

YES

tx_data_reg empty?

NO

write tx_data_reg

YES

NO

write to CMD register

bitcounter 480

bs_pin

sdio_out

shift_busy

sdio_in

33 32 31 1 0

Memory Stick interface timing diagram for cmd_reg(19:16) = 0010
(Write data to stick)

sclk_out

47 46 45

47 46 45 33 32 31 1 0

SCLKOUT

WRITE TO CMD REGISTER

BITCOUNTER

BS_PIN

SDIO_OUT

SDIO_IN

SHIFT_BUSY

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-23

13.5.5.3 Interrupt from Memory Stick

Figure 13-21. Interrupt from Memory Stick

Figure 13-22. Interrupt from Memory Stick

13.5.6 Flash Media Interface Operation in Secure Digital (SD) Mode

All interactions to the Secure Digital (SD) card can be broken down into a number of cascaded elementary
operations. There are three elementary operations in SD mode:

• Send command to card

write cmd_reg(19:0) = 80000h
write cmd_reg(20): new value on BS pin
write cmd_reg(21): 0

end

wait for 5 sclk clock periods
turn off sclk clock
(turning clock off is option)

int_level = 1 ? or
rising edge on int_level ? NO

YES

INT found

write to CMD register

bitcounter

bs_pin

sdio_out

shift_busy

sdio_in

int_level

Memory Stick interface timing diagram for cmd_reg(19:16) = 1000
(Wait for INT from stick)

sclk_out

0

SCLKOUT

WRITE TO CMD REGISTER

BITCOUNTER

BS_PIN

SDIO_OUT

SDIO_IN

SHIFT_BUSY

INT_LEVEL

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-24 Freescale Semiconductor

• Read data from card (one or more packets)
• Write data to card (one or more packets)

13.5.6.1 Send Command to Card

Figure 13-23. Send Command to Card

The send-command sequence first sends out a command on the CMD line, then receives a card response
on the same CMD line. After receiving the card response, the host may drive the CMD and DATA lines
depending on the values of the DRIVECMDMASK and DRIVEDATAMASK.

NOTE
Both lines must be driven if the next operation is sending a data packet to
the card. The CMD line must be driven, while DATA lines are kept Z when
the next operation is receiving data from the card. Both CMD and DATA
lines are kept Z when no data follows the command.

While the host is sending data and receiving status from the card, it must look for events on the
SHIFTBUSY2 status bit in the FLASHMEDIASTATUS register. It is also possible to capture these events
using the SHIFTBUSY2RISE and SHIFTBUSY2FALL interrupts.

To exchange data with the card, the host must write the FLASHMEDIADATA2 register when
TX2EMPTY is set, or read FLASHMEDIADATA2 when RCV2FULL is set. This can be done by using
interrupts, by polling FLASHMEDIAINTSTAT, or by using a DMA channel on FLASHMEDIADATA2.

A number of bits/bytes/longwords corresponding with CMDBITCOUNT must be written to
FLASHMEDIADATA2 during the command transmission. All words, except the first word, contain 32
bits of data. The first word contains the remainder. The data in the first word is left-justified. No CRC logic
is present in hardware, so CRC must be inserted by software.

A number of bits/bytes/longwords corresponding with RESPBITCOUNT must be read from
FLASHMEDIADATA2 during the response phase. All words, except the first word, contain 32 bits of

Z Z

write
FLASHMEDIACMD2 =
0x60000 +
cmdBitCount +
driveCmdMask +
driveDataMask

write one or more
times to
FLASHMEDIADATA2

Z ZS E

Host command

cmdBitCount

S E

Card Response

rspBitCount

P P P

Card driving bus

PZ PZ PZ PZ ZZ

PZ PZ PZ PZ Z

note 1

note 2

write
FLASHMEDIACMD2 =
rspBitCount +
driveCmdMask +
driveDataMask

read one or more
times from
FLASHMEDIADATA2

write
FLASHMEDIACMD2 = 0

Note 1: If driveCmdMask = 0x40000, CMD line is driven P after receiving card response
 If driveCmdMask = 0, CMD line is not driven (Z) after receiving card response
Note 2: If driveDataMask = 0x80000, DATA lines are driven P after receiving CMD response.
 If driveDataMask = 0, DATA lines are not driven (Z) after receiving CMD response.

Note 3:To stop host driving P on cmd or data lines, write FLASHMEDIACMD2 with driveDataMask or driveCmdMask 0

CMD line

DATA lines

shift_busy2

bitcounter2

Note 4: Host interface will stop SCLK_OUT clock when needed to prevent transmit underrun or receive overrun. (not shown)

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-25

data. The first word contains the remainder. The data in the first word is right-justified. No CRC logic is
present in hardware, so CRC must be inserted by software.

The writing of RSPBITCOUNT + DRIVECMDMASK + DRIVEDATAMASK to FLASHMEDIACMD2
must take place after SHIFTBUSY2 has gone high.

13.5.6.2 Write Data to Card

The following two timing diagrams show writing data with and without a busy response from the card.

Figure 13-24. Writing to Card With Busy

Figure 13-25. Writing to Card Without Busy

The write sequence sends out a packet on the DATA line, receives a CRC STATUS response from the card,
and then looks for a potential busy.

write
FLASHMEDIACMD1 =
0x40000 +
wideShiftMask

write one or more
times to
FLASHMEDIADATA1

P P S E

dataBitCount

P P P

Host driving bus

write
FLASHMEDIACMD1 =
0x260000 +
dataBitCount +
wideShiftMask

DATA lines

shift_busy1

Note 3: Host interface will stop SCLK_OUT clock when needed to prevent transmit underrun or receive overrun. (not shown)

Data CRC

bitcounter1

Note 1: For 4-bit wide bus, wideShiftMask is 0x400000, CRC length is 64 bits
 For 1-bit wide bus, wideShiftMask = 0, CRC length is 16 bits.

Note 2: If read data packet followed by another read data packet (block read), set
 readDataMask = 0x40000. If only one read data packet, set readDataMask = 0.

Z Z S crc status Z Z PE

Card driving bus

write
FLASHMEDIACMD1 =
0x000003 +

read
FLASHMEDIA-
DATA1
(get CRC status)

Host driving
bus

write
FLASHMEDIACMD1 =
0x40000 +
wideShiftMask

write one or more
times to
FLASHMEDIADATA1

P P S E

dataBitCount

P P P

Host driving bus

write
FLASHMEDIACMD1 =
0x260000 +
dataBitCount +
wideShiftMask

DATA lines

shift_busy1

Note 3: Host interface will stop SCLK_OUT clock when needed to prevent transmit underrun or receive overrun. (not shown)

Data CRC

bitcounter1

Note 1: For 4-bit wide bus, wideShiftMask is 0x400000, CRC length is 64 bits
 For 1-bit wide bus, wideShiftMask = 0, CRC length is 16 bits.

Note 2: If read data packet followed by another read data packet (block read), set
 readDataMask = 0x40000. If only one read data packet, set readDataMask = 0.

Z Z S crc status E

Card driving bus

write
FLASHMEDIACMD1 =
0x000003 +

read
FLASHMEDIA-
DATA1
(get CRC status)

Host driving
bus

S

interrupt1

write
FLASHMEDIACMD1=
0x80000

Check
interrupt1 in
FLASHMEDIASTATUS

write
FLASHMEDIACMD1=
0

L .. L E Z PZ

Card signals busy

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-26 Freescale Semiconductor

The DATABITCOUNT is the number of bits in the packet. This includes the CRC bits. There are 16 CRC
bits for each data line (16 CRC bits for the 1-bit bus, 64 CRC bits for the 4-bit bus). The number of
bits/bytes/longwords that need to be written to FLASHMEDIADATA1 corresponds with
DATABITCOUNT. The user needs to write dummy data instead of the CRC bits to
FLASHMEDIADATA1. The CRC value is calculated inside the Flash Media Interface, and the CRC bits
written to FLASHMEDIADATA1 are discarded. All words, except the first word, written to
FLASHMEDIADATA1 contain 32 bits of data. The first word contains the remainder. Data in the first
word must be left-justified.

To read the CRC status, the host must read the FLASHMEDIADATA1 data register once. The CRC status
is the three LSB’s of the value read.

During this sequence, the host must look for events on SHIFT_BUSY1 and INTERRUPT1. This is
accomplished by polling FLASHMEDIASTATUS or FLASHMEDIAINTSTATUS, or by waiting for
interrupts SHIFTBUSY1RISE, SHIFTBUSY1FALL, INTERRUPT1RISE, INTERRUPT1FALL.

To read/write data to/from FLASHMEDIADATA1, the host can poll FLASHMEDIAINTSTAT, wait for
interrupt, or use a DMA channel. In Figure 13-26, the DATA lines default to a “P” state (strong ‘1’ driven
by host). This is only the case if DRIVEDATAMASK was set during last write to FLASHMEDIACMD2.
Writing 0x3 to FLASHMEDIACMD1 must take place after SHIFTBUSY1 has gone high. One or more
write packets can be sent to the card using this timing diagram.

Figure 13-26. Read Data from Card

The DATABITCOUNT is the number of bits in the packet. This includes the CRC bits. There are 16 CRC
bits for the 1-bit bus, 64 CRC bits for the 4-bit bus (16 CRC bits for the 1-bit bus, 64 CRC bits for the 4-bit
bus). The number of bits/bytes/longwords that need to be read from FLASHMEDIADATA1 corresponds
with DATABITCOUNT.
The CRC can be read from FLASHMEDIADATA1, but the user does need to check the CRC in software.
This is done in hardware. The CRC can be checked via bit 0 in register FLASHMEDIASTATUS after
packet read. All words, except the first word read from FLASHMEDIADATA1 contain 32 bits of data.
The first word contains the remainder. Data in the first word is right-justified.

write
FLASHMEDIACMD1 =
0x40000 +
wideShiftMask

read one or more
times from
FLASHMEDIADATA1

Z Z S E

dataBitCount

P P P

Card driving bus

write
FLASHMEDIACMD1 =
dataBitCount +
readDataMask +
wideShiftMask

DATA lines

shift_busy1

Note 3: Host interface will stop SCLK_OUT clock when needed to prevent transmit underrun or receive overrun. (not shown)

Data CRC

bitcounter1

Note 1: For 4-bit wide bus, wideShiftMask is 0x400000, CRC length is 64 bits
 For 1-bit wide bus, wideShiftMask = 0, CRC length is 16 bits.

Note 2: If read data packet followed by another read data packet (block read), set
 readDataMask = 0x40000. If only one read data packet, set readDataMask = 0.

read
FLASHMEDIASTATUS
Extract bit CRCOK1

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-27

During this sequence, the host must look for events on SHIFT_BUSY1 and INTERRUPT1. This can be
done by polling FLASHMEDIASTATUS or FLASHMEDIAINTSTATUS, or by waiting for interrupts
SHIFTBUSY1RISE, SHIFTBUSY1FALL, INTERRUPT1RISE, INTERRUPT1FALL. To read/write data
to/from FLASHMEDIADATA1, the host can poll FLASHMEDIAINTSTAT, wait for interrupt, or use a
DMA channel. The writing of DATABITCOUNT + READDATAMASK + WIDESHIFTMASK to
FLASHMEDIACMD1 must take place after SHIFTBUSY1 has gone high. One or more packets can be
received from the card using Figure 13-26.

13.5.7 Commonly Used Commands in SD Mode

Some pseudo-code descriptions are given in this section for send command, read multiple block, and write
multiple block commands.

13.5.7.1 Send Command to Card (No Data)

This sequence is intended for commands that require status response from the card, but no data transfer
between host and card. There is provision to do CRC insertion or check for command and response
packets. All need to be done in software.
/* write command to host */
CMDBITCOUNT = 46
FLASHMEDIACMD2 = 0x060000 + CMDBITCOUNT
while(CMDBITCOUNT > 0)

{
if(FLASHMEDIADATA2 empty)

{
write data to FLASHMEDIADATA2
CMDBITCOUNT:= CMDBITCOUNT - 32;
}

}
/* one of the two waits need to be done. */
/* First one is more suitable for polling */
/* second one more suitable for interrupt driven */
wait until ((FLASHMEDIACMD2 & 0xFFFF) == 0) OR
wait until (SHIFTBUSY2FALL event)

/* receive status from host */
wait until (SHIFTBUSY2RISE event) OR
wait until ((FLASHMEDIASTATUS & 8)!= 0)
RESPBITCOUNT = 46 or 134 /* depends on command */
FLASHMEDIACMD2 = RESPBITCOUNT;
while(RESPBITCOUNT > 0)

{
if(FLASHMEDIADATA2 full)

{
read data from FLASHMEDIADATA2
RESPBITCOUNT:= RESPBITCOUNT - 32;
}

}

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-28 Freescale Semiconductor

13.5.7.2 Send Command to Card (Receive Multiple Data Blocks and Status)

This sequence sends a read data command to the card. The card sends back a response token on the CMD
line, while at the same time sending the data on the DATA lines. The sequence is set to receive
BLOCKCOUNT data packets from the card. No STOP command is sent as part of this sequence.
CMDBITCOUNT = 46
if(wide_shift_mode)

wide_shift_mask = 0x400000;
else

wide_shift_mask = 0;
FLASHMEDIACMD2 = 0x460000 + CMDBITCOUNT
FLASHMEDIACMD1 = 0x040000 + wide_shift_mask
while(CMDBITCOUNT > 0)

{
if(FLASHMEDIADATA2 empty)

{
read FLASHMEDIADATA2
CMDBITCOUNT = CMDBITCOUNT - 32;
}

}
wait until ((FLASHMEDIACMD2 & 0xFFFF) == 0) OR
wait until (SHIFTBUSY2FALL event)
/* start receiving data and status */
RESPBITCOUNT = 46 or 134;
BLOCKCOUNT = <N>;
while(BLOCKCOUNT > 0)

{
-- start reception of new block
DATABITCOUNT = <blocklen> + crclen;
while(DATABITCOUNT > 0 || RESPBITCOUNT > 0)

{
if(RESPBITCOUNT > 0 && SHIFTBUSY2RISE event)
FLASHMEDIACMD2 = 0x400000 + RESPBITCOUNT;
if(SHIFTBUSY1RISE event)

if(BLOCKCOUNT == 1) /* last block */
FLASHMEDIACMD1 = 0x000000 + dataBitCount + wide_shift_mask;

else
FLASHMEDIACMD1 = 0x040000 + dataBitCount + wide_shift_mask;

if(FLASHMEDIADATA2 full)
{
read FLASHMEDIADATA2
RESPBITCOUNT = RESPBITCOUNT - 32;
}

if(FLASHMEDIADATA1 full)
{
read FLASHMEDIADATA1
dataBitCount = dataBitCount - 32;
}

}
if((FLASHMEDIASTATUS & 1) == 1)

CRC OK!.
BLOCKCOUNT = BLOCKCOUNT - 1;

}

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 13-29

13.5.7.3 Send Command to Card (Write Multiple Data Blocks)

This sequence sends a write data command to the card. The card sends back a response token on the CMD
line. After receiving this response, the host starts transmitting data on the DAT lines. After every data
packet, the card sends back a CRC status response, followed by a possible busy.

The sequence is set to send BLOCKCOUNT data packets to the card. No STOP command is sent as part
of this sequence.
/* write command to host */
CMDBITCOUNT = 46
if(wide_shift_mode)

wide_shift_mask = 0x400000;
else

wide_shift_mask = 0;
FLASHMEDIACMD2 = 0xC60000 + CMDBITCOUNT
while(CMDBITCOUNT > 0)

{
if(FLASHMEDIADATA2 empty)

{
write data to FLASHMEDIADATA2
CMDBITCOUNT:= CMDBITCOUNT - 32;
}

}
/* one of the two waits need to be done. */
/* First one is more suitable for polling */
/* second one more suitable for interrupt driven */
wait until ((FLASHMEDIACMD2 & 0xFFFF) == 0) OR
wait until (SHIFTBUSY2FALL event)

/* receive status from host */
wait until (SHIFTBUSY2RISE event) OR
wait until ((FLASHMEDIASTATUS & 8)!= 0)
RESPBITCOUNT = 46 or 134 /* depends on command */
FLASHMEDIACMD2 = 0xC00000 + RESPBITCOUNT;
while(RESPBITCOUNT > 0)

{
if(FLASHMEDIADATA2 full)

{
read data from FLASHMEDIADATA2
RESPBITCOUNT:= RESPBITCOUNT - 32;
}

}
}
/* start sending data to card */
BLOCKCOUNT:= <N>
while(BLOCKCOUNT > 0)

{
-- start transmission of new block
DATABITCOUNT = <blockLen> + crcLen;
FLASHMEDIACMD1 = 0x260000 + dataBitCount +

 wide_shift_mask;
while(DATABITCOUNT > 0)

{
if(FLASHMEDIADATA1 empty)

{
write data to FLASHMEDIADATA1

IDE and Flash Media Interface

MCF5251 Reference Manual, Rev. 1

13-30 Freescale Semiconductor

DATABITCOUNT = DATABITCOUNT - 32;
}

}
wait until((FLASHMEDIACMD1 & 0xFFFF) == 0) OR
wait until (SHIFTBUSY1FALL event)
-- receive CRC status from card
wait until (SHIFTBUSY1RISE event) OR
wait until ((FLASHMEDIASTATUS & 2)!= 0)
FLASHMEDIACMD1 = 3;
wait until(FLASHMEDIADATA1 full)
CRC status = 0x7 & FLASHMEDIADATA1

FLASHMEDIACMD1 = 0x80000;
/* wait for interrupt now.
On rising edge of busy, INTLEVEL1RISE event will
occur. On falling edge of busy, INTLEVEL1FALL event
will occur. During busy, (FLASHMEDIASTATUS & 4) == 4

 */
wait until ((FLASHMEDIASTATUS & 4) == 0) /* busy end */
FLASHMEDIACMD1 = 0;
BLOCKCOUNT:= BLOCKCOUNT - 1;
}

FLASHMEDIACMD2 = 0;

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 14-1

Chapter 14
DMA Controller
The direct memory access controller (DMAC) of the MCF5251 quickly and efficiently moves blocks of
data with minimal processor overhead. The DMA module, shown in Figure 14-1, provides four channels
that allow byte, word, or longword data transfers. These transfers are dual address to on-chip devices; such
as the ATA, UART, SDRAM controller, and audio module.

NOTE
DMA transfers to and from the IDE interface are considered memory to
memory transfers and therefore there are no specific channel allocations
mentioned in this section.

14.1 DMA Features
The features of the DMA controller as follows:

• Four fully independent programmable DMA controller module channels

• Auto-alignment feature for source or destination accesses

• Dual-address transfer capability

• Channels 0 and 1 request signals may be connected to the audio block

• Channels 2 and 3 request signals may be connected to the interrupt lines of UART0 and UART1,
respectively

• Any of the four channels request signals may be connected to the ATA module

• Channel arbitration on transfer boundaries

• Data transfers in 8-, 16-, 32-, or 128-bit blocks using a 16-byte buffer

• Burst and cycle steal transfers

• Independent transfer widths for source and destination

• Independent source and destination address registers

• Data transfer in two clocks

14.2 DMA Signal Description
This section contains a brief description of the DMA module signals that provide handshake control for
either a source or destination external device. Table 14-1 summarizes these handshake signals.

DMA Controller

MCF5251 Reference Manual, Rev. 1

14-2 Freescale Semiconductor

Figure 14-1. DMA Signal Diagram

14.2.1 DMA Request

These internal request signals are DMA inputs. There is one input for each of the four DMA channels. The
request sources are selectable by programming the DMAROUTE register. Each DMA channel is
programmable individually.

The internal signals are asserted by a peripheral device to request an operand transfer between that
peripheral and memory.

MUX

ARBITRATION/

INTERFACEDATAPATH

CONTROL

INTERNAL

INTERNAL

CURRENT

CHANNEL CHANNEL

MUX CONTROL

EXTERNAL

EXTERNAL

REGISTERED

ATTRIBUTES

DATAPATH CONTROL

SAR

DAR

BCR

CNTRL

STATUS

CHANNEL0 INTERRUPTS

SAR

DAR

BCR

CNTRL

STATUS

CHANNEL1

SAR

DAR

BCR

CNTRL

STATUS

CHANNEL2

SAR

DAR

BCR

CNTRL

STATUS

CHANNEL3BUS

REQUESTS

ATTRIBUTES

MASTER

WRITE BUS
DATA

BUS

READ BUS
DATA BUS SIGNALS

BUS ADDRESS

BUS SIZE

CHANNEL
ENABLESREQUESTS

DMA Controller

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 14-3

14.3 DMA Module Overview
The DMA controller module usually transfers data at rates much faster than the ColdFire core under
software control can handle. The term DMA refers to the ability for a peripheral device to access memory
in a system in the same manner as the core. DMA operations can greatly increase overall system
performance.

The DMA module consists of four independent channels. The term DMA is used throughout this section
to reference any of the four channels, as they are all functionally equivalent. It is impossible to implicitly
address all four DMA channels at the same time.

DMA requests can be generated by the processor writing to the START bit in the DMA control register or
generated by an on-chip peripheral device asserting one of the REQUEST signals. The processor can
program the amount of bus bandwidth allocated for the DMA for each channel. The DMA channels
support continuous and cycle-steal transfer modes.

The DMA controller supports dual-address transfers. In dual-address mode, the DMA channel supports 32
bits of address and 32 bits of data. Dual-address transfers can be initiated by either a processor request
using the START bit or by an internal peripheral device using the REQUEST signal. Two bus transfers
occur in this mode, a read from a source device and a write to a destination device (see Figure 14-2).

Any operation involving the DMA module follows the same three basic steps:

1. Channel initialization step—The DMA channel registers are loaded with control information,
address pointers, and a byte transfer count. Also, the DMAROUTE register is programmed to
control the source of the internal requests.

2. Data transfer step—The DMA accepts requests for operand transfers and provides addressing and
bus control for the transfers.

3. Channel termination step—This occurs after operation is complete. The channel indicates the
status of the operation in the channel status register.

Figure 14-2. Dual Address Transfer

DMA

MEMORY
or

MEMORY-
MAPPED

PERIPHERAL

MEMORY
or

MEMORY-
MAPPED

PERIPHERAL

DMA Controller

MCF5251 Reference Manual, Rev. 1

14-4 Freescale Semiconductor

14.4 DMA Memory Map and Register Definitions
The registers of each channel are mapped into memory as shown in Table 14-1.

The DMA control module registers determine the operation of the DMA controller module. This section
describes each of the internal registers and its bit assignment.

NOTE
There is no mechanism for preventing a write to a control register during
DMA transfer. This situation should be avoided.

14.4.1 REQUEST Source Selection

The routing control register (DMAroute) controls where the non-processor DMA request for the four
DMA channels is coming from.

Table 14-1. Memory Map DMA Channels

DMA Channel Address [31:24] [23:16] [15:8] [7:0]

– MBAR2 + $188 DMAROUTE - Request source control

Address MBAR2 + $188 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DMA3REQ DMA2REQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DMA1REQ DMA0REQ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 14-3. DMAroute Register

Table 14-3. DMAroute Register Field Descriptions

DMAroute Bits Field Name DMA Channel

31–24 DMA3REQ (7:0) DMA3

23–16 DMA2REQ (7:0) DMA2

15–8 DMA1REQ (7:0) DMA1

7–0 DMA0REQ (7:0) DMA0

DMA Controller

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 14-5

14.4.2 Source Address Register

The source address register (SAR) is a 32-bit register containing the address from which the DMA
controller module requests data during a transfer.

Table 14-4. DMA3REQ Field Definition

DMA3req (7:0) Field Value Request Source for DMA3 Block

0x00 DMA3: ATA ATA

0x80 DMA3: UART1 UART1

Table 14-5. DMA2REQ Field Definition

DMA2req (7:0) Field Value Request Source for DMA2 Block

0x00 DMA2: ATA ATA

0x80 DMA2: UART0 UART0

Table 14-6. DMA1REQ Field Definition

DMA1req (7:0) Field Value Request Source for DMA1 Block

0x00 DMA1: ATA ATA

0x80 DMA1: audio source 1 audio

0x81 DMA1: audio source 2 audio

Table 14-7. DMA0REQ Field Definition

DMA0req (7:0) Field Value Request Source for DMA0 Block

0x00 DMA0: ATA ATA

0x80 DMA0: audio source 1 audio

0x81 DMA0: audio source 2 audio

DMA Controller

MCF5251 Reference Manual, Rev. 1

14-6 Freescale Semiconductor

NOTE
Only part of the on-chip SRAM can be accessed by the DMA. The memory
controlled by RAMBAR0 is not visible for DMA. The memory controlled
by RAMBAR1 is visible for DMA. As a result, the SAR or DAR address
range cannot be programmed to on-chip SRAM0 memory, since the on-chip
DMAs cannot access on-chip SRAM0 as a source or destination. They can
access SRAM1, however.

14.4.3 Destination Address Register

The destination address register (DAR) is a 32-bit register containing the address to which the DMA
controller module sends data during a transfer.

Address MBAR + $300
MBAR+ $340
MBAR + $380
MBAR + $3C0

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SAR31 SAR30 SAR29 SAR28 SAR27 SAR26 SAR25 SAR24 SAR23 SAR22 SAR21 SAR20 SAR19 SAR18 SAR17 SAR16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SAR15 SAR14 SAR13 SAR12 SAR11 SAR10 SAR9 SAR8 SAR7 SAR6 SAR5 SAR4 SAR3 SAR2 SAR1 SAR0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 14-4. Source Address Register (SAR)

Address MBAR + $304
MBAR + $344
MBAR + $384
MBAR + $3C4

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DAR31 DAR30 DAR29 DAR28 DAR27 DAR26 DAR25 DAR24 DAR23 DAR22 DAR21 DAR20 DAR19 DAR18 DAR17 DAR16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DAR15 DAR14 DAR13 DAR12 DAR11 DAR10 DAR9 DAR8 DAR7 DAR6 DAR5 DAR4 DAR3 DAR2 DAR1 DAR0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 14-5. Destination Address Register (DAR)

DMA Controller

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 14-7

NOTE
The MCF5251 on-chip DMAs must be careful when transferring data to
cacheable memory since the on-chip DMAs do not maintain cache
coherency with the MCF5251 instruction cache.

14.4.4 Byte Count Register

The byte count register (BCR) is a 24-bit register containing the number of bytes remaining to be
transferred for a given block. The offset within the memory map is based on the value of the BCR24BIT
bit in the MPARK register of the SIM module. See Table 14-6 for the bit locations.

NOTE
If the BCR24BIT = 1, the upper 8 bits are loaded with zeros.

The BCR decrements on the successful completion of the address phase of a write transfer in dual-address
mode. The amount the BCR decrements is 1, 2, 4, or 16 for byte, word, longword, or line accesses,
respectively.

Address MBAR + $30C
MBAR + $34C
MBAR + $38C
MBAR + $3CC

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BCR23 BCR22 BCR21 BCR20 BCR19 BCR18 BCR17 BCR16

W

Reset – – – – – – – – 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BCR15 BCR14 BCR13 BCR12 BCR11 BCR10 BCR9 BCR8 BCR7 BCR6 BCR5 BCR4 BCR3 BCR2 BCR1 BCR0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 14-6. Byte Count Register (BCR)—BCR24BIT = 1

DMA Controller

MCF5251 Reference Manual, Rev. 1

14-8 Freescale Semiconductor

The DONE bit in the DMA status register (Table 14-9) is set when the entire block transfer is complete.

When a transfer sequence is initiated and the BCR contains a value that is not divisible by 16, 4, or 2 when
the DMA is configured for line, longword, or word transfers, respectively, the configuration error bit (CE)
in the DMA status register (DSR) is set and the transfer does not take place. Refer to Section 14.4.6, “DMA
Status Register,” for more details.

14.4.5 DMA Control Register

The DMA control register (DCR) sets the configuration of the DMA controller module. Depending on the
state of the BCR24BIT in the MPARK register in the SIM module, the DMA control register looks slightly
different. Specifically, the AT bit (DCR[15]) is included when BCR24BIT = 1, providing greater flexibility
in DMA transfer acknowledge.

Address MBAR + $30C
MBAR + $34C
MBAR + $38C
MBAR + $3CC

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BCR15 BCR14 BCR13 BCR12 BCR11 BCR10 BCR9 BCR8 BCR7 BCR6 BCR5 BCR4 BCR3 BCR2 BCR1 BCR0

W

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset – – – – – – – – – – – – – – – –

Figure 14-7. Byte Count Register (BCR)—BCR24BIT = 0

DMA Controller

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 14-9

Address MBAR + $308
MBAR + $348
MBAR + $388
MBAR + $3C8

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
INT EEXT CS AA BWC DAA S_RW SINC SSIZE DINC DSIZE START

W

Reset – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset – – – – – – – – – – – – – – – –

Figure 14-8. DMA Control Register (DCR)—BCR24BIT = 0

Table 14-8. DMA Control Register (DCR) Field Descriptions

Field Description

31
INT

The Interrupt on completion of transfer field determines whether an interrupt is generated at the completion of the
transfer or occurrence of an error condition.
0 No interrupt is generated.
1 = Internal interrupt is enabled.

30
EEXT

Enable peripheral request. Collision could occur between the START bit and the REQUEST signal when EEXT = 1.
Therefore, caution should be exercised when initiating a DMA transfer with the START bit while EEXT = 1.
0 Peripheral request is ignored.
1 Enables peripheral request to initiate transfer. Internal request is always enabled. It is initiated by writing a 1 to the

START bit.

29
CS

Cycle steal.
0 DMA continuous make read/write transfers until the BCR decrements to zero.
1 Forces a single read/write transfer per request. The request may be processor by setting the START bit, or

periphery by asserting the REQUEST signal (Can be generated by the processor).

28
AA

The auto-align bit and the SIZE bits determine whether the source or destination is auto-aligned. Auto alignment
means that the accesses are optimized based on the address value and the programmed size. For more information,
see Section 14.7.2.2, “Auto Alignment.”
0 Auto-align disabled.
1 If the SSIZE bits indicate a larger or equivalent transfer size with respect to DSIZE, then the source accesses are

auto-aligned. If the DSIZE bits indicate a larger transfer size than SSIZE, then the destination accesses are
auto-aligned. Source alignment takes precedence over destination alignment. If auto- alignment is enabled, the
appropriate address register increments, regardless of the state of DINC or SINC.

DMA Controller

MCF5251 Reference Manual, Rev. 1

14-10 Freescale Semiconductor

27–25
BWC

The three bandwidth control bits are decoded for internal bandwidth control. When the byte count reaches any
multiple of the programmed BWC boundary, the request signal to the internal arbiteris negated until data access
completes. This enables the arbiter to give another device access to the bus.Table 14-9 shows the encoding for these
bits. When the bits are cleared, the DMA does not negate its request. The 000 encoding asserts a priority signal
when the channel is active, signaling that the transfer has been programmed for a higher priority. When the BCR
reaches a multiple of the values shown in Table 14-9, the bus is relinquished.
For example, if BWC = 001 (512 bytes or value of 0x0200), BCR24BIT = 0, and the BCR is set to 0x1000, the bus is
relinquished after BCR values of 0x2000, 0x1E00, 0x1C00, 0x1A00, 0x1800, 0x1600, 0x1400, 0x1200, 0x1000,
0x0E00, 0x0C00, 0x0A00, 0x0800, 0x0600, 0x0400, and 0x0200. In another example, BWC = 110, BCR24BIT = 0,
and the BCR is set to 33000. The bus is relinquished after transferring 232 bytes, because the BCR is at 32768,
which is a multiple of 16384.

24
DAA

Dual address access.
0 The DMA channel is in dual-address mode.
1 Reserved.

23
S_RW

Reserved, must be set to 0.

22
SINC

The source increment bit determines whether the source address increments after each successful transfer.
0 No change to the SAR after a successful transfer.
1 The SAR increments by 1, 2, 4, or 16; depending upon the size of the transfer.

21–20
SSIZE

The source size field determines the data size of the source bus cycle for the DMA control module. Table 14-10
shows the encoding for this field.

19
DINC

The destination increment bit determines whether the destination address increments after each successful transfer.
0 No change to the DAR after a successful transfer.
1 The DAR increments by 1, 2, 4, or 16; depending upon the size of the transfer.

Table 14-8. DMA Control Register (DCR) Field Descriptions (continued)

Field Description

Table 14-9. BWC Encoding

BWC
Block Size

BCR24BIT = 0 BCR24BIT = 1

000 DMA has priority

001 512 16384

010 1024 32768

011 2048 65536

100 4096 131072

101 8192 262144

110 16384 524288

111 32768 1048576

Table 14-10. SSIZE Encoding

SSize Transfer Size

00 Longword

01 Byte

10 Word

11 Line

DMA Controller

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 14-11

14.4.6 DMA Status Register

The 8-bit DMA status register (DSR) indicates the status of the DMA controller module. The DMA
controller module, in response to an event, writes to the appropriate bit in the DSR. Only a write to the
DONE bit (DSR[0]) results in action. Setting the DONE bit creates a single-cycle pulse which resets the
channel, thus clearing all bits in the register. The DONE bit is set at the completion of a transfer or during
the transfer to abort the access.

Table 14-9 shows the detailed structure of the DMA status register.

18–17
DSIZE

The Destination Size field determines the data size of the destination bus cycle for the DMA controller module.
Table 14-11 shows the encoding for this field.

16
START

Start transfer.
0 DMA inactive.
1 The DMA begins the transfer in accordance to the values in the control registers. This bit is self-clearing after one

clock and is always read as logic 0.

15–0 Reserved.

Address MBAR + $310
MBAR + $350
MBAR + $390
MBAR + $3D0

Access: User read/write

 7 6 5 4 3 2 1 0

R
CE BES BED REQ BSY DONE

W

Reset – 0 0 0 – 1 1 1

Figure 14-9. DMA Status Register (DSR)

Table 14-8. DMA Control Register (DCR) Field Descriptions (continued)

Field Description

Table 14-11. DSIZE Encoding

SSize Transfer Size

00 Longword

01 Byte

10 Word

11 Line

DMA Controller

MCF5251 Reference Manual, Rev. 1

14-12 Freescale Semiconductor

14.4.7 DMA Interrupt Vector Register

The DMA Interrupt Vector Register (DIVR) is an 8-bit register, which is driven out onto the bus in
response to an internal acknowledge cycle.

Table 14-12. DMA Status Register (DSR) Field Descriptions

Field Description

Bit 7 Reserved

6
CE

A configuration error results when either the number of bytes represented by the BCR is not consistent with the
requested source or destination transfer size. Configuration error can also result from the SAR or DAR containing
an address that does not match the requested transfer size for the source or destination. The bit is cleared during a
hardware reset or by writing a one to DSR[DONE].
0 No configuration error exists.
1 A configuration error has occurred.

5
BES

Bus error on source.
0 No bus error occurred.
1 The DMA channel terminated with a bus error either during the read portion of a transfer.

4
BED

Bus error on destination.
0 No bus error occurred.
1 The DMA channel terminated with a bus error during the write portion of a transfer.

3 Reserved

2
REQ

Request
0 There is no request pending or the channel is currently active. The bit is cleared when the channel is selected.
1 The DMA channel has a transfer remaining and the channel is not selected.

1
BSY

Busy
0 DMA channel is inactive. This bit is cleared when the DMA has finished the last transaction.
1 This bit is set the first time the channel is enabled after a transfer is initiated.

0
DONE

The transaction done bit may be read or written and is set when all DMA controller module transactions have
completed normally, as determined by the transfer count and error conditions. When the BCR reaches zero, DONE
is set at the successful conclusion of the final transfer.
Writing a 1 to this bit clears all DMA status bits and therefore can be used as an interrupt handler to clear the DMA
interrupt and error bits. The DONE bit can also be used to abort a transfer in progress by resetting the status bits.
The DONE bit is self clearing. Therefore, writing a 0 to it has no effect.
0 Writing or reading a 0 has no effect whatsoever.
1 DMA transfer completed.

Address MBAR + $314
MBAR + $354
MBAR + $394
MBAR + $3D4

Access: User read/write

 7 6 5 4 3 2 1 0

R
INTERRUPT VECTOR BITS

W

Reset 0 0 0 0 1 1 1 1

Figure 14-10. DMA Interrupt Vector Register (DIVR)

DMA Controller

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 14-13

14.5 Transfer Request Generation
The DMA channel supports processor and periphery requests. Bus utilization can be minimized for either
processor or periphery request by selecting between cycle-steal and continuous modes. The DCR[EEXT]
field determines the request-generation method for each channel.

14.5.1 Cycle-Steal Mode

The DMA is in cycle-steal mode if the CS field (DCR[29]) is set. In this mode, only one complete transfer
from source to destination takes place for each request. Depending on the state of the EEXT field
(DCR[30]), the request can be either processor or periphery. Processor request is selected by setting the
START bit (DCR[16}). Periphery request is initiated by asserting the REQUEST signal while the EEXT
bit is set.

14.5.2 Continuous Mode

The DMA is in continuous mode If the CS field (DCR[29]) is cleared. After an internal or external request
is asserted, the DMA continuously transfers data until the byte count register (BCR) reaches zero or the
DONE bit (DSR[0]) is set.

The continuous mode can operate at maximum or limited rate. The maximum rate of transfer can be
achieved if the bandwidth control BWC field (DCR[27:25]) is programmed to 000. Then the active DMA
channel continues until the BCR decrements to zero or the DONE bit is set.

A limited rate can be achieved by programming the BWC field to any value other than 000. The DMA
performs the specified number of transfers, then relinquishes control of the bus. The DMA negates its
internal bus request on the last transfer before the BCR reaches a multiple of the boundary specified in the
BWC field. On transfer completion, the DMA asserts its bus request again to regain bus ownership at the
earliest opportunity, as determined by the internal bus arbiter. The minimum time that the DMA loses bus
control is one bus cycle.

14.6 Data Transfer Modes
Each DMA channel supports dual-address transfers. The dual-address transfer mode consists of a source
operand read and a destination operand write.

14.6.1 Dual-Address Transaction

The DMA controller module begins a dual-address transfer sequence when the DAA bit (DCR[24]) is
cleared during a DMA request. If no error condition exists, the REQ bit (DSR[2]) is set.

14.6.1.1 Dual-Address Read

The DMA controller module will drive the value in the source address register (SAR) onto the internal
address bus. If the SINC bit (DCR[22]) is set, then the SAR increments by the appropriate number of bytes
upon a successful read cycle. When the appropriate number of read cycles completes successfully, the
DMA initiates the write portion of the transfer.

DMA Controller

MCF5251 Reference Manual, Rev. 1

14-14 Freescale Semiconductor

In the event of a termination error, the BES (DSR[5]) and DONE bit (DSR[0]) are set and no further DMA
transactions take place.

14.6.1.2 Dual-Address Write

The DMA controller module drives the value in the destination address register (DAR) onto the address
bus. If the DINC bit (DCR[19]) is set, then the DAR increments by the appropriate number of bytes at the
completion of a successful write cycle. The byte count register (BCR) decrements by the appropriate
number of bytes. The DONE bit (DSR[0]) is set when the BCR reaches zero. If the BCR is greater than
zero, then another read/write transfer is initiated. If the byte count register (BCR) is a multiple of the
programmed bandwidth control (BWC), then the DMA request signal is negated until termination of the
bus cycle to allow the internal arbiter to switch masters.

In the event of a termination error, the BES (DSR[5]) and DONE bit (DSR[0]) are set and no further DMA
transactions takes place.

14.7 DMA Transfer Functional Description
In the following section, the term DMA request implies that the START bit (DCR[16]) is set or the EEXT
bit (DCR[30]) is set, followed by assertion of REQUEST. The START bit is cleared when the channel
begins an internal access.

Before initiating a transfer, the DMA controller module verifies that the source size (SSIZE = DSC[21:20])
and destination size (DSIZE = DSR[18:17]) for dual-address access are consistent with the source address
and destination address. The CE bit is also set if inconsistency is found between the destination size and
the source size in the BCR for dual-address access. If a misalignment is detected, no transfer occurs and
the configuration error bit (CE = DSR[6]) is set. Depending on the configuration of the DCR, an interrupt
event may be issued when the CE bit is set.

NOTE
If the auto-align bit (AA = DCR[28]) is set, error checking is performed on
the appropriate registers only.

A read/write transfer refers to a dual-address access in which a number of bytes are read from the source
address and written to the destination address. The number of bytes in the transfer is determined by the
larger of the sizes specified by the source and destination size encoding. See Table 14-10 and Table 14-11.

The source and destination address registers (SAR and DAR) increment at the completion of a successful
address phase. The BCR decrements at the completion of a successful address write phase. A successful
address phase occurs when a valid address request is not held by the arbiter.

14.7.1 Channel Initialization and Startup

Before starting a block transfer operation, the channel registers must be initialized with information
describing the channel configuration, request-generation method, and data block. This initialization is
accomplished by programming the appropriate information into the channel registers.

DMA Controller

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 14-15

14.7.1.1 Channel Prioritization

The four DMA channels are prioritized in ascending order (channel 0 having highest priority and channel
3 having the lowest) or as determined by the BWC bits in the DCR. If the BWC bits for a DMA channel
are set to 000, then that channel has priority over the channel immediately preceding it. For example, if
DMA channel 3 has the BWC bits set to 000, it has priority over DMA channel 2 but not over DMA
channel 1. This is assuming that DMA channel 2 has something other than all zeroes in the BWC bits.

Another example would be the case where the BWC bits in only DMA 2 and DMA 1 are all zeroes. In this
case, DMA 1 would have priority over DMA 0 and DMA 2. The BWC bits being zero in DMA 2 in this
case have no effect on prioritization.

In the case of simultaneous external requests, the prioritization is either ascending or as determined by each
channels BWC bits as described in the previous paragraphs.

14.7.1.2 Programming the DMA

The following are some general comments on programming the DMA:

• No mechanism exists for preventing writes to control registers during DMA accesses

• If the BWC of sequential channels are equivalent, channel priority is in ascending order

The SAR is loaded with the source (read) address. If the transfer is from a peripheral device to memory,
the source address is the location of the peripheral data register. If the transfer is from memory to a
peripheral device or memory to memory, the source address is the starting address of the data block. This
address can be any byte address.

The DAR should contain the destination (write) address. If the transfer is from a peripheral device to
memory, or memory to memory, the DAR is loaded with the starting address of the data block to be written.
If the transfer is from memory to a peripheral device, the DAR is loaded with the address of the peripheral
data register. This address can be any byte address.

The manner in which the SAR and DAR change after each cycle depends on the values in the DCR SSIZE
and DSIZE fields and the SINC and DINC bits, and the starting address in the SAR and DAR. If
programmed to increment, the increment value is 1, 2, 4, or 16 for byte, word, longword, or line operands,
respectively. If the address register is programmed to remain unchanged (no count), the register is not
incremented after the operand transfer.

The BCR must be loaded with the number of byte transfers that are to occur. This register is decremented
by 1, 2, 4, or 16 at the end of each transfer. The DSR must be cleared for channel startup.

Once the channel has been initialized, it is started by writing a one to the START bit in the DCR or asserting
the REQUEST signal, depending on the status of the EEXT bit in the DCR. Programming the channel for
processor request causes the channel to request the bus and start transferring data immediately. If the
channel is programmed for periphery request, REQUEST must be asserted before the channel requests the
bus.

If any fields in the DCR are modified while the channel is active, that change is effective immediately. To
avoid any problems with changing the setup for the DMA channel, a 1 should be written to the DONE bit
in the DSR to stop the DMA channel.

DMA Controller

MCF5251 Reference Manual, Rev. 1

14-16 Freescale Semiconductor

14.7.2 Data Transfer

14.7.2.1 Periphery Request Operation

All channels can initiate transfers to/from a periphery module by means of REQUEST[3:0]. Source where
REQUEST is coming from is programmed in register DMAROUTE. If the EEXT bit (DCR[30]) is set,
when a REQUEST is asserted, the DMA initiates a transfer provided the channel is idle. If the CS (cycle
steal) bit is set, the read/write transaction on the bus is limited to a single transfer. If the CS bit is clear,
multiple read/write transfers can occur on the bus as programmed. REQUEST does not need to be negated
until the DONE bit (DSR[0]) is set.

14.7.2.2 Auto Alignment

This feature allows for block transfers to occur at the optimum size based on the address, byte count, and
programmed size. To use this feature, AA in the DCR must be set. The source is auto-aligned when the
SSIZE bits indicate a larger transfer size compared to DSIZE. Source alignment takes precedence over the
destination when the source and destination sizes are equal. Otherwise, the destination is auto-aligned. The
address register that is chosen for alignment increments regardless of the value of the increment bit.
Configuration error checking is performed on the registers that are not chosen for alignment.

If the BCR contains a value greater than 16, the address will determine the size of the transfer. Single byte,
word or longword transfers will occur until the address is aligned to the programmed size boundary, at
which time the programmed size accesses begin. When the BCR is less than 16 at the beginning of a
read/write transfer, the number of bytes remaining will dictate the transfer size, longword, word or byte.

For example:

AA = 1, SAR = $0001, BCR = $00f0, SSIZE = 00 (longword) and DSIZE = 01 (byte),

Because the SSIZE > DSIZE, the source is auto-aligned. Error checking is performed on the destination
registers. The sequence of accesses is as follows:

1. Read byte from $0001—write byte, increment SAR

2. Read word from $0002—write 2 bytes, increment SAR

3. Read long word from $0004—write 4 bytes, increment SAR

4. Repeat longwords until SAR = $00f0

5. Read byte from $00f0—write byte, increment SAR.

If DSIZE is set to another size, then the data writes are optimized to write the largest size allowed based
on the address, but not exceeding the configured size.

14.7.2.3 Bandwidth Control

This feature makes provision to force the DMA off the bus to allow another master access. Bus arbiter
design was simplified by making arbitration programmable. The decode of the DCR[BWC] field provides
7 levels of block transfer sizes. If the BCR decrements to a value that is a multiple of the decode of the
BWC, the DMA bus request negates until termination of the bus cycle. Should a request be pending, the
arbiter may then choose to switch the bus to another master. If auto-alignment is enabled (DCR[AA] = 1),

DMA Controller

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 14-17

the BCR may skip over the programmed boundary. In this case, the DMA bus request will not be negated.
If the BWC = 000, the request signal will remain asserted until the BCR reaches zero. In addition, will
assert to indicate that the channel has been programmed to have priority.

NOTE
In this arbitration scheme, the arbiter can always force the DMA to
relinquish the bus.

14.7.3 Channel Termination

14.7.3.1 Error Conditions

When the bus encounters a read or write cycle that terminates with an error condition, the appropriate bit
of the DSR is set, depending on whether the bus cycle was a read (BES) or a write (BED). The DMA
transfers are then halted. If the error condition occurred during a write cycle, any data remaining in the
internal holding register is lost.

14.7.3.2 Interrupts

If the INT bit of the DCR is set, the DMA will drive the appropriate slave bus interrupt signal. The
processor can then read the DSR to determine if the transfer terminated successfully or with an error. The
DONE bit of the DSR is then written with a 1 to clear the interrupt, along with clearing the DONE and
error bits.

DMA Controller

MCF5251 Reference Manual, Rev. 1

14-18 Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-1

Chapter 15
UART Modules
This chapter provides signal descriptions, operation, memory map, and register descriptions, an
initialization sequence of the three UART modules.

The MCF5251 contains three asynchronous receiver/transmitters (UARTs) that act independently. Each
UART is clocked by the system clock. This chapter applies to all three UARTs, which are functionally
identical. Refer to Section 15.4, “UART Memory Map and Register Definitions,” for addressing
differences.

Each UART module, shown in Figure 15-1, consists of the following functional areas:
• Serial Communication Channel
• 16-Bit Baud-Rate Timer
• Internal Channel Control Logic
• Interrupt Control Logic

Figure 15-1. UART Block Diagram

15.1 UART Module Features
The MCF5251 contains three independent UART modules. Features of each UART module include the
following:

• UART clocked by the system clock
• Full duplex asynchronous receiver/transmitter channel
• Quadruple-buffered receiver
• Double-buffered transmitter

INTERNAL CHANNEL
CONTROL LOGIC

INTERRUPT CONTROL
LOGIC

16-BIT TIMER
FOR BAUD RATE GENERATION

SERIAL COMMUNICATION
CHANNEL

CTS (UART0/1 only)
RTS (UART0/1 only)

RXD

TXD

SYSTEM CLOCK

UART Modules

MCF5251 Reference Manual, Rev. 1

15-2 Freescale Semiconductor

• Independently programmable receiver and transmitter clock source
• Programmable data format

— Five to eight data bits plus parity
— Odd, even, no parity, or force parity
— .563 to 2 stop bits in x16 mode (asynchronous)/1or 2 stop bits in synchronous mode

• Programmable channel modes:
— Normal (full duplex)
— Automatic echo
— Local loopback
— Remote loopback

• Automatic wakeup mode for multidrop applications
• Four maskable interrupt conditions
• Parity, framing, break, and overrun error detection
• False start bit detection
• Line-break detection and generation
• Detection of breaks originating in the middle of a character
• Start/end break interrupt/status

15.1.1 Serial Communication Channel

The communication channel provides a full duplex asynchronous receiver and transmitter using an
operating frequency derived from the system clock.

The transmitter accepts parallel data from the CPU; converts it to a serial bit stream; inserts the appropriate
start, stop, and optional parity bits; then outputs a composite serial data stream on the channel transmitter
serial data output (TxD). Refer to Section 15.3.2.1, “Transmitter,” for additional information.

The receiver accepts serial data on the channel receiver serial data input (RxD); converts it to parallel
format; checks for a start bit, stop bit, parity (if any), or any error condition; and transfers the assembled
character onto the bus during read operations. The receiver can be polled or interrupt driven. Refer to
Section 15.3.2.2, “Receiver,” for additional information.

15.1.2 Baud-Rate Generator/Timer

The 16-bit timer, clocked by the system clock, can function as an asynchronous x16 clock. The baud-rate
timer is part of each UART and not related to the ColdFire timer modules.

15.1.3 Interrupt Control Logic

An internal interrupt request signal (IRQ) notifies the MCF5251 interrupt controller of an interrupt
condition. The output is the logical NOR of all (as many as four) unmasked interrupt status bits in the
UART Interrupt Status Register (UISR). The UART Interrupt Mask Register (UIMR) can be programmed
to determine which interrupts will be valid in the UISR.

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-3

The UART module interrupt level in the MCF5251 interrupt controller is programmed external to the
UART module. The UART can be configured to supply the vector from the UART Interrupt Vector
Register (UIVR) or the SIM can be programmed to provide an autovector when a UART interrupt is
acknowledged.

The interrupt level, priority within the level, and autovectoring capability can also be programmed in the
SIM register ICR_U1.

15.2 UART Module Signal Definitions
The following paragraphs contain a brief description of the UART module signals. Figure 15-2 shows both
the external and internal signal groups.

NOTE
The terms assertion and negation are used throughout this chapter to avoid
confusion when dealing with a mixture of active-low and active-high
signals. The term assert or assertion indicates that a signal is active or true,
independent of the level represented by a high or low voltage. The term
negate or negation indicates that a signal is inactive or false.

15.2.1 Transmitter Serial Data Output

The multiplexed signals TXD0/GPIO45, SCL1/TXD1/GPIO10 and XTRIM/TXD2/GPIO0 can be
programmed as general purpose outputs or transmitter serial data outputs. When used as transmitters, the
output is held high ('‘mark’' condition) when the transmitter is disabled, idle, or operating in the local
loopback mode. Data is shifted out on this signal on the falling edge of the clock source, with the least
significant bit transmitted first.

15.2.2 Receiver Serial Data Input

The multiplexed signals RXD0/GPIO46, SDA1/RXD1/GPIO44, and EF/RXD2/GPIO6 can be
programmed as general purpose inputs or receiver serial data inputs. When used as receivers, data received
on this signal is sampled on the rising edge of the clock source, with the least significant bit received first.

UART Modules

MCF5251 Reference Manual, Rev. 1

15-4 Freescale Semiconductor

Figure 15-2. External and Internal Interface Signals

15.2.3 Request-To-Send

The Request-To-Send (RTS) pins DDATA3/RTS0/GPIO4 and DDATA1/RTS1/SDATA2_BS2/GPIO2 are
multiplexed. When programmed for RTS, this active-low output signal can be programmed to be
automatically negated and asserted by either the receiver or transmitter. When connected to the
clear-to-send (CTS) input of a transmitter, this signal controls serial data flow.

UART2 has no RTS signal capability.

15.2.4 Clear-To-Send

The multiplexed signals DDATA2/CTS0/GPIO3 and DDATA0/CTS1/SDATA0_SDIO1/GPIO1 can be
programmed as general purpose inputs or Clear-To-Send inputs. When programmed as (CTS), this
active-low input is the clear-to-send input and can generate an interrupt on change-of-state.

UART2 has no CTS signal capability.

15.3 Operation
The following sections describe the operation of the baud-rate generator, transmitter and receiver, and
other operating modes of the UART module.

INTERNAL

CONTROL

LOGIC

Four-character
RECEIVE BUFFER

TWO-CHARACTER
TRANSMIT

INPUT PORT

OUTPUT PORT

E
X

T
E

R
N

A
L

IN
T

E
R

FA
C

E
 S

IG
N

A
LS

 In
te

rf
ac

e
To

 C
pu

U
A

R
T

 M
O

D
U

LE
 IN

T
E

R
N

A
L

B
U

S

ADDRESS BUS

CONTROL

DATA

16-BIT TIMER/
BAUD RATE SYSTEM CLOCK

IRQ

CTS

RTS

RxD

TxD

GENERATOR

BUFFER

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-5

15.3.1 Baud-Rate Generator/Timer

The timer references made here relative to clocking the UART are different than the MCF5251 timer
module that is integrated on the bus of the ColdFire core. The UART has a baud generator based on an
internal baud-rate timer that is dedicated to the UART. The Clock Select Register (UCSR) needs to be
programmed to enable the baud-rate timer. With the baud-rate timer, a prescaler supplies an asynchronous
32x clock source to the baud-rate timer. The baud-rate timer register value is programmed with the UBG1
and UBG2 registers. See Section 15.4.12, “Baud Rate Generator (MSB) Register (UBG1n),” for more
information.

Figure 15-3. Baud-Rate Timer Generator Diagram

15.3.1.1 Calculating Baud Rates

The system clock goes through a divide-by-32 prescaler and then passes through the 16-bit divider of the
concatenated UBG1n and UBG2n registers. The baud-rate calculation is:

Eqn. 15-1

Using a 80-MHz system clock and letting baud rate equal 19200, then

Eqn. 15-2

Therefore, UBG1n equals 0x00 and UBG2n equals 0x82.

15.3.2 Transmitter and Receiver Operating Modes

The functional block diagram of the transmitter and receiver, including command and operating registers,
is shown in Figure 15-4. The following paragraphs describe these functions in reference to this diagram.
For detailed register information, refer to Section 15.4, “UART Memory Map and Register Definitions.”

System Clock

Timer
Output

Internal
Timer

x32
Prescaler

Baud
Rate

UART

Baud rate output
programmed in UCSR

Baudrate
fsys

32 x Divider[]
------------------------------------=

Divider 80MHz
32 x 19200[]

---------------------------------- 130 decimal() 0x0082 hexadecimal()= = =

UART Modules

MCF5251 Reference Manual, Rev. 1

15-6 Freescale Semiconductor

.

Figure 15-4. Transmitter and Receiver Functional Diagram

15.3.2.1 Transmitter

The transmitter is enabled through the UART command register (UCR) located within the UART module.
The UART module signals the CPU when it is ready to accept a character by setting the transmitter-ready
bit (TxRDY) in the UART status register (USR). Functional timing information for the transmitter is
shown in Figure 15-5.

The transmitter converts parallel data from the CPU to a serial bit stream on TxD. It automatically sends
a start bit followed by:

• The programmed number of data bits
• An optional parity bit
• The programmed number of stop bits

The least significant bit is sent first. Data is shifted from the transmitter output on the falling edge of the
clock source.

After the transmission of the stop bits, if a new character is not available in the transmitter holding register,
the TxD output remains in the high (mark condition) state, and the transmitter-empty bit (TxEMP) in the
USR is set. Transmission resumes and the TxEMP bit is cleared when the CPU loads a new character into
the UART transmitter buffer (UTB). If the transmitter receives a disable command, it continues operating
until the character (if one is present) in the transmit-shift register is completely shifted out of transmitter

W

R

R/W

R/W

W

R

UART SERIAL CHANNEL

UART COMMAND REGISTER (UCR)

EXTERNAL INTERFACE

UART MODE REGISTER 1 (UMR1)

UART MODE REGISTER 2 (UMR2)

UART STATUS REGISTER (USR)

TRANSMIT HOLDING REGISTER

TRANSMIT SHIFT REGISTER

RECEIVER HOLDING REGISTER 1

RECEIVER HOLDING REGISTER 2

RECEIVER HOLDING REGISTER 3

RECEIVER SHIFT REGISTER

TRANSMIT
BUFFER (UTB)
(2 REGISTERS)

RECEIVE
BUFFER (URB)
(4 REGISTERS)

FIFO

TXD

RXD

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-7

TxD. If the transmitter is reset through a software command, operation ceases immediately (refer to
Section 15.4.5, “Command Registers (UCRn)”). The transmitter is re-enabled through the UCR to resume
operation after a disable or software reset.

Figure 15-5. Transmitter Timing Diagram

If clear-to-send operation is enabled, CTS1 must be asserted for the character to be transmitted. If CTS is
negated in the middle of a transmission, the character in the shift register is transmitted and following the
completion of STOP bits TxD, enters in the mark state until CTS is asserted again. If the transmitter is
forced to send a continuous low condition by issuing a Send-Break command, the transmitter ignores the
state of CTS.

Users can program the transmitter to automatically negate the request-to-send (RTS) output on completion
of a message transmission. If the transmitter is programmed to operate in this mode, RTS must be manually
asserted before a message is transmitted. In applications where the transmitter is disabled after
transmission is complete and RTS is appropriately programmed, RTS is negated one bit time after the
character in the shift register is completely transmitted. Users must manually enable the transmitter by
setting the enable-transmitter bit in the UART Command Register (UCR).

1. CTS and RTS are not available on UART2.

 C1 C2 C3 C6C4

Transmitter 4
Enabled

WWWWWWWWW
Internal
Module
Select

TxRDY

TxD

CTS1

C1 C2 C3 C4 C5 C6Start5
Break

Stop
BreakNot

Transmitted

Negated since transmit
buffer and shift register are
empty (last character has
been shifted out)

Notes:
1. Timing shown for UMR2[4]=1. not available on UART2
2. Timing shown for UMR2[5]=1. not available on UART2
3. CN=Transmit 8-bit character
4. Transmitter enable by configuring TCx bits in UCR (see Table 15-10)
5. Start break/Stop break programmed by MISCx bits in UCR (seeTable 15-9)
6. Transmitter is enabled and disabled by using software control

Disable 7

Trans.

Manually AssertedManually Asserted
by Bit-Set Command

RTS2

(W=Write)

UART Modules

MCF5251 Reference Manual, Rev. 1

15-8 Freescale Semiconductor

15.3.2.2 Receiver

The receiver is enabled through the UCR located within the UART module. Functional timing information
for the receiver is shown in Figure 15-6. The receiver looks for a high-to-low (mark-to-space) transition
of the start bit on RxD. When a transition is detected the start bit is validated 0.5 baud clock after the
transition. If RxD is sampled high, the start bit is not valid and the search for the valid start bit repeats. If
RxD is still low, a valid start bit is assumed and the receiver continues to sample the input at one-bit time
intervals at the theoretical center of the bit.

Figure 15-6. Receiver Timing Diagram

This process continues until the proper number of data bits and parity (if any) is assembled and one stop
bit is detected. Data on the RxD input is sampled on the rising edge of the programmed clock source. The
least significant bit is received first. The data is then transferred to a receiver holding register and the
RxRDY bit in the USR is set. If the character length is less than eight bits, the most significant unused bits
in the receiver holding register are cleared. The Rx RDY bit in the USR is set at the one-half point of the
stop bit.

After the stop bit is detected, the receiver immediately looks for the next start bit. However, if a nonzero
character is received without a stop bit (framing error) and RxD remains low for one-half of the bit period
after the stop bit is sampled, the receiver operates as if a new start bit is detected. The parity error (PE),

C1 C2 C3 C4 C5 C6 C7 C8
RxD

RECEIVER
ENABLED

C6, C7, C8 ARE LOST DUE TO
RECEIVER DISABLED

RxRDY2(S
RO)

FFULL2.5
(SR1)

 R R R R R R

|STATUS DATA| |STATUS DATA| |STATUS
DATA| | | | C2
C3 C4

INTERNAL
MODULE
SELECT CS

 R R

|STATUS DATA|

 |

OVERRUN
(SR4)

RTS1
(OP0) RESET BY COMMAND

C5
LOST

NOTES:
1. TIMING SHOWN FOR UMR1[7]=1
2. TIMING SHOWN FOR UMR1[6]=0
3. CN = RECEIVED 5-8 BIT CHARACTER

UOP1[0]=1

R = Read

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-9

framing error (FE), overrun error (OE), and received break (RB) conditions (if any) set error and break
flags in the USR at the received character boundary and are valid only when the RxRDY bit in the USR is
set.

If a break condition is detected (RxD is low for the entire character including the stop bit), a character of
all zeros is loaded into the receiver holding register and the Receive Break (RB) and RxRDY bits in the
USR are set. The RxD signal must return to a high condition for at least one-half bit time before a search
for the next start bit begins.

The receiver will detect the beginning of a break in the middle of a character if the break persists through
the next character time. When the break begins in the middle of a character, the receiver places the
damaged character in the receiver first-in-first-out (FIFO) stack and sets the corresponding error
conditions and RxRDY bit in the USR. The break persists until the next character time, the receiver places
an all-zero character into the receiver FIFO, and sets the corresponding RB and RxRDY bits in the USR.
Interrupts can be enabled on receive break.

15.3.2.3 Receiver FIFO

The FIFO is used in the UART receiver buffer logic. The FIFO consists of three receiver holding registers.
The receive buffer consists of the FIFO and a receiver shift register connected to the RxD (refer to
Figure 15-4). Data is assembled in the receiver shift register and loaded into the top empty receiver holding
register position of the FIFO. Thus, data flowing from the receiver to the CPU is quadruple buffered.

In addition to the data byte, three status bits, parity error (PE), framing error (FE), and received break (RB)
are appended to each data character in the FIFO; overrun error (OE) is not appended. By programming the
error-mode bit (ERR) in the channel's mode register (UMR1), status can be provided in character or block
modes.

The RxRDY bit in the USR is set whenever one or more characters are available to be read by the CPU.
A read of the receiver buffer produces an output of data from the top of the FIFO. After the read cycle, the
data at the top of the FIFO and its associated status bits are ‘'popped,'’ and the receiver shift register can
add new data at the bottom of the FIFO. The FIFO-full status bit (FFULL) is set if all three stack positions
are filled with data. Either the RxRDY or FFULL bit can be selected to cause an interrupt.

Character and block modes are two error modes that can be selected within the UMR.

In the character mode, status provided in the USR is given on a character-by-character basis and thus
applies only to the character at the top of the FIFO. In the block mode, the status provided in the USR is
the logical OR of all characters coming to the top of the FIFO since the last reset error command. A
continuous logical OR function of the corresponding status bits is produced in the USR as each character
reaches the top of the FIFO.

The block mode is useful in applications where the software overhead of checking each character's error
cannot be tolerated. In this mode, entire messages are received and only one data integrity check is
performed at the end of the message. This mode has a data-reception speed advantage; however, each
character is not individually checked for error conditions by software. If an error occurs within the
message, the error is not recognized until the final check is performed, and no indication exists as to which
message character is at fault.

UART Modules

MCF5251 Reference Manual, Rev. 1

15-10 Freescale Semiconductor

In either mode, reading the USR does not affect the FIFO. The FIFO is popped only when the receive
buffer is read. The USR should be read prior to reading the receive buffer. If all three of the FIFO receiver
holding registers are full when a new character is received, the new character is held in the receiver shift
register until a FIFO position is available. If an additional character is received during this state, the
contents of the FIFO are not affected. However, the previous character in the receiver shift register is lost
and the OE bit in the USR is set when the receiver detects the start bit of the new overrunning character.

To support flow control capability, the receiver can be programmed to automatically negate and assert
RTS1. When in this mode, the receiver automatically negates RTS when a valid start bit is detected and the
FIFO is full. When a FIFO position becomes available, the receiver asserts RTS. Using this mode of
operation prevents overrun errors by connecting the RTS to the CTS input of the transmitting device.

To use the RTS signals on UART1, the Pin Configuration Register in the SIM must be set up to enable the
corresponding I/O pins for these functions. If the FIFO contains characters and the receiver is disabled, the
CPU can still read the characters in the FIFO. If the receiver is reset, the FIFO and all receiver status bits,
corresponding output ports, and interrupt request are reset. No additional characters are received until the
receiver is re-enabled.

15.3.3 Looping Modes

The UART can be configured to operate in various looping modes as shown in Figure 15-7. These modes
are useful for local and remote system diagnostic functions. The modes are described in the following
paragraphs with additional information available in Section 15.4, “UART Memory Map and Register
Definitions.”

Switching between modes should only be done while the transmitter and receiver are disabled because the
selected mode is activated immediately on mode selection, even if this occurs in the middle of character
transmission or reception. In addition, if a mode is deselected, the device switches out of the mode
immediately, except for automatic echo and remote echo loopback modes. In these modes, the deselection
occurs just after the receiver has sampled the stop bit (this is also the one-half point). For automatic echo
mode, the transmitter stays in this mode until the entire stop bit has been retransmitted.

15.3.3.1 Automatic Echo Mode

In this mode, the UART automatically retransmits the received data on a bit-by-bit basis. The local
CPU-to-receiver communication continues normally but the CPU-to-transmitter link is disabled. While in
this mode, received data is clocked on the receiver clock and retransmitted on TxD. The receiver must be
enabled but not the transmitter. Instead, the transmitter is clocked by the receiver clock.

Because the transmitter is not active, the TxEMP and TxRDY bits in USR are inactive and data is
transmitted as it is received. Received parity is checked but not recalculated for transmission. Character
framing is also checked but stop bits are transmitted as received. A received break is echoed as received
until the next valid start bit is detected.

1. CTS and RTS are not available on UART2.

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-11

15.3.3.2 Local Loopback Mode

In this mode, TxD is internally connected to RxD. This mode is useful for testing the operation of a local
UART module channel by sending data to the transmitter and checking data assembled by the receiver. In
this manner, correct channel operations can be assured. Both transmitter and CPU-to-receiver
communications continue normally in this mode. While in this mode, the RxD input data is ignored, the
TxD is held marking, and the receiver is clocked by the transmitter clock. The transmitter must be enabled
but not the receiver.

15.3.3.3 Remote Loopback Mode

In this mode, the channel automatically transmits received data on the TxD output on a bit-by-bit basis.
The local CPU-to-transmitter link is disabled. This mode is useful for testing remote channel receiver and
transmitter operation. While in this mode, the receiver clocks the transmitter.

NOTE
Because the receiver is not active, the CPU cannot read received data. All
status conditions are inactive. Received parity is not checked and is not
recalculated for transmission. Stop bits are transmitted as received. A
received break is echoed as received until the next valid start bit is detected.

Figure 15-7. Looping Modes Functional Diagram

CPU

Rx

Tx

CPU

CPU

Rx

Rx

Tx

Tx

(a) Automatic Echo

(b) Local Loopback

(c) Remote Loopback

RxD Input

RxD Input

RxD Input

TxD
Output

TxD
Output

TxD
Output

Disabled

Disabled

Disabled

Disabled

Disabled

UART Modules

MCF5251 Reference Manual, Rev. 1

15-12 Freescale Semiconductor

15.3.4 Multidrop Mode

The UART can be programmed to operate in a wakeup mode for multidrop or multiprocessor applications.
Functional timing information for the multidrop mode is shown in Figure 15-8. The mode is selected by
setting bits 3 and 4 in UART mode register 1 (UMR1). This mode of operation connects the master station
to several slave stations (maximum of 256). In this mode, the master transmits an address character
followed by a block of data characters targeted for one of the slave stations. The slave stations channel
receivers are disabled; however, they continuously monitor the data stream sent out by the master station.
When the master sends an address character, the slave receiver channel notifies its respective CPU by
setting the RxRDY bit in the USR and generating an interrupt (if programmed to do so). Each slave station
CPU then compares the received address to its station address and enables its receiver if it wants to receive
the subsequent data characters or block of data from the master station. Slave stations not addressed
continue to monitor the data stream for the next address character. Data fields in the data stream are
separated by an address character. After a slave receives a block of data, the slave station CPU disables the
receiver and reinitiates the process.

Figure 15-8. Multidrop Mode Timing Diagram

A transmitted character from the master station consists of a start bit, a programmed number of data bits,
an address/data (A/D) bit flag, and a programmed number of stop bits. The A/D bit identifies the type of
character being transmitted to the slave station. The character is interpreted as an address character if the
A/D bit is set or as a data character if the A/D bit is cleared. The polarity of the A/D bit is selected by

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-13

programming bit 2 of UMR1. UMR1 should also be programmed before enabling the transmitter and
loading the corresponding data bits into the transmit buffer.

In multidrop mode, the receiver continuously monitors the received data stream, regardless of whether it
is enabled or disabled. If the receiver is disabled, it sets the RxRDY bit and loads the character into the
receiver holding register FIFO, provided the received A/D bit is a one (address tag). The character is
discarded if the received A/D bit is a zero (data tag). If the receiver is enabled, all received characters are
transferred to the CPU using the receiver holding register stack during read operations.

In either case, the data bits are loaded into the data portion of the stack while the A/D bit is loaded into the
status portion of the stack normally used for a parity error (USR bit 5). Framing error, overrun error, and
break detection operate normally. The A/D bit takes the place of the parity bit; therefore, parity is neither
calculated nor checked. Messages in this mode can still contain error detection and correction information.
One way to provide error detection, if 8-bit characters are not required, is to use software to calculate parity
and append it to the 5-, 6-, or 7-bit character.

15.3.5 Bus Operation

This section describes the operation of the bus during read, write, and interrupt- acknowledge cycles to the
UART module. All UART module registers must be accessed as bytes.

15.3.5.1 Read Cycles

The CPU accesses the UART module with 1 to 2 wait states because the core system clock is divided by
2 for the UART module. The UART module responds to reads with byte data on D[7:0]. Reserved registers
return logic zero during reads.

15.3.5.2 Write Cycles

The CPU with zero wait states accesses the UART module. The UART module accepts write data on
D[7:0]. Write cycles to read-only registers and reserved registers complete in a normal manner without
exception processing; however, the data is ignored.

15.3.5.3 Interrupt Acknowledge Cycles

The UART module can arbitrate for interrupt servicing and supply the interrupt vector when it has
successfully won arbitration. The vector number must be provided if interrupt servicing is necessary; thus,
the interrupt vector register (UIVR) must be initialized. The interrupt vector number generated by the IVR
is used if the autovector is not enabled in the SIM Interrupt Control Register (ICR). If the UIVR is not
initialized and the ICR is not programmed for autovector, a spurious interrupt exception is taken if
interrupts are generated. This works in conjunction with the MCF5251 interrupt controller, which allows
a programmable Interrupt Priority Level (IPL) for the interrupt.

15.4 UART Memory Map and Register Definitions
This section contains a detailed description of each register and its specific function as well as flowcharts
of basic UART module programming.

UART Modules

MCF5251 Reference Manual, Rev. 1

15-14 Freescale Semiconductor

Writing control bytes into the appropriate registers controls the UART operation. A list of UART module
registers and their associated addresses is shown in Table 15-1.

NOTE
All UART module registers are accessible only as bytes. The contents of the
mode registers (UMR1 and UMR2), clock-select register (UCSR), and the
auxiliary control register (UACR) bit 7 should be changed only after the
receiver/transmitter is issued a software RESET command—i.e., channel
operation must be disabled. Be careful if the register contents are changed
during receiver/transmitter operations because unpredictable results can
occur.

For the registers described in this section, the numbers above the register description represent the bit
position in the register. The register description contains the mnemonic for the bit. The values as shown in
the following tables are the values of those register bits after a hardware reset. A value of U indicates that
the bit value is unaffected by reset. The read/write status is shown in the last line.

15.4.1 Mode Register 1 (UMR1n)

The UMR1 controls some of the UART module configuration. This register can be read or written at any
time and is accessed when the mode register pointer points to UMR1. The pointer is set to UMR1 by
RESET or by a set pointer command using the control register. After reading or writing UMR1, the pointer
points to UMR2.

Table 15-1. UART Module Memory Map

UART 0 UART 1 UART2 Register Read (R/W = 1) Register Write (R/W = 0)

MBAR+$1C0 MBAR+$200 MBAR2+$C00 Mode Register (UMR1, UMR2)

MBAR+$1C4 MBAR+$204 MBAR2+$C04 Status Register (USR) Clock-Select Register (UCSR)

MBAR+$1C8 MBAR+$208 MBAR2+$C08 DO NOT ACCESS1

1 This address is used for factory testing and should not be read. Reading this location results in undesired effects and possible
incorrect transmission or reception of characters. Register contents can also be changed.

Command Register (UCR)

MBAR+$1CC MBAR+$20C MBAR2+$C0C Receiver Buffer (URB) Transmitter Buffer (UTB)

MBAR+$1D0 MBAR+$210 MBAR2+$C10 Input Port Change Register (UIPCR) Auxiliary Control Register (UACR)

MBAR+$1D4 MBAR+$214 MBAR2+$C14 Interrupt Status Register (UISR) Interrupt Mask Register (UIMR)

MBAR+$1D8 MBAR+$218 MBAR2+$C18 Baud Rate Generator Prescale MSB (UBG1)

MBAR+$1DC MBAR+$21C MBAR2+$C1C Baud Rate Generator Prescale LSB (UBG2)

DO NOT ACCESS
1

MBAR+$1F0 MBAR+$230 MBAR2+$C30 Interrupt Vector Register (UIVR)

MBAR+$1F4 MBAR+$234 MBAR2+$C34 Input Port Register (UIP) DO NOT ACCESS
1

MBAR+$1F8 MBAR+$238 MBAR2+$C38 DO NOT ACCESS
1

Output Port Bit Set CMD (UOP1)2

2 Address-triggered commands.

MBAR+$1FC MBAR+$23C MBAR2+$C3C DO NOT ACCESS
1

Output Port Bit Reset CMD (UOP0)2

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-15

Address MBAR + $1C0 (UMR10)
MBAR + $200 (UMR11)
MBAR2 + $C00 (UMR12)

Access: Supervisor or User read/write

 7 6 5 4 3 2 1 0

R
RXRTS RXIRQ ERR PM1 PM0 PT B/C1 B/C0

W

Reset 0 0 0 0 0 0 0 0

Figure 15-9. Mode Register 1 (UMR1n)

Table 15-2. Mode Register 1 (UMR1n) Field Descriptions

Field Description

7
RxRTS

Receiver Request-to-Send Control
1 On receipt of a valid start bit, RTS is negated if the UART FIFO is full. RTS is reasserted when the FIFO has an

empty position available.
0 The receiver has no effect on RTS. The RTS is asserted by writing a one to the Output Port Bit Set Register

(UOP1)
This feature can be used for flow control to prevent overrun in the receiver by using the RTS output to control the
CTS input of the transmitting device. If both the receiver and transmitter are programmed for RTS control, RTS
control is disabled for both because such a configuration is incorrect.
Note: Not available on UART2.

6
RxIRQ

RxIRQ—Receiver Interrupt Select
1 FFULL is the source that generates IRQ
0 RxRDY is the source that generates IRQ

5
ERR

The Error Mode bit controls the meaning of the three FIFO status bits (RB, FE, and PE) in the USR.
1 Block mode—The values in the channel USR are the accumulation (i.e., the logical OR) of the status for all

characters coming to the top of the FIFO since the last reset error status command for the channel was issued.
Refer to Section 15.4.17.1, “UART Module Initialization,” for more information on UART module commands.

0 Character mode—The values in the channel USR reflect the status of the character at the top of the FIFO.
ERR = 0 must be used to obtain the correct A/D flag information when in multidrop mode.

4–3
PM

The Parity Mode bits encode the type of parity used for the channel (see Table 15-3). The parity bit is added to the
transmitted character and the receiver performs a parity check on incoming data. These bits can alternatively select
multidrop mode for the channel.

UART Modules

MCF5251 Reference Manual, Rev. 1

15-16 Freescale Semiconductor

15.4.2 Mode Register 2 (UMR2n)

The UART mode register 2 (UMR2n) controls the UART module configuration. UMR2n can be read or
written when the mode register pointer points to it, which occurs after any access to UMR1n. Accesses to
UMR2n do not update the pointer.

2
PT

The Parity Type bit selects the parity type if parity is programmed by the parity mode bits; if multidrop mode is
selected, it configures the transmitter for data character transmission or address character transmission. Table 15-3
lists the parity mode and type or the multidrop mode for each combination of the parity mode and the parity type
bits.

“Force parity low” means forcing a 0 parity bit.
“Force parity high” forces a 1 parity bit.

1–0
B/C

The Bits per Character bits select the number of data bits per character to be transmitted. The character length
listed in Table 15-4 does not include start, parity, or stop bits.

Address MBAR + $1C0 (UMR20)
MBAR + $200 (UMR21)
MBAR2 + $C00 (UMR22)

Access: Supervisor or User read/write

 7 6 5 4 3 2 1 0

R
CM1 CM0 TxRTS TxCTS SB3 SB2 SB1 SB0

W

Reset 0 0 0 0 0 0 0 0

Table 15-5. Mode Register 2 (UMR2)

Table 15-2. Mode Register 1 (UMR1n) Field Descriptions (continued)

Field Description

Table 15-3. PMx and PT Control Bits

PM1 PM0 Parity Mode PT Parity Types

0 0 With Parity 0 Even Parity

0 0 With Parity 1 Odd Parity

0 1 Force Parity 0 Low Parity

0 1 Force Parity 1 High Parity

1 0 No Parity X No Parity

1 1 Multidrop Mode 0 Data Character

1 1 Multidrop Mode 1 Address Character

Table 15-4. B/Cx Control Bits

B/C1 B/C0 Bits/Character

0 0 5 Bits

0 1 6 Bits

1 0 7 Bits

1 1 8 Bits

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-17

15.4.3 Status Registers (USRn)

The USR registers indicate the status of the characters in the receive FIFO and the status of the transmitter
and receiver. The RB, FE, and PE bits are cleared by the Reset Error Status command in the UCR registers
if the RB bit has not been read. Also, RB, FE, PE and OE can also be cleared by reading the Receive buffer
(URB).

Table 15-6. Mode Register 2 (UMR2n) Field Descriptions

Field Description

7–6
CM

Channel mode.
Selects a channel mode. Section 15.3.3, “Looping Modes,” describes individual modes.
00 Normal
01 Automatic echo
10 Local loop-back
11 Remote loop-back

5
TxRTS

Transmitter ready-to-send.
Controls negation of RTS to automatically terminate a message transmission when the transmitter is disabled after
completion of a transmission. Attempting to program a receiver and transmitter in the same channel for RTS control
is not permitted and disables RTS control for both.
0 The transmitter has no effect on RTS.
1 When the transmitter is disabled after transmission completes, setting this bit automatically clears UOP[RTS] one

bit time after any characters in the channel transmitter shift and holding registers are completely sent, including
the programmed number of stop bits.

Note: Not available on UART2.

4
TxCTS

Transmitter clear-to-send.
If both TxCTS and TxRTS are enabled, TxCTS controls the operation of the transmitter.
0 CTS has no effect on the transmitter.
1 Enables clear-to-send operation. The transmitter checks the state of CTS each time it is ready to send a character.

If CTS is asserted, the character is sent; if it is negated, the channel TxD remains in the high state and
transmission is delayed until CTS is asserted. Changes in CTS as a character is being sent do not affect its
transmission.

Note: Not available on UART2

3–0
SB

Stop-bit length control.
Selects the length of the stop bit appended to the transmitted character. Stop-bit lengths of 9/16th to 2 bits are
programmable for 6–8 bit characters. Lengths of 1 1/16th to 2 bits are programmable for 5-bit characters. In all cases,
the receiver checks only for a high condition at the center of the first stop-bit position, that is, one bit time after the
last data bit or after the parity bit, if parity is enabled. If an external 1x clock is used for the transmitter, clearing bit 3
selects one stop bit and setting bit 3 selects 2 stop bits for transmission.

SB 5 Bits 6–8 Bits SB 5 Bits 6–8 Bits

0000 1.063 0.563 1000 1.563 1.563

0001 1.125 0.625 1001 1.625 1.625

0010 1.188 0.688 1010 1.688 1.688

0011 1.250 0.750 1011 1.750 1.750

0100 1.313 0.813 1100 1.813 1.813

0101 1.375 0.875 1101 1.875 1.875

0110 1.438 0.938 1110 1.938 1.938

0111 1.500 1.000 1111 2.000 2.000

UART Modules

MCF5251 Reference Manual, Rev. 1

15-18 Freescale Semiconductor

Address MBAR + $1C4 (USR0)
MBAR + $204 (USR1)
MBAR2 + $C04 (USR2)

Access: Supervisor or User read/write

 7 6 5 4 3 2 1 0

R
RB FE PE OE TXEMP TXRDY FFULL RXRDY

W

Reset 0 0 0 0 0 0 0 0

Figure 15-10. Status Registers (USR0 and USR1)

Table 15-7. Status Registers (USRn) Field Descriptions

Field Description

7
RB

Received Break
1 An all-zero character of the programmed length has been received without a stop bit. The RB bit is valid only when

the RxRDY bit is set. A single FIFO position is occupied when a break is received. Additional entries into the FIFO
are inhibited until RxD returns to the high state for at least one-half bit time, which is equal to two successive
edges of the internal or external clock x 1 or 16 successive edges of the external clock x 16. The received break
circuit detects breaks that originate in the middle of a received character. However, if a break begins in the middle
of a character, it must persist until the end of the next detected character time.

0 No break has been received.

6
FE

Framing Error
1 A stop bit was not detected when the corresponding data character in the FIFO was received. The stop-bit check

occurs in the middle of the first stop-bit position. The bit is valid only when the RxRDY bit is set.
0 No framing error has occurred.

5
PE

Parity Error
1 When the with-parity or force-parity mode is programmed in the UMR1, the corresponding character in the FIFO

was received with incorrect parity. When the multidrop mode is programmed, this bit stores the received A/D bit.
This bit is valid only when the RxRDY bit is set.

0 No parity error has occurred.

4
OE

 Overrun Error
1 One or more characters in the received data stream have been lost. This bit is set on receipt of a new character

when the FIFO is full and a character is already in the shift register waiting for an empty FIFO position. When this
occurs, the character in the receiver-shift register and its break-detect, framing-error status, and parity error, if
any, are lost. The reset-error status command in the UCR clears this bit.

0 No overrun has occurred.

3
TxEMP

Transmitter Empty
1 The transmitter has underrun (both the transmitter holding register and transmitter shift registers are empty). This

bit is set after transmission of the last stop bit of a character if there are no characters in the transmitter-holding
register awaiting transmission.

0 The transmitter buffer is not empty. Either a character is currently being shifted out or the transmitter is disabled.
Users can enable/disable the transmitter by programming the TCx bits in the UCR.

2
TxRDY

 Transmitter Ready
1 The transmitter-holding register is empty and ready to be loaded with a character. This bit is set when the

character is transferred to the transmitter shift register. This bit is also set when the transmitter is first enabled.
Characters loaded into the transmitter holding register while the transmitter is disabled are not transmitted.

0 The CPU has loaded the transmitter-holding register or the transmitter is disabled.

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-19

15.4.4 Clock-Select Registers (USCRn)

To use the timer mode for either the receiver and transmitter channel, program the UCSR registers to the
value $DD.

NOTE
External clock input is not available so this register should always be set to
select internal timer mode.

The transmitter and receiver can be programmed to different clock sources.

1
FFULL

FIFO Full
1 Three characters have been received and are waiting in the receiver buffer FIFO.
0 The FIFO is not full but can contain as many as two unread characters.

0
RxRDY

Receiver Ready
1 One or more characters have been received and are waiting in the receiver buffer FIFO.
0 The CPU has read the receiver buffer and no characters remain in the FIFO after this read.

Address MBAR + $1C4 (USCR0
MBAR + $204 (USCR1)
MBAR2 + $C04 (USCR2)

Access: User write only

 7 6 5 4 3 2 1 0

R

W RCS3 RCS2 RCS1 RCS0 TCS3 TCS2 TCS1 TCS0

Reset 1 1 0 1 1 1 0 1

Figure 15-11. Clock Select Register (UCSRn)

Table 15-8. Clock Select Register (UCSRn) Field Descriptions

Field Description

7–4
RCS3–RCS0

The Receiver Clock Select bits select the clock source for the receiver channel. Table 15-12 details the register
bits necessary for each mode.

3–0
TCS3–TCS0

The Transmitter Clock Select bits determine the clock source of the UART transmitter channel.

Table 15-7. Status Registers (USRn) Field Descriptions (continued)

Field Description

RCS3 RCS2 RCS1 RCS0 Mode

1 1 0 1 TIMER

1 1 0 1 reserved

1 1 0 1 reserved

TCS3 TCS2 TCS1 TCS0 SET 1

1 1 0 1 TIMER

1 1 0 1 reserved

1 1 0 1 reserved

UART Modules

MCF5251 Reference Manual, Rev. 1

15-20 Freescale Semiconductor

15.4.5 Command Registers (UCRn)

The UCR supplies commands to the UART. Multiple commands can be specified in a single write to the
UCR if the commands are not conflicting. For example, reset-transmitter and enable-transmitter
commands cannot be specified in a single command.

15.4.5.1 Miscellaneous Commands

Bits MISC3 through MISC0 select a single command as listed in Table 15-9.

15.4.5.1.1 Reset Mode Register Pointer

The reset mode register pointer command causes the mode register pointer to point to UMR1.

15.4.5.1.2 Reset Receiver

The reset receiver command resets the receiver. The receiver is immediately disabled, the FFULL and
RxRDY bits in the USR are cleared, and the receiver FIFO pointer is reinitialized. All other registers are
unaltered. Use this command instead of the receiver-disable command whenever the receiver
configuration is changed (it places the receiver in a known state).

Address MBAR + $1C8 (UCR0)
MBAR + $208 (UCR1)
MBAR2 + $C08 (UCR2)

Access: User write only

 7 6 5 4 3 2 1 0

R

W MISC2 MISC1 MISC0 TC1 TC0 RC1 RC0

Reset 0 0 0 0 0 0 0 0

Figure 15-12. Command Register (UCRn)

Table 15-9. MISCx Control Bits

MISC2 MISC1 MISC0 Command

0 0 0 No Command

0 0 1 Reset Mode Register Pointer

0 1 0 Reset Receiver

0 1 1 Reset Transmitter

1 0 0 Reset Error Status

1 0 1 Reset Break-Change Interrupt

1 1 0 Start Break

1 1 1 Stop Break

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-21

15.4.5.1.3 Reset Transmitter

The reset transmitter command resets the transmitter. The transmitter is immediately disabled and the
TxEMP and TxRDY bits in the USR are cleared. All other registers are unaltered. Use this command
instead of the transmitter-disable command whenever the transmitter configuration is changed (it places
the transmitter in a known state).

15.4.5.1.4 Reset Error Status

The reset error status command clears the RB, FE, PE, and OE bits in the USR. This command is also used
in the block mode to clear all error bits after a data block is received.

15.4.5.1.5 Reset Break-Change Interrupt

The reset break-change interrupt command clears the delta break (DBx) bit in the UISR.

15.4.5.1.6 Start Break

The start break command forces TxD low. If the transmitter is empty, the start of the break conditions can
be delayed by as much as two bit times. If the transmitter is active, the break begins when transmission of
the character is complete. If a character is in the transmitter shift register, the start of the break is delayed
until the character is transmitted. If the transmitter holding register has a character, that character is
transmitted before the break. The transmitter must be enabled for this command to be accepted. The state
of the CTS input is ignored for this command.

15.4.5.1.7 Stop Break

The stop break command causes TxD to go high (mark) within two bit times. Characters stored in the
transmitter buffer, if any, are transmitted.

15.4.5.2 Transmitter Commands

Bits TC1 and TC0 select a single command as listed in Table 15-10.

15.4.5.2.1 No Action Taken

The “no action taken” command causes the transmitter to stay in its current mode. If the transmitter is
enabled, it remains enabled; if disabled, it remains disabled.

Table 15-10. TCx Control Bits

TC1 TC0 Command

0 0 No Action Taken

0 1 Transmitter Enable

1 0 Transmitter Disable

1 1 Do Not Use

UART Modules

MCF5251 Reference Manual, Rev. 1

15-22 Freescale Semiconductor

15.4.5.2.2 Transmitter Enable

The “transmitter enable” command enables operation of the channel's transmitter. The TxEMP and
TxRDY bits in the USR are also set. If the transmitter is already enabled, this command has no effect.

15.4.5.2.3 Transmitter Disable

The “transmitter disable” command terminates transmitter operation and clears the TxEMP and TxRDY
bits in the USR. However, if a character is being transmitted when the transmitter is disabled, the
transmission of the character is completed before the transmitter becomes inactive. If the transmitter is
already disabled, this command has no effect.

15.4.5.2.4 Do Not Use

Do not use this bit combination because the result is indeterminate.

15.4.5.3 Receiver Commands

Bits RC1 and RC0 select a single command as listed in Table 15-11.

15.4.5.3.1 No Action Taken

The “no action taken” command causes the receiver to stay in its current mode. If the receiver is enabled,
it remains enabled; if disabled, it remains disabled.

15.4.5.3.2 Receiver Enable

The “receiver enable” command enables operation of the channel's receiver. If the UART module is not in
multidrop mode, this command also forces the receiver into the search-for-start-bit state. If the receiver is
already enabled, this command has no effect.

15.4.5.3.3 Receiver Disable

The “receiver disable” command immediately disables the receiver. Any character being received is lost.
The command has no effect on the receiver status bits or any other control register. If the UART module
is programmed to operate in the local loopback mode or multidrop mode, the receiver operates even though
this command is selected. If the receiver is already disabled, this command has no effect.

15.4.5.3.4 Do Not Use

Do not use this bit combination because the result is indeterminate.

Table 15-11. RCx Control Bits

RC1 RC0 Command

0 0 No Action Taken

0 1 Receiver Enable

1 0 Receiver Disable

1 1 Do Not Use

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-23

15.4.6 Receiver Buffer Registers (UBRn)

The receiver buffer (URB) contains three receiver-holding registers and a serial shift register. The RxD pin
is connected to the serial shift register while the holding registers act as a FIFO. The CPU reads from the
top of the stack while the receiver shifts and updates from the bottom of the stack when the shift register
has been filled (see Figure 15-4).

15.4.7 Transmitter Buffer Registers (UTBn)

The transmitter buffer (UTB) consists of two registers: the transmitter-holding register and the transmitter
shift register (see Figure 15-4). The holding register accepts characters from the bus master if the TxRDY
bit in the channel's USR is set. A write to the transmitter buffer clears the TxRDY bit, inhibiting additional
characters until the shift register is ready to accept more data. When the shift register is empty, it checks
the holding register for a valid character to be sent (TxRDY bit cleared). If a valid character is present, the
shift register loads the character and reasserts the TxRDY bit in the USR. Writes to the transmitter buffer
when the channel's UART Status Register (USR) TxRDY bit is clear and when the transmitter is disabled
have no effect on the transmitter buffer.

Address MBAR + $1CC (URB0)
MBAR + $20C (URB1)
MBAR2 + $C0C (URB2)

Access: User read only

 7 6 5 4 3 2 1 0

R RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

W

Reset 1 1 1 1 1 1 1 1

Figure 15-13. Receiver Buffer (URBn) Register

Table 15-12. Receiver Buffer (URBn) Register Field Descriptions

Field Description

7–0
RB7–RB0

These bits contain the character in the receiver buffer.

Address MBAR + $1CC (UTB0)
MBAR + $20C (UTB1)
MBAR2 + $C0C (UTB2)

Access: User write only

 7 6 5 4 3 2 1 0

R

W TB7 TB6 TB5 TB4 TB3 TB2 TB1 TB0

Reset 0 0 0 0 0 0 0 0

Figure 15-14. Transmitter Buffer (UTBn) Register

UART Modules

MCF5251 Reference Manual, Rev. 1

15-24 Freescale Semiconductor

15.4.8 Input Port Change Registers (UIPCRn)

The UIPCR registers show the current state and the change-of-state for the CTS pin. (Note: not available
on UART2).

15.4.9 Auxiliary Control Registers (UACRn)

The UART auxiliary control registers control the input enable.

Table 15-13. Transmitter Buffer (UTBn) Register Field Descriptions

Bit Name Description

TB7–TB0 These bits contain the character in the transmitter buffer.

Address MBAR + $1D0 (UIPCR0)
MBAR + $210 (UIPCR1)
MBAR2 + $C10 (UIPCR2)

Access: User read only

 7 6 5 4 3 2 1 0

R COS CTS

W

Reset 0 0 0 0 1 1 1 1

Figure 15-15. Input Port Change Register (UIPCRn)

Table 15-14. Input Port Change Register (UIPCRn) Field Descriptions

Field Description

7–5,
3–1

Reserved

4
COS

 Change-of-State
1 A change-of-state (high-to-low or low-to-high transition), lasting longer than 25–50 μs has occurred at the CTS input.

When this bit is set, the UART Auxiliary Control Register (UACR) can be programmed to generate an interrupt to
the CPU.

0 No change-of-state has occurred since the last time the CPU read the UART Input Port Change Register (UIPCR).
A read of the UIPCR also clears the UART Interrupt Status Register (UISR)COS bit.

0
CTS

Current State
Starting two serial clock periods after reset, the CTS bit reflects the state of the CTS pin. If the CTS pin is detected as
asserted at that time, the COS bit is set, which initiates an interrupt if the Input Enable Control (IEC) bit of the UACR
register is enabled.
1 The current state of the CTS input is logic one.
0 The current state of the CTS input is logic zero.
Note: Not available on UART2

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-25

15.4.10 Interrupt Status Registers (UISRn)

The UISR registers provides status for all potential interrupt sources. The UART Interrupt Mask Register
(UIMR) masks the contents of this register. If a flag in the UISR is set and the corresponding bit in UIMR
is also set, the internal interrupt output is asserted. If the corresponding bit in the UIMR is cleared, the state
of the bit in the UISR has no effect on the interrupt output.

NOTE
The UIMR does not mask reading of the UISR. True status is provided
regardless of the contents of UIMR. A UART module reset clears the
contents of UISR.

.

Address MBAR + $1D0 (UACR0)
MBAR + $210 (UACR1)
MBAR2 + $C10 (UACR2)

Access: User write only

 7 6 5 4 3 2 1 0

R

W IEC

Reset 0 0 0 0 0 0 0 0

Figure 15-16. Auxiliary Control Register (UACRn)

Table 15-15. Auxiliary Control Register (UACRn) Field Descriptions

Field Description

7–1 Reserved

0
IEC

 Input Enable Control
1 UISR bit 7 is set and generates an interrupt when the COS bit in the UART Input Port Change Register (UIPCR)

is set by an external transition on the CTS input (if bit 7 of the interrupt mask register (UIMR) is set to enable
interrupts).

0 Setting the corresponding bit in the UIPCR has no effect on UISR bit 7.

Address MBAR + $1D4 (UISR0)
MBAR + $214 (UISR1)
MBAR2 + $C14 (UISR2)

Access: User read only

 7 6 5 4 3 2 1 0

R COS DB RXRDY TXRDY

W

Reset 0 0 0 0 0 0 0 0

Figure 15-17. Interrupt Status Register (UISRn)

UART Modules

MCF5251 Reference Manual, Rev. 1

15-26 Freescale Semiconductor

15.4.11 Interrupt Mask Registers (UIMRn)

The UIMR registers select the corresponding bits in the UISR that cause an interrupt. By setting the bit,
the interrupt is enabled. If one of the bits in the UISR is set and the corresponding bit in the UIMR is also
set, the internal interrupt output is asserted. If the corresponding bit in the UIMR is zero, the state of the
bit in the UISR has no effect on the interrupt output. The UIMR does not mask the reading of the UISR.

Table 15-16. Interrupt Status Register (UISRn) Field Descriptions

Field Description

7
COS

Change-of-State
1 A change-of-state has occurred at the CTS input and has been selected to cause an interrupt by programming bit

0 of the UACR.
0 COS bit in the UIPCR is not selected.

6–3 Reserved

2
DB

Delta Break
1 The receiver has detected the beginning or end of a received break.
0 No new break-change condition to report. Refer to Section 15.4.5, “Command Registers (UCRn),” for more

information on the reset break-change interrupt command.

1
RxRDY

Receiver Ready or FIFO Full
UMR1 bit 6 programs the function of this bit. It is a duplicate of either the FFULL or RxRDY bit of USR.

0
TxRDY

Transmitter Ready
This bit is the duplication of the TxRDY bit in USR.
1 The transmitter holding register is empty and ready to be loaded with a character.
0 The CPU loads the transmitter-holding register or the transmitter is disabled. Characters loaded into the

transmitter-holding register when TxRDY=0 are not transmitted.

Address MBAR + $1D4 (UIMR0)
MBAR + $214 (UIMR1)
MBAR2 + $C14 (UIMR2)

Access: User write only

 7 6 5 4 3 2 1 0

R

W COS DB FFULL TXRDY

Reset 0 0 0 0 0 0 0 0

Figure 15-18. Interrupt Mask Register (UIMRn)

Table 15-17. Interrupt Mask Register (UIMRn) Field Descriptions

Field Description

7
COS

Change-of-State
1 Enable interrupt
0 Disable interrupt

6–3 Reserved

2
DB

Delta Break
1 Enable interrupt
0 Disable interrupt

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-27

15.4.12 Baud Rate Generator (MSB) Register (UBG1n)

The UBG1n register hold the eight most significant bits of the preload value the timer uses for providing
a given baud rate. The minimum value that can be loaded on the concatenation of UBG1 with UBG2 is
$0002. This register is write only and cannot be read by the CPU.

15.4.13 Baud Rate Generator (LSB) Register (UBG2n)

The UBG2n register holds the eight least significant bits of the preload value the timer uses for providing
a given baud rate. The minimum value that can be loaded on the concatenation of UBG1 with UBG2 is
$0002. This register is write only and cannot be read by the CPU.

15.4.14 Interrupt Vector Registers (UIVRn)

The UIVR registers contain the 8-bit vector number of the internal interrupt.

15.4.15 Input Port Registers (UIPn)

The UIP registers show the current state of the CTS input.

1
FFULL

FIFO Full
1 Enable interrupt
0 Disable interrupt

0
TxRDY

Transmitter Ready
1 Enable interrupt
0 Disable interrupt

Address MBAR + $1F0 (UIVR0)
MBAR + $230 (UIVR1)
MBAR2 + $C30 (UIVR2)

Access: Supervisor or User read/write

 7 6 5 4 3 2 1 0

R
IVR7 IVR6 IVR5 IVR4 IVR3 IVR2 IVR1 IVR0

W

Reset 0 0 0 0 1 1 1 1

Figure 15-19. Interrupt Vector Register (UIVRn)

Table 15-18. Interrupt Vector Register (UIVRn) Field Descriptions

Field Description

7–0
IVR7–IVR0

The Interrupt Vector Bits are an 8-bit number that indicates the offset from the base of the vector table where the
address of the exception handler for the specified interrupt is located. The UIVR is reset to $0F, which indicates
an uninitialized interrupt condition.

Table 15-17. Interrupt Mask Register (UIMRn) Field Descriptions (continued)

Field Description

UART Modules

MCF5251 Reference Manual, Rev. 1

15-28 Freescale Semiconductor

15.4.16 Output Port Data Registers (UOP1n)

The RTS output is set by a bit set command (writing to UOP1n) and is cleared by a bit reset command
(writing to UOP0n). (Note: not available on UART2).

Address MBAR + $1F4 (UIP0)
MBAR + $234 (UIP1)
MBAR2 + $C34 (UIP2)

Access: Supervisor or User read only

 7 6 5 4 3 2 1 0

R CTS

W

Reset 1 1 1 1 1 1 1 1

Figure 15-20. Input Port Register (UIPn)

Table 15-19. Interrupt Port Register (UIPn) Field Descriptions

Bit Name Description

7–1 Reserved

0
CTS

Current State
1 The current state of the CTS input is logic one.
0 The current state of the CTS input is logic zero.
The information contained in this bit is latched and reflects the state of the input pin at the time that the UIP is read.
This bit has the same function and value as the UIPCR bit 0.

Address MBAR + $1F8 (UOP10)
MBAR + $238 (UOP11)
MBAR2 + $C38 (UOP12)

Access: User write only

 7 6 5 4 3 2 1 0

R

W RTS

Reset – – – – – – – 0

Figure 15-21. Output Port Data Registers (UOP1n)

Table 15-20. Output Port Data Registers (UOP1n) Field Descriptions

Field Description

7–1 Reserved

RTS Output Port Parallel Output
1 A write cycle to the OPset address asserts the RTS signal.
0 This bit is not affected by writing a zero to this address.
The output port bits are inverted at the pins so the RTS set bit provides an asserted RTS pin.
Note: Not available on UART2.

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-29

15.4.17 Programming

Figure 15-23 shows the basic interface software flowchart required for operation of the UART module.
The routines are divided into these three categories:

1. UART Module Initialization
2. I/O Driver
3. Interrupt Handling

15.4.17.1 UART Module Initialization

The UART module initialization routines consist of SINIT and CHCHK. SINIT is called at system
initialization time to check UART operation. Before SINIT is called, the calling routine allocates two
words on the system stack. On return to the calling routine, SINIT passes information on the system stack
to reflect the status of the UART. If SINIT finds no errors, the receiver and transmitter are enabled. The
CHCHK routine performs the actual checks as called from the SINIT routine. When called, SINIT places
the UART in the local loopback mode and checks for the following errors:

• Transmitter Never Ready
• Receiver Never Ready
• Parity Error
• Incorrect Character Received

15.4.17.2 I/O Driver Example

The I/O driver routines consist of INCH and OUTCH. INCH is the terminal input character routine and
obtains a character from the receiver. OUTCH sends a character to the transmitter.

15.4.17.3 Interrupt Handling

The interrupt-handling routine consists of SIRQ, which is executed after the UART module generates an
interrupt caused by a change in break (beginning of a break). SIRQ then clears the interrupt source, waits
for the next change-in-break interrupt (end of break), clears the interrupt source again, then returns from
exception processing to the system monitor.

Address MBAR + $1FC (UOP00)
MBAR + $23C (UOP01)
MBAR2 + $C3C (UOP02)

Access: User write only

 7 6 5 4 3 2 1 0

R

W RTS

Reset – – – – – – – –

Figure 15-22. Output Port Data Registers (UOP0n)

UART Modules

MCF5251 Reference Manual, Rev. 1

15-30 Freescale Semiconductor

15.5 UART Module Initialization Sequence
The following steps are required to properly initialize the UART module:

Command Register (UCR)
Reset the receiver and transmitter.

Baud Rate Generator Register (UBG1 and UBG2)
Set Baud Rate.

Interrupt Vector Register (UIVR)
Program the vector number for a UART module interrupt or use auto-vector, as desired.

Interrupt Mask Register (UIMR)
Enable the desired interrupt sources.

Auxiliary Control Register (UACR)
Initialize the Input Enable Control (IEC) bit.

Clock Select Register (UCSR)
Select the receiver and transmitter internal clock.

Mode Register 1 (UMR1)
1. If required, program operation of Receiver Ready-to-Send (RxRTS Bit).
2. Select Receiver-Ready or FIFO-Full Notification (R/F Bit).
3. Select character or block-error mode (ERR Bit).
4. Select parity mode and type (PM and PT Bits).
5. Select number of bits per character (B/Cx Bits).

Mode Register 2 (UMR2)
1. Select the mode of operation (CMx bits).
2. If required, program operation of Transmitter Ready-to-Send (TxRTS Bit).
3. If required, program operation of Clear-to-Send (TxCTS Bit).
4. Select stop-bit length (SBx Bits).

Command Register (UCR)
Enable the receiver and transmitter.

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-31

Figure 15-23. UART Software Flowchart (1 of 5)

SERIAL MODULE

INITIATE:
CHANNEL

INTERRUPTS

CALL CHCHK

SAVE CHANNEL
STATUS

ANY
ERRORS

?

ASSERT
REQUEST TO SEND

RETURN

Yes

No

CHK1

ENABLE

SINTR

ENABLE RECEIVER

UART Modules

MCF5251 Reference Manual, Rev. 1

15-32 Freescale Semiconductor

Figure 15-24. UART Software Flowchart (2 of 5)

CHCHK

PLACE CHANNEL IN
LOCAL LOOPBACK

MODEL

ENABLE
TRANSMITTER
CLEAR STATUS

WORD

 IS
TRANSMITTER

READY
?

WAITED
TOO LONG

?

SEND CHARACTER TO
TRANXMITTER

SET TRANSMITTER-
NEVER-READY FLAG

A B

HAS
CHARACTER

BEEN
RECEIVED

?

WAITED
TOO LONG

?

No

No

Yes

No

No

Yes

SET RECEIVER-
NEVER-READY FLAG

(NOTE: IN LOOPBACK MODE
TRANSMITTER MUST BE ENABLED.
(NOT RECEIVER)

TxCHK

Yes

Yes

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-33

Figure 15-25. UART Software Flowchart (3 of 5)

HAVE
FRAMING
ERROR

?

SET FRAMING
ERROR FLAG

HAVE
PARITY
ERROR

?

SET PARITY
ERROR FLAG

DISABLE
TRANSMITTER

RESTORE TO
ORIGINAL MODE

RETURN

A B

GET CHARACTER
FROM RECEIVER

SAME AS
TRANSMITTED
CHARACTER

?

 SET INCORRECT
CHARACTER FLAG

CHRCHK

FRCHK

PRCHK

RSTCHN

Yes

Yes

Yes

No

No

No

B

UART Modules

MCF5251 Reference Manual, Rev. 1

15-34 Freescale Semiconductor

Figure 15-26. UART Software Flowchart (4 of 5)

RTE

REPLACE RETURN
ADDRESS ON SYSTEM
STACK AND MONITOR

WARM START ADDRESS

SIRQ

IRQ CAUSED
BY BEGINNING
OF A BREAK?

CLEAR CHANGE
-IN-BREAK STATUS BIT

HAS
END-OF-BREAK

IRQ ARRIVED YET
?

CLEAR
CHANGE-IN-BREAK

STATUS BIT

REMOVE BREAK
CHARACTER FROM

RECEIVE FIFO

INCH

DOES RECEIVER
HAVE A

CHARACTER
?

PLACE CHARACTER
IN D0

RETURN

No

Yes

Yes

No

UART Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 15-35

Figure 15-27. UART Software Flowchart (5 of 5)

OUTCH

IS
TRANSMITTER

READY
?

SEND CHARACTER TO
TRANSMITTER

RETURN

Yes

No

UART Modules

MCF5251 Reference Manual, Rev. 1

15-36 Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 16-1

Chapter 16
Queued Serial Peripheral Interface (QSPI) Module
This chapter describes the operation of the Queued Serial Peripheral interface module of the MCF5251
and provides its memory map and register descriptions.

16.1 Features
The QSPI module provides a serial peripheral interface with queued transfer capability. It allows users to
queue up to 16 transfers at once, eliminating CPU intervention between transfers.

• Programmable queue to support up to 16 transfers without user intervention

• Supports transfer sizes of 8 to 16 bits in 1-bit increments

• Four peripheral chip-select lines for control of up to 15 devices

• Programmable baud rates up to 17.5Mbps at a CPU clock of 140 MHz

• Programmable delays

• Programmable clock phase and polarity

• Supports wraparound mode for continuous transfers

16.2 QSPI Module Overview
The QSPI module communicates with the core using internal memory mapped registers starting at
MBAR + $400. See Section 16.4, “QSPI Memory Map and Register Definitions.” A block diagram of the
QSPI module is shown in Figure 16-1.

16.2.1 Interface and Pins

The module supports 4 external CS pins which can be decoded externally to provide control for up to 15
devices. There are a total of seven signals: QSPI_Dout, QSPI_Din, QSPI_CLK, QSPI_CS [3:0].

Peripheral chip-select signals, QSPI_CS[3:0], are used to select an external device as the source or
destination for serial data transfer. Signals are asserted at a logic level corresponding to the value of the
QSPI_CS[3:0] bits in the command RAM whenever a command in the queue is executed. More than one
chip-select signal can be asserted simultaneously.

Although QSPI_CS[3:0] will function as simple chip selects in most applications, up to 15 devices can be
selected by decoding them with an external 4-to-16 decoder.

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

16-2 Freescale Semiconductor

Figure 16-1. QSPI Block Diagram

16.2.2 Internal Bus Interface

Because the QSPI module only operates in master mode, the master bit in the QSPI mode register
(QMR[MSTR]) must be set for the QSPI to function properly. The QSPI can initiate serial transfers but
cannot respond to transfers initiated by other QSPI masters.

16.3 Operation
The QSPI uses a dedicated 80-byte block of static RAM accessible both to the module and the CPU to
perform queued operations. The RAM is divided into three segments as follows:

• 16 command control bytes (command RAM)

Table 16-1. QSPI Input and Output Signals and Functions

Signal Name Hi_Z or Actively Driven Function

QSPI Data Output (QSPI_Dout) Configurable Serial data output from QSPI

QSPI Data Input (QSPI_Din) N/A Serial data input to QSPI

Serial Clock (QSPI_CLK) Actively driven Clock output from QSPI

Peripheral Chip Selects (QSPI_CS[3:0]) Actively driven Peripheral selects

���������	
��

������
��

�	�������

���	
��

��������	
���

�����

�������������
�� ��
�������
��

�����
�

��� ���!

�
�
��

�����
���

��	
���

�����
���

��
�����	
��

��	
����"����

"����

�����

�#$%���
��&�'
������
��

�(#)(���
�������
��

!�� "��

 	
��	������
��*����+��, �������
��-�	���
���.��"/

���	�

�&��������

��� 0��	

��� 0���

��� 0��1�234

��� 0�"/

QSPI_CS[3:0]

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 16-3

• 16 transmit data words (transfer RAM)

• 16 receive data words (transfer RAM)

RAM is organized so that 1 byte of command control data, 1 word of transmit data, and 1 word of receive
data comprise 1 queue entry.

The user initiates QSPI operation by loading a queue of commands in command RAM, writing transmit
data into transmit RAM, and then enabling the QSPI data transfer. The QSPI executes the queued
commands and sets the completion flag in the QSPI interrupt register (QIR[SPIF]) to signal their
completion. Optionally, QIR[SPIFE] can be enabled to generate an interrupt.

The QSPI uses four queue pointers. The user can access three of them through fields in QSPI Wrap
Register (QWR):

• The new queue pointer, QWR[NEWQP], points to the first command in the queue.

• An internal queue pointer points to the command currently being executed.

• The completed queue pointer, QWR[CPTQP], points to the last command executed.

• The end queue pointer, QWR[ENDQP], points to the final command in the queue.

The internal pointer is initialized to the same value as QWR[NEWQP]. During normal operation, the
following sequence repeats:

1. The command pointed to by the internal pointer is executed.

2. The value in the internal pointer is copied into QWR[CPTQP].

3. The internal pointer is incremented.

Execution continues at the internal pointer address unless the QWR[NEWQP] value is changed. After each
command is executed, QWR[ENDQP] and QWR[CPTQP] are compared. When a match occurs,
QIR[SPIF] is set and the QSPI stops unless wraparound mode is enabled. Setting QWR[WREN] enables
wraparound mode.

QWR[NEWQP] is cleared at reset. When the QSPI is enabled, execution begins at address 0x0 unless
another value has been written into QWR[NEWQP]. QWR[ENDQP] is cleared at reset but is changed to
show the last queue entry before the QSPI is enabled. QWR[NEWQP] and QWR[ENDQP] can be written
at any time. When the QWR[NEWQP] value changes, the internal pointer value also changes unless a
transfer is in progress, in which case the transfer completes normally. Leaving QWR[NEWQP] and
QWR[ENDQP] set to 0x0 causes a single transfer to occur when the QSPI is enabled.

Data is transferred relative to QSPI_CLK which can be generated in any one of four combinations of phase
and polarity using QMR[CPHA, CPOL]. Data is transferred most significant bit (msb) first. The number
of bits transferred defaults to eight, but can be set to any value from 8 to 16 by writing a value into the
BITSE field of the command RAM, QCR[BITSE].

16.3.1 QSPI RAM

The QSPI contains an 80-byte block of static RAM that can be accessed by both the user and the QSPI.
This RAM does not appear in the MCF5251 memory map because it can only be accessed by the user
indirectly through the QSPI address register (QAR) and the QSPI data register (QDR).

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

16-4 Freescale Semiconductor

The RAM is divided into three segments with 16 addresses each:

• Receive data RAM, the initial destination for all incoming data

• Transmit data RAM, a buffer for all out-bound data

• Command RAM, where commands are loaded

The transmit and command RAM are write-only by the user. The receive RAM is read-only by the user.
Figure 16-2 shows the RAM configuration. The RAM contents are undefined immediately after a reset.

The command and data RAM in the QSPI is indirectly accessible with QDR and QAR as 48 separate
locations that comprise 16 words of transmit data, 16 words of receive data and 16 bytes of commands.

A write to QDR causes data to be written to the RAM entry specified by QAR[ADDR] and causes the value
in QAR to increment. Correspondingly, a read at QDR returns the data in the RAM at the address specified
by QAR[ADDR]. This also causes QAR to increment. A read access requires a single wait state.

Figure 16-2. QSPI RAM Model

Relative
Address

Register Function

0x00 QTR0 Transmit RAM

0x01 QTR1

. . 16 bits wide

. .

. .

0x0F QTR15

0x10 QRR0 Receive RAM

0x11 QRR1

. . 16 bits wide

. .

. .

0x1F QRR15

0x20 QCR0 Command RAM

0x21 QCR1

. . 8 bits wide

. .

. .

0x2F QCR15

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 16-5

16.3.1.1 Transmit RAM

Data to be transmitted by the QSPI is stored in the transmit RAM segment located at addresses 0x0 to 0xF.
The user normally writes 1 word into this segment for each queue command to be executed. The user
cannot read transmit RAM.

Out-bound data must be written to transmit RAM in a right-justified format. The unused bits are ignored.
The QSPI copies the data to its data serializer (shift register) for transmission. The data is transmitted most
significant bit first and remains in transmit RAM until overwritten by the user.

16.3.1.2 Receive RAM

Data received by the QSPI is stored in the receive RAM segment located at 0x10 to 0x1F in the QSPI RAM
space. The user reads this segment to retrieve data from the QSPI. Data words with less than 16 bits are
stored right-justified in the RAM. Unused bits in a receive queue entry are set to zero upon completion of
the individual queue entry.

NOTE
Throughout ColdFire documentation, ‘word’ is used consistently and
exclusively to designate a 16-bit data unit. The only exceptions to this rule
appear in the sections that detail serial communication modules such as the
QSPI that supports variable-length data units. To simplify this issue, the
functional unit is referred to as a ‘word’ regardless of length.

QWR[CPTQP] shows which queue entries have been executed. The user can query this field to determine
which locations in receive RAM contain valid data.

16.3.1.3 Command RAM

The CPU writes one byte of control information to this segment for each QSPI command to be executed.
Command RAM is write-only memory from a user’s perspective.

Command RAM consists of 16 bytes with each byte divided into two fields. The peripheral chip select field
controls the QSPI_CS signal levels for the transfer. The command control field provides transfer options.

A maximum of 16 commands can be in the queue. Queue execution proceeds from the address in
QWR[NEWQP] through the address in QWR[ENDQP].

The QSPI executes a queue of commands defined by the control bits in each command RAM entry which
sequence the following actions:

• chip-select pins are activated

• data is transmitted from transmit RAM and received into the receive RAM

• the synchronous transfer clock QSPI_CLK is generated

Before any data transfers begin, control data must be written to the command RAM, and any out-bound
data must be written to transmit RAM. Also, the queue pointers must be initialized to the first and last
entries in the command queue.

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

16-6 Freescale Semiconductor

Data transfer is synchronized with the internally generated QSPI_CLK, whose phase and polarity are
controlled by QMR[CPHA] and QMR[CPOL]. These control bits determine which QSPI_CLK edge is
used to drive outgoing data and to latch incoming data.

16.3.2 Baud Rate Selection

Baud rate is selected by writing a value from 2 to 255 into QMR[BAUD]. The QSPI uses a prescaler to
derive the QSPI_CLK rate from the system clock, SYSCLK, divided by two.

A baud rate value of zero turns off the QSPI_CLK.

The desired QSPI_CLK baud rate is related to SYSCLK and QMR[BAUD] by the following expression:

QMR[BAUD] = SYSCLK / [2 × (desired QSPI_CLK baud rate)] (SYSCLK = CORE operating
frequency / 2).

16.3.3 Transfer Delays

The QSPI supports programmable delays for the QSPI_CS signals. The time between QSPI_CS assertion
and the leading QSPI_CLK edge, and the time between the end of one transfer and the beginning of the
next, are both independently programmable.

The chip select to clock delay enable (DSCK) bit in command RAM, QCR[DSCK], enables the
programmable delay period from QSPI_CS assertion until the leading edge of QSPI_CLK. QDLYR[QCD]
determines the period of delay before the leading edge of QSPI_CLK. The following expression
determines the actual delay before the QSPI_CLK leading edge:

QSPI_CS-to-QSPI_CLK delay = QCD/SYSCLK frequency

QCD has a range of 1 to 127

When QCD or DSCK equals zero, the standard delay of one-half the QSPI_CLK period is used.

The delay after transmit enable (DT) bit in command RAM enables the programmable delay period from
the negation of the QSPI_CS signals until the start of the next transfer. The delay after transfer can be used
to provide a peripheral deselect interval. A delay can also be inserted between consecutive transfers to
allow serial A/D converters to complete conversion. There are two transfer delay options: the user can

Table 16-2. QSPI_CLK Frequency as Function of SYSCLK and Baud Rate

SYSCLK

QMR [BAUD] 70 MHz 48 MHz 33 MHz 20 MHz

2 17,500,000 12,000,000 8,250,000 5,000,000

4 8,750,000 6,000,000 4,125,000 2,500,000

8 4,375,000 3,000,000 2,062,500 1,250,000

16 2,187,500 1,500,000 1,031,250 625,000

32 1,093,750 750,000 515,625 312,500

255 546,875 94,118 64,706 39,216

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 16-7

choose to delay a standard period after serial transfer is complete or can specify a delay period. Writing a
value to QDLYR[DTL] specifies a delay period. The DT bit in command RAM determines whether the
standard delay period (DT = 0) or the specified delay period (DT = 1) is used. The following expression is
used to calculate the delay:

Delay after transfer = 32 × QDLYR[DTL] /SYSCLK frequency (DT = 1)

where QDLYR[DTL] has a range of 2 to 255.

A zero value for DTL causes a delay-after-transfer value of 8192/SYSCLK frequency.

Standard delay after transfer = 17/SYSCLK frequency (DT = 0)

Adequate delay between transfers must be specified for long data streams because the QSPI module
requires time to load a transmit RAM entry for transfer. Receiving devices need at least the standard delay
between successive transfers. If SYSCLK is operating at a slower rate, the delay between transfers must
be increased proportionately.

16.3.4 Transfer Length

There are two transfer length options. The user can choose a default value of 8 bits or a programmed value
of 8 to 16 bits inclusive. The programmed value must be written into QMR[BITS]. The bits per transfer
enable (BITSE) field in the command RAM determines whether the default value (BITSE = 0) or the
BITS[3–0] value (BITSE = 1) is used. QMR[BITS] gives the required number of bits to be transferred.

16.3.5 Data Transfer

Operation is initiated by setting QDLYR[SPE]. Shortly after QDLYR[SPE] is set, the QSPI executes the
command at the command RAM address pointed to by QWR[NEWQP]. Data in transmit RAM is loaded
into the data shift register and transmitted. Data that is simultaneously received is stored in the receive
RAM.

When the proper number of bits has been transferred, the QSPI stores the working queue pointer value in
QWR[CPTQP], increments the working queue pointer, and loads the next data for transfer from the
transmit RAM. The command pointed to by the incremented working queue pointer is executed next unless
a new value has been written to QWR[NEWQP]. If a new queue pointer value is written while a transfer
is in progress, then that transfer is completed normally.

When the CONT bit in the command RAM is set, the QSPI_CS signals are asserted between transfers.
When CONT is cleared, QSPI_CS[3:0] are negated between transfers. The QSPI_CS signals are not high
impedance.

When the QSPI reaches the end of the queue, it asserts QIR[SPIF]. If QIR[SPIFE] is set, an interrupt
request is generated when QIR[SPIF] is asserted. Then the QSPI clears QDLYR[SPE] and stops, unless
wraparound mode is enabled.

Wraparound mode is enabled by setting QWR[WREN]. The queue can wrap to pointer address 0x0, or to
the address specified by QWR[NEWQP], depending on the state of QWR[WRTO].

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

16-8 Freescale Semiconductor

In wraparound mode, the QSPI cycles through the queue continuously, even while requesting interrupt
service. QDLYR[SPE] is not cleared when the last command in the queue is executed. New receive data
overwrites previously received data in the receive RAM. Each time the end of the queue is reached,
QIR[SPIFE] is set. QIR[SPIF] is not automatically reset. If interrupt driven QSPI service is used, the
service routine must clear QIR[SPIF] to abort the current request. Additional interrupt requests during
servicing can be prevented by clearing QIR[SPIFE].

There are two recommended methods of exiting wraparound mode: clearing QWR[WREN] or setting
QWR[HALT]. Exiting wraparound mode by clearing QDLYR[SPE] is not recommended because this may
abort a serial transfer in progress. The QSPI sets SPIF, clears QDLYR[SPE], and stops the first time it
reaches the end of the queue after QWR[WREN] is cleared. After QWR[HALT] is set, the QSPI finishes
the current transfer, then stops executing commands. After the QSPI stops, QDLYR[SPE] can be cleared.

16.4 QSPI Memory Map and Register Definitions
The programming model for the QSPI consists of six registers. They are the QSPI mode register (QMR),
QSPI delay register (QDLYR), QSPI wrap register (QWR), QSPI interrupt register (QIR), QSPI address
register (QAR), and the QSPI data register (QDR).

There are a total of 80 bytes of memory used for transmit, receive, and control data. This memory is
accessed indirectly using QAR and QDR.

Registers and RAM are written and read by the CPU.

16.4.1 QSPI Mode Register (QMR)

The QMR register, shown in Figure 16-3, determines the basic operating modes of the QSPI module.
Parameters such as clock polarity and phase, baud rate, master mode operation, and transfer size are
determined by this register. The data output high impedance enable, DOHIE, controls the operation of
QSPI_Dout between data transfers. When DOHIE is cleared, QSPI_Dout is actively driven between
transfers. When DOHIE is set, QSPI_Dout assumes a high impedance state.

NOTE
Because the QSPI does not operate in slave mode, the master mode enable
bit, QMR[MSTR], must be set for the QSPI module to operate correctly.

Address MBAR + 0x400 Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MSTR DOHIE BITS CPOL CPHA BAUD

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

Figure 16-3. QSPI Mode Register (QMR)

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 16-9

Figure 16-4. QSPI Clocking and Data Transfer Example

Table 16-3. QSPI Mode Register (QMR) Field Descriptions

Field Description

15
MSTR

Master mode enable.
0 Reserved, do not use.
1 The QSPI is in master mode. Must be set for the QSPI module to operate correctly.

14
DOHIE

Data output high impedance enable. Selects QSPI_Dout mode of operation.
0 Default value after reset. QSPI_Dout is actively driven between transfers.
1 QSPI_Dout is high impedance between transfers.

13–10
BITS

Transfer size—Determines the number of bits to be transferred for each entry in the queue.
Value Bits per transfer
0000 16
0001–0111.... Reserved
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

9
CPOL

Clock polarity. Defines the clock polarity of QSPI_CLK.
0 The inactive state value of QSPI_CLK is logic level 0.
1 The inactive state value of QSPI_CLK is logic level 1.

8
CPHA

Clock phase. Defines the QSPI_CLK clock-phase.
0 Data is captured on the rising edge of QSPI_CLK and changed on the falling edge of QSPI_CLK.
1 Data is changed on the falling leading edge of QSPI_CLK and captured on the rising edge of QSPI_CLK.

7–0
BAUD

Baud rate divider. The baud rate is selected by writing a value in the range 2–255. A value of zero disables the QSPI.
The desired QSPI_CLK baud rate is related to SYSCLK and QMR[BAUD] by the following expression:
 • QMR[BAUD] = SystemClock / [2 × (desired QSPI_CLK baud rate)]

QSPI_CLK

QSPI_Dout

QSPI_Din

QSPI_CS

A B

QMR[CPOL] = 0
QMR[CPHA] = 1
QCR[CONT] = 0

Chip selects are active low
A = QDLYR[QCD]
B = QDLYR[DTL]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

msb

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

16-10 Freescale Semiconductor

16.4.2 QSPI Delay Register (QDLYR)

16.4.3 QSPI Wrap Register (QWR)

Address MBAR + 0x404 Access: User read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SPE QCD DTL

W

Reset 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

Figure 16-5. QSPI Delay Register (QDLYR

Table 16-4. QSPI Delay Register (QDLYR) Field Descriptions

Field Description

15
SPE

QSPI enable. When set, the QSPI initiates transfers in master mode by executing commands in the command RAM.
Automatically cleared by the QSPI when a transfer completes.The user can also clear this bit to abort transfer unless
QIR[ABRTL] is set. The recommended method for aborting transfers is to set QWR[HALT].

14–8
QCD

QSPILCK Delay. When the DSCK bit in the command RAM, is set this field determines the length of the delay from
assertion of the chip selects to valid QSPI_CLK transition.

7–0
DTL

Delay after transfer. When the DT bit in the command RAM sets this field, it determines the length of delay after the serial
transfer.

Address MBAR + 0x408 Access: User read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
HALT WREN WRTO CSIV ENDQP CPTQP NEWQP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-6. QSPI Wrap Register (QWR)

Table 16-5. QSPI Wrap Register (QWR) Field Descriptions

Field Description

15
HALT

Halt transfers. Assertion of this bit causes the QSPI to stop execution of commands once it has completed execution
of the current command.

14
WREN

Wraparound enable. Enables wraparound mode.
0 Execution stops after executing the command pointed to by QWR[ENDQP].
1 After executing command pointed to by QWR[ENDQP], wrap back to entry zero, or the entry pointed to by

QWR[NEWQP] and continue execution.

13
WRTO

Wraparound location. Determines where the QSPI wraps to in wraparound mode.
0 Wrap to RAM entry zero.
1 Wrap to RAM entry pointed to by QWR[NEWQP].

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 16-11

16.4.4 QSPI Interrupt Register (QIR)

12
CSIV

QSPI_CS inactive level.
0 QSPI chip select outputs return to zero when not driven from the value in the current command RAM entry during

a transfer (that is, inactive state is 0, chip selects are active high).
1 QSPI chip select outputs return to one when not driven from the value in the current command RAM entry during

a transfer (that is, inactive state is 1, chip selects are active low).

11–8
ENDQP

End of queue pointer. Points to the RAM entry that contains the last transfer description in the queue.

7–4
CPTQP

Completed queue entry pointer. Points to the RAM entry that contains the last command to have been completed.
This field is read only.

3–0
NEWQP

Start of queue pointer. This 4-bit field points to the first entry in the RAM to be executed on initiating a transfer.

Address MBAR + 0x40C Access: User read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
WCEFB ABRTB ABRTL WCEFE ABRTE SPIFE WCEF ABRT SPIF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-7. QSPI Interrupt Register (QIR)

Table 16-6. QSPI Interrupt Register (QIR) Field Descriptions

Field Description

15
WCEFB

Write collision access error enable. A write collision occurs during a data transfer when the RAM entry containing the
command currently being executed is written to by the CPU with the QDR. When this bit is asserted, the write access
to QDR results in an access error.

14
ABRTB

Abort access error enable. An abort occurs when QDLYR[SPE] is cleared during a transfer. When set, an attempt to
clear QDLYR[SPE] during a transfer results in an access error.

13 Reserved, should be cleared.

12
ABRTL

Abort lock-out. When set, QDLYR[SPE] cannot be cleared by writing to the QDLYR. QDLYR[SPE] is only cleared by
the QSPI when a transfer completes.

11
WCEFE

Write collision interrupt enable. Interrupt enable for WCEF. Setting this bit enables the interrupt, and clearing it
disables the interrupt.

10
ABRTE

Abort interrupt enable. Interrupt enable for ABRT flag. Setting this bit enables the interrupt, and clearing it disables
the interrupt.

9 Reserved, should be cleared.

8
SPIFE

QSPI finished interrupt enable. Interrupt enable for SPIF. Setting this bit enables the interrupt, and clearing it disables
the interrupt.

7–4 Reserved, should be cleared.

Table 16-5. QSPI Wrap Register (QWR) Field Descriptions (continued)

Field Description

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

16-12 Freescale Semiconductor

The command and data RAM in the QSPI is indirectly accessible with QDR and QAR as 48 separate
locations that comprise 16 words of transmit data, 16 words of receive data and 16 bytes of commands.

A write to QDR causes data to be written to the RAM entry specified by QAR[ADDR]. This also causes
the value in QAR to increment.

Correspondingly, a read at QDR returns the data in the RAM at the address specified by QAR[ADDR].
This also causes QAR to increment. A read access requires a single wait state.

NOTE
The QAR does not wrap after the last queue entry within each section of the
RAM.

16.4.5 QSPI Address Register (QAR)

The QAR, shown in Figure 16-8, is used to specify the location in the QSPI RAM that read and write
operations affect.

16.4.6 QSPI Data Register (QDR)

The QDR, shown in Figure 16-9, is used to access QSPI RAM indirectly. The CPU reads and writes all
data from and to the QSPI RAM through this register.

3
WCEF

Write collision error flag. Indicates that an attempt has been made to write to the RAM entry that is currently being
executed. Writing a 1 to this bit clears it and writing 0 has no effect.

2
ABRT

Abort flag. Indicates that QDLYR[SPE] has been cleared by the user writing to the QDLYR rather than by completion
of the command queue by the QSPI. Writing a 1 to this bit clears it and writing 0 has no effect.

1 Reserved, should be cleared.

0
SPIF

QSPI finished flag. Asserted when the QSPI has completed all the commands in the queue. Set on completion of the
command pointed to by QWR[ENDQP], and on completion of the current command after assertion of QWR[HALT].
In wraparound mode, this bit is set every time the command pointed to by QWR[ENDQP] is completed. Writing a 1 to
this bit clears it and writing 0 has no effect.

Address MBAR + 0x410 Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-8. QSPI Address Register (QAR)

Table 16-6. QSPI Interrupt Register (QIR) Field Descriptions (continued)

Field Description

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 16-13

16.4.7 Command RAM Registers (QCR0–QCR15)

The command RAM is accessed using the upper byte of QDR. The QSPI cannot modify information in
command RAM.

There are 16 bytes in the command RAM. Each byte is divided into two fields. The chip select field enables
external peripherals for transfer. The command field provides transfer operations.

NOTE
The command RAM is accessed only using the most significant byte of
QDR and indirect addressing based on QAR[ADDR].

Address MBAR + 0x414 Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-9. QSPI Data Register (QDR)

Address QAR[ADDR] Access: User write only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W CONT BITSE DT DSCK QSPI_CS

Reset – – – – – – – – – – – – – – – –

Figure 16-10. Command RAM Registers (QCR0–QCR15)

Table 16-7. Command RAM Registers (QCRn) Field Descriptions

Field Description

15
CONT

Continuous.
0 Chip selects return to inactive level defined by QWR[CSIV] when transfer is complete.
1 Chip selects remain asserted after the transfer of 16 words of data11.

14
BITSE

Bits per transfer enable.
0 Eight bits
1 Number of bits set in QMR[BITS]

13
DT

Delay after transfer enable.
0 Default reset value.
1 The QSPI provides a variable delay at the end of serial transfer to facilitate interfacing with peripherals that have

a latency requirement. The delay between transfers is determined by QDLYR[DTL].

12
DSCK

Chip select to QSPI_CLK delay enable.
0 Chip select valid to QSPI_CLK transition is one-half QSPI_CLK period.
1 QDLYR[QCD] specifies the delay from QSPI_CS valid to QSPI_CLK.

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

16-14 Freescale Semiconductor

Figure 16-11. QSPI Timing

16.4.8 Programming Example

The following steps are necessary to set up the QSPI 12-bit data transfers and a QSPI_CLK of 15MHz.
The QSPI RAM is set up for a queue of 16 transfers. All four QSPI_CS signals are used in this example.

1. Set QSPI pin functionality by the programming the PIN_CONFIG register as appropriate.

11–8
QSPI_C

S

Peripheral chip selects. Used to select an external device for serial data transfer. More than one chip select may be
active at once, and more than one device can be connected to each chip select.

7–0 Reserved, should be cleared.

1 To keep the chip selects asserted for all transfers, the QWR [CSIV] bit must be set to control the level that the chip selects
return to after the first transfer.

Table 16-7. Command RAM Registers (QCRn) Field Descriptions (continued)

Field Description

QSPICS[3:0]

QSPICLK

QSPIDOUT

QSPIDIN

QS1

QS1: QSPICS to QSPICLK

QS2: QSPI_CLK to QSPIDOUT VALID

QS3: QSPI_CLK to QSPIDOUT HOLD

QS4: QSPI_DIN to QSPICLK SETUP

QS2

QS3 QS4 QS5

QS5: QSPI_DIN to QSPICLK HOLD

1T1

0 ns

10 ns

10 ns

Min Max

20 ns

1 T1 is defined as the clock period in ns.

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 16-15

2. Write the QMR with 0xB302 to set up 12-bit data words with the data shifted on the falling clock
edge, and a clock frequency of 15MHz (assuming a 60-MHz SYSCLK).

3. Write QDLYR with the desired delays.

4. Write QIR with 0xD00F to enable write collision, abort bus errors, and clear any interrupts.

5. Write QAR with 0x0020 to select the first command RAM entry.

6. Write QDR with 0x7E00, 0x7E00, 0x7E00, 0x7E00, 0x7D00, 0x7D00, 0x7D00, 0x7D00, 0x7B00,
0x7B00, 0x7B00, 0x7B00, 0x7700, 0x7700, 0x7700, and 0x7700 to set up four transfers for each
chip select. The chip selects are active low in this example.

7. Write QAR with 0x0000 to select the first transmit RAM entry.

8. Write QDR with sixteen 12-bit words of data.

9. Write QWR with 0x0F00 to set up a queue beginning at entry 0 and ending at entry 15.

10. Set QDLYR[SPE] to enable the transfers.

11. Wait until the transfers are complete. QIR[SPIF] is set when the transfers are complete.

12. Write QAR with 0x0010 to select the first receive RAM entry.

13. Read QDR to get the received data for each transfer.

14. Repeat steps 5 through 13 to do another transfer.

Queued Serial Peripheral Interface (QSPI) Module

MCF5251 Reference Manual, Rev. 1

16-16 Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-1

Chapter 17
Audio Interface Module (AIM)
This chapter discusses the audio interface structure, memory map, and register descriptions, as well as
transmit and receive interfaces.

17.1 Audio Interface Overview
The audio interface module provides the necessary input and output features to receive and transmit digital
audio signals over serial audio interfaces (IIS/EIAJ) and over digital audio interfaces (IEC958).

The MCF5251 is equipped with three serial audio interfaces compliant with Philips I2S and Sony EIAJ
format. There are two IEC958 (SPDIF) receivers with 4 multiplexed inputs, and one IEC958 (SPDIF)
transmitter with two outputs: One for professional C-channel and one for consumer C-channel.

The audio interface module allows the direct retransmission of an audio signal received on one receiver to
another transmitter, without CPU intervention, or it allows the CPU to receive or transmit digital audio to
or from any of the audio interfaces.

The IEC958 (SPDIF) receivers and transmitter support audio and allow the handling of IEC958 C and
U channels.

A frequency measurement block exists to allow precise measurement of an incoming sampling frequency.
This can be used in conjunction with the XTRIM output (and with the appropriate control software) to
“lock” the clock that is being input to CRIN (either external generated clock or crystal) to the recovered
SPDIF audio clock, if so desired. Some external hardware is required for this including a set of varicap
diodes. This is covered in Section 17.9, “Phase/Frequency Determination and XTRIM Function.”

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-2 Freescale Semiconductor

17.1.1 Audio Interface Block Diagram

Figure 17-1. Audio Interface Block Diagram

IIS 1
clock gen

IIS1
Receive

IIS1
Control

sclk1

lrck1

sdatai1

IIS1
Transmitsdatao1

iis1RcvData(39:0)

IIS2
clock gen

IIS2
Control

IIS2
Transmit

IIS4
clock gen

IIS4
Receive

IIS4
Control

sdatao2

sclk2

lrck2

sclk4

lrck4

sdatai4

EbuIn1

EbuIn2

EbuIn3

EbuIn4

EBU
Receive
Block

32-bit EBU "C" channel

ebuRcvUChannelStream

ebuExtractedClock

ebuRcvData1

Source
Select

IIS1 Tx
Fifo

IIS1 Tx
Source Select

IIS2 Tx
Fifo

IIS2 Tx
Source Select

EBU
Tx
Block

EBU
clock gen

ebuOut2

ebuOut1

EBU Tx
Fifo

Ebu Tx
Source
Select

32-bit EBU "c" channel

Clock Select

ebuTxUChannelStream

6 fields

6 fields

6 fields

1

2

3

4

5

6

8

9

10

11

12
13

14 15

18 19

22

23

24
25

26

27

28

29

30

31

iis4RcvData(39:0)

IIS3
clock gen

IIS3
Receive

IIS3
Control

sclk3

lrck3

sdatai3

6

7

8

iis3RcvData(39:0)

PDIR2
FIFO

PDIR2
register
(Read-only)

6 fields

16
17

Block
Decoder

100

101
Block
Encoder

PDOR3e

PDOR3
register
(write-only)

PDIR1
FIFO

PDIR1
register
(read-only)

6 fields

16a
17a0

0

PDIR2
Source
Select

Memory-mapped
ColdFire processo
bus

PDOR1 register
(write only)

PDOR2 register
(write only)

Reg

Reg

PDOR1

PDOR2

0

0

Bypass select

0

31a

ebuOff

(To FreqMeas block)

(read only)

(read only)

(write only)

(write only)

Internal
Audio
Data
Bus

EBU
Receive
Block

ebuRcvData2

18a

PDIR1
FIFO

PDIR3
register
(read-only)

6 fields

16b
17b

0

ebuOut2

ebuOut1

SDATAO2

SCLK2

LRCK2

SDATAO1

SCLK1

LRCK1

SDATAI1

SCLK3

LRCK3

SDATI3

LRCK4

EBUOUT2

EBUOUT1

1

11
Control

1

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-3

17.1.2 Audio Interface Structure

The discussion in this section accompanies Figure 17-1 by identifying the blocks called out (in bold) in the
diagram.

There are four serial audio interface blocks (5–11) labeled as follows:

1. IIS1: Capable of transmitting and receiving audio data.

2. IIS2: Transmit only.

3. IIS3: Receive only.

4. IIS4: Only SCLK4 input / output is available. This is intended to be used with the ADC circuit
under certain conditions see Chapter 12, “Analog to Digital Converter (ADC)” for details.

As shown in Figure 17-1, there two IEC958 receivers. The source selector (18) and the receiver block itself
(19). The receiver is capable of taking its input signal from four possible EBU inputs:

1. EBUIN1

2. EBUIN2

3. EBUIN3

4. EBUIN4

There is one IEC958 transmitter with two outputs (30), one carries the “consumer” C-channel, the other
the “professional” C-channel.

Four audio interface receivers (IIS1, IIS3, and the two EBU receivers) send their received data on an
internal 40-bit wide bus, the Internal Audio Data Bus. Every transmitter sources its data to be transmitted
from this same internal bus. Every transmitter has a multiplexer to select the data source. Possible sources
are (IIS1 receiver, IIS3 receiver, two EBU receivers, processor data output1, processor data output2,
processor data output 3). Every transmitter also has a FIFO after the multiplexer. This FIFO gives the data
source some freedom when data is generated. The FIFOs compensate for phase shifts when a transmitter
takes data from another receiver. In the case that the transmitter sends out processor-generated data, the
FIFO allows the processor to send several audio words in one burst to the audio transmitter.

To allow the processor to receive and transmit audio data, an interface is present between the internal
Audio Data Bus and the ColdFire memory space. As shown in Figure 17-1, this interface is seen in the
memory map as Processor Data Interface Registers. Three of these are Processor Data Out registers,
PDOR1, PDOR2 and PDOR3. When the processor writes to one of these registers, the data is sent directly
to the Internal Audio Data Bus, and depending on the setting of the multiplexers (13, 15, and 24) it will
end up in one or several of the transmit FIFOs (12, 14, and 25). There are three Processor Data In registers,
PDIR1, PDIR2, and PDIR3. When the processor reads from one of these address locations, it actually
reads data from one of the FIFOs (17, 17a, or 17b). These FIFOs receive data from the Internal Audio Data
Bus using multiplexers (16, 16a, and 16b). Depending on the setting of the multiplexers, data from one of
the audio data receivers will end in the FIFOs. Possible receivers for the three PDIR channels are IIS1
receiver, IIS3 receiver and the two IEC958 receivers.

Besides the mechanism to let the processor access the audio data, there are several interrupts and control
registers to allow the processor to determine when it should read or write data to the appropriate Processor
Data Interface Register.

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-4 Freescale Semiconductor

The IEC958 receiver and transmitter handle the main data audio stream in the same way as the IIS receivers
and transmitters. This is done using the internal Audio Data Bus. Additionally, they support the IEC958
“C” and “U” channels. IEC958 “C” and “U” channel data is interfaced directly to memory-mapped
registers (22, 26, 27 and 28).

17.2 Audio Interface Memory Map and Register Definitions
The registers and register field descriptions are provided in this section for the Audio Interface. These
registers include the following registers: Interrupt Mask and Interrupt Status registers, Serial and Digital
Audio Interface registers, Receive Interface registers, Data Exchange registers, CDROM Block Encoder
and Decoder registers, DMA Configuration registers, Phase Configuration register, and the XTrim register.

17.3 Audio Interface Memory Map
All of the Audio Interface registers listed in Table 17-1 have already been shown in the various parts of
this chapter. They are repeated here as a quick reference.

Table 17-1. Audio Interface Memory Map

Address Register Name
Sze
Bits

Access

MBAR2 + 0x12 I2S1 configuration 32 RW

MBAR2 + 0x16 I2S 2 configuration 32 RW

MBAR2 + 0x1A I2S 3 configuration 32 RW

MBAR2 + 0x1E I2S 4 configuration for SCLK4 32 RW

MBAR2 + 0x20 EBU 1 configuration 32 RW

MBAR2 + 0x20 EBU 2 configuration 32 RW

MBAR2 + 0x24 EBU 1 Receive C Channel 32 R

MBAR2 + 0xD0 EBU 2 Receive C Channel 32 R

MBAR2 + 0x28 EBU 1 Transmit C Channel 32 RW

MBAR2 + 0x2C EBU 2 Transmit C Channel 32 RW

MBAR2 + 0x32 DataIn Control 16 RW

MBAR2 + 0x34
MBAR2 + 0x38
MBAR2 + 0x3C
MBAR2 + 0x40

Processor data in 1 Left (PDIR1-L) 32 R

MBAR2 + 0x44
MBAR2 + 0x48
MBAR2 + 0x4C
MBAR2 + 0x50

Processor data in 3 Left (PDIR3-L) 32 R

MBAR2 + 0x54
MBAR2 + 0x58
MBAR2 + 0x5C
MBAR2 + 0x60

Processor data in 1 Right (PDIR1-R) 32 R

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-5

MBAR2 + 0x64
MBAR2 + 0x68
MBAR2 + 0x6C
MBAR2 + 0x70

Processor data in 3 Right (PDIR3-R)

MBAR2 + 0x34
MBAR2 + 0x38
MBAR2 + 0x3C
MBAR2 + 0x40

Processor data out 1 Left (PDOR1-L) 32 W

MBAR2 + 0x44
MBAR2 + 0x48
MBAR2 + 0x4C
MBAR2 + 0x50

Processor data out 1 Right (PDOR1-R) 32 W

MBAR2 + 0x54
MBAR2 + 0x58
MBAR2 + 0x5C
MBAR2 + 0x60

Processor data out 2 - Left (PDOR2-L) 32 W

MBAR2 + 0x64
MBAR2 + 0x68
MBAR2 + 0x6C
MBAR2 + 0x70

Processor data out 2 - Right (PDOR2-R) 32 W

MBAR2 + 0x74
MBAR2 + 0x78
MBAR2 + 0x7C
MBAR2 + 0x80

Processor data out 3 left + right (PDOR3) 32 W

MBAR2 + 0x74
MBAR2 + 0x78
MBAR2 + 0x7C
MBAR2 + 0x80

Processor data in 2 left + right (PDIR2) 32 R

MBAR2 + 0x84 U Channel Transmit 32 RW

MBAR2 + 0x88 U Channel Receive 32 R

MBAR2 + 0x8C Q Channel Receive 32 R

MBAR2 + 0x92 CD Text Control 16 RW

MBAR2 + 0x9F DMA Configure 8 RW

MBAR2 + 0xA2 Phase Configure 8 RW

MBAR2 + 0xA6 XTRIM 16 RW

MBAR2 + 0xA8 Frequency measurement 32 R

MBAR2 + 0xC8 Block decoder/encoder control 32 RW

MBAR2 + 0xCE audioGlob 16 RW

Table 17-1. Audio Interface Memory Map (continued)

Address Register Name
Sze
Bits

Access

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-6 Freescale Semiconductor

17.4 Audio Interrupt Mask and Status Register Descriptions
The interrupts of the audio interface use vectors 0–31 of the interrupt controller. There are two sets of
registers associated with interrupt operation.

Every pending audio interrupt will show up as a ‘1’ in register InterruptStat or InterruptStat3. The interrupt
will cause the associated interrupt to go active if the corresponding bit in InterruptEn is set to ‘1‘. Most
interrupts are cleared by writing a ‘1’ to the corresponding bit in InterruptClear register.

Table 17-2. Interrupt Register Addresses

Address Name Width Description
Reset
Value

Access

MBAR2 + 0x94
MBAR2 + 0x97

InterruptEn 32 Interrupt enable register 0 R/W

MBAR2 + 0x98
MBAR2 + 0x9B

InterruptStat 32 Interrupt status register – R

MBAR2 + 0x9
MBAR2 + 0x9B

InterruptClear 32 Interrupt clear register – W

MBAR2 + 0xE4
MBAR2 + 0xE7

InterruptEn3 32 Interrupt enable register – R/W

MBAR2 + 0xE0
MBAR2 + 0xE3

InterruptStat3 32 Interrupt status register – R

MBAR2 + 0xE0
MBAR2 + 0xE3

InterruptClear3 32 Interrupt clear register – W

Table 17-3. Interrupt Register Description

Bit Interrupt Name Description Vector How to Clear

31 IIS1TXUNOV I2S 1 transmit FIFO under/over 31 reg. IntClear

30 IIS1TXRESYN I2S 1 transmit FIFO resync 30 reg. IntClear

29 IIS2TXUNOV I2S 2 transmit FIFO under/over 29 reg. IntClear

28 IIS2TXRESYN I2S 2 transmit FIFO resync 28 reg. IntClear

27 EBUTXUNOV IEC958 transmit FIFO under/over 27 reg. IntClear

26 EBUTXRESYN IEC958 transmit FIFO resync 26 reg. IntClear

25 EBU1CNEW IEC958-1 receiver new C channel received 25 reg. IntClear

24 EBU1VALNOGOOD IEC958-1 receiver validity bit not set 24 reg. IntClear

23 EBU1SYMERR IEC958-1 receiver symbol error 23 reg. IntClear

22 EBU1BITERR IEC958-1 receiver parity bit error 23 reg. IntClear

21 UCHANTXEMPTY U Channel transmit register is empty 21 write to tx reg

20 UCHANTXUNDER U Channel transmit register underrun 20 reg. IntClear

19 UCHANTX NEXTFIRST U Channel transmit register next byte will be first 19 write to Tx reg

18 U1CHANRCVFULL U1Channel receive register full 18 read Rcv reg

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-7

17 U1CHANRCVOVER U1Channel receive register overrun 23 reg. IntClear

16 Q1CHANRCVFULL Q1Channel receive register full 18 read rcv reg

15 Q1CHANRCVOVER Q1Channel receive register overrun 13 reg. IntClear

14 UQ1CHANSYNC U/Q Channel sync found 18 reg. IntClear

13 UQ1CHANERR U/Q Channel framing error 13 reg IntClear

12 PDIR1UNOV Processor data in 1 under/over 12 reg IntClear

11 PDIR1RESYN Processor data in 1 resync 11 reg IntClear

10 PDIR2UNOV Processor data in 2 under/over 10 reg IntClear

9 PDIR2RESYN Processor data in 2 resync 9 reg IntClear

8 AUDIOTICK Tick interrupt 8 reg IntClear

7 U2CHANRCVOVER
Q2CHANOVERRUN

UQ2CHANERR

IEC 958 receiver 2 U/Q channel error 7 reg IntClear

6 PDIR3 RESYNC Processor data in 3 resync 6 reg IntClear

5 PDIR3 FULL Processor data in 3 full 5 read fromPDIR3

4 IIS1TXEMPTY I2S 1 transmit FIFO empty 4 write to FIFO

3 IIS2TXEMPTY I2S 2 transmit FIFO empty 3 write to FIFO

2 EBUTXEMPTY EBU transmit FIFO empty 2 write to FIFO

1 PDIR2 FULL Processor data in 2 full 1 read from PDIR2

0 PDIR1 FULL Processor data in 1 full 0 read from PDIR1

Table 17-4. InterruptEn3 InterruptClear3, InterruptStat3 Register Description

Bit Interrupt Name Description Vector How to Clear

25 EBU2CNEW IEC958-2 receiver new C channel received 17 reg. IntClear3

24 EBU2VALNOGOOD IEC958-2 receiver validity bit not set 16 reg. IntClear3

23 EBU2SYMERR IEC958-2 receiver symbol error 15 reg. IntClear3

22 EBU2BITERR IEC958-2 receiver parity bit error 15 reg. IntClear3

18 UCHANRCVFULL U2 Channel receive register full 14 read rcv reg

17 UCHANRCVOVER U2 Channel receive register overrun 7 reg. IntClear3

16 QCHANRVFULL Q2 Channel receive register full 14 read rcv reg

15 QCHANOVERRUN Q2 Channel receive register overrun 7 reg. IntClear3

14 UQCHANSYNC U/Q2 Channel sync found 14 reg. IntClear3

13 UQCHANERR U/Q2 Channel framing error 7 reg IntClear3

Table 17-3. Interrupt Register Description (continued)

Bit Interrupt Name Description Vector How to Clear

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-8 Freescale Semiconductor

17.5 Serial Audio Interface (I2S/EIAJ) Register Descriptions
There are a total of three serial audio interfaces. Each interface can handle Philips I2S or Sony EIAJ
protocol. Interface 1 is a receive/transmit interface. Interface 2 is transmit only, Interface 3 is a receive only.
Every serial audio interface block has a 32-bit configuration register associated with it.

NOTE
Each of the three I2S interfaces is capable of operating in Philips I2S mode
or Sony EIAJ mode with either 32, 36, or 40 bits per word clock. Timing
diagrams describing each of these modes are given in the following sections.
The frequency of the clock and data signals is programmable, as is the
inversion of the bit clock (SCLK) or word clock (LRCK) for each I2S
interface.

Inversion of the LRCK clock only operates correctly on a slave receiver, therefore IIS3. If IIS1 is being
used for transmit and receive in master mode then LRCK will be inverted on both the input and the output.
Thereby cancelling the effect.

The SCLK and LRCK signals for each I2S interface can either be inputs to the interface or they can be
generated internally (outputs). See Table 17-5.

Figure 17-2 illustrates the valid bits in the IIS1 Configuration Registers and Table 17-5 provides the
description of the bit fields.

Figure 17-3 illustrates the valid bits in the IIS2 Configuration Registers and Table 17-5 provides the
description of the bit fields.

Address MBAR2 + 0x10 (reset 0x0fc8) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R EF/CFLG
INSERT

CFLG SAMPLE
POSITION

TXSOURCE
SELECTW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CLOCKSEL

TX FIFO
CONTROL

TXSOURCE
SELECT

SIZE MODE
LRCK

FREQUENCY
LRCK INVERT

SCLK
INVERTW

Reset 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0

Figure 17-2. IIS1 Configuration Registers (0x10)

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-9

.

Figure 17-4 illustrates the valid bits in the IIS3 and IIS4 (SCLK4) Configuration Registers and Table 17-5
provides the description of the bit fields.

.

Address MBAR2 + 0x14 (reset 0x0fc8) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R TXSOURCE
SELECTW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CLOCKSEL

TX FIFO
CONTROL

TXSOURCE
SELECT

SIZE MODE
LRCK

FREQUENCY
LRCK

INVERT
SCLK

INVERTW

Reset 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0

Figure 17-3. IIS2 Configuration Registers (0x14)

Address MBAR2 + 0x18 (reset 0x0fc8) (IIS3config)
MBAR2 + 0x1C (reset 0x0fc8) (IIS4config(SCLK4))

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CLOCKSEL SIZE MODE

LRCK
FREQUENCY

LRCK
INVERT

SCLK
INVERTW

Reset 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0

Figure 17-4. IIS3 and IIS4 (SCLK4) Configuration Registers (0x18, 0x1C)

Table 17-5. IIS Configuration Registers Field Descriptions

Field Description

EF/CFLG EF/CFLG insert. See note 16
0 Not active
1 Active

CFLG CFLG sample position. See note 16
0 Sample CFLG input 1 SCLK clock after incoming LRCK edge
1 Sample CFLG input 6 SCLK clocks before incoming LRCK edge

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-10 Freescale Semiconductor

CLOCKSEL See notes 1, 11, 14 and 17 following bit these descriptions.
0000 SCLK/LRCK is input
0001 SCLK: Audio Clk/ 24
0010 SCLK: Audio Clk / 16
0011 SCLK: Audio Clk / 12
0100 SCLK: Audio Clk / 8
0101 SCLK: Audio Clk / 6
0110 SCLK: Audio Clk / 4
0111 SCLK: Audio Clk / 3
1100 SCLK: Audio Clk / 2
1000 SCLK, LRCK: follow IIS1
1001 SCLK, LRCK: follow IIS2
1010 SCLK, LRCK: follow IIS3
1011 Reserved

TX FIFO CONTROL See notes 2, 7, 13, and 15 following these bit descriptions.
1 Reset to 1 sample remaining
0 Normal operation

TXSOURCE
SELECT

See notes 2, 9, 12, and 15 following bit these descriptions.
0 000 Digital zero
0 001 PDOR1
0 010 PDOR2
0 011 PDOR3
0 100 IIS1 RcvData
0 101 IIS3 RcvData
0 110 Reserved
0 111 EBU RcvData
1 000 EBU2 RcvData

SIZE See notes 3, 4, and 8 following bit these descriptions.
00 16 bits
01 18 bits
10 20 bits
11 Zero

MODE 1 Sony, EIAJ mode
0 Philips I2S mode

LRCK FREQUENCY 100 64 bit clocks / word clock
010 48 bit clocks / word clock
000 32 bit clocks / word clock
Other settings: reserved, undefined

LRCK INVERT See note 5 following bit these descriptions.
1 Invert on word clock
0 No invert on word clock

Table 17-5. IIS Configuration Registers Field Descriptions (continued)

Field Description

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-11

17.5.1 IIS/EIAJ Transmitter Descriptions

The two I2S/EIAJ transmitters operate independently. Each of the transmitters has the capability of
transmitting data from one of several sources:

• One of the three processor data out registers.

SCLK INVERT
See note 6 following bit these descriptions.
1 Invert on bit clock
0 No invert on bit clock

1 Audio Clk is typically 11.2896 MHz or 16.93 MHz. Actual value given Table 4-4 in Chapter 4, “Phase-Locked Loop and Clock
Dividers.”

2 When bit 11 is set, FIFO is in reset condition. The FIFO is always re-set to “1 sample remaining”. The value of the remaining
one sample will be all-zero.

3 When Philips I2S mode is selected, 16-18-20 bits will yield the same result.
4 Internal interface is 40 bits / sample (20 left + 20 right). 16, 18 bit words are padded with zeros
5 LRCK “invert” will invert the incoming LRCK signal between the pin and the serial data receiver and transmitter
6 SCLK “invert” will invert the incoming SCLK signal between the pin and the serial data receiver and transmitter.
7 Reset to one sample remaining is used to synchronize the data transfer from one input interface to another output interface

running at the same frequency.
8 “Zero” means data is transferred at the sampling frequency, with all data cleared down to digital zero.
9 PDOR1, PDOR2, PDOR3: audio data output registers.
10 Serial data transmit / receive interfaces have no limit on minimum incoming or outgoing sampling frequency. The maximum

SCLK frequency is limited to 1/3 of the internal system clock (CPUclk/2). Mark/space ratio should be equal or better than
38/62.

11 Reprogramming bits 15-12 during functional operation is not allowed. Reprogramming is only allowed while FIFO is in reset
condition (bit 11 set ‘1’)

12 When “digital zero” is selected as the source, the FIFO outputs “zero” on its outgoing data bus, regardless of the input side
and content of the FIFO. No FIFO related exceptions are generated.

13 When the FIFO leaves the reset state, because the user writes a “normal operation” state into the control register, the FIFO
is kept in reset until the first long-word is written to it. As a result, the “start” of the normal operation is synchronized with
the writing of the first data into the FIFO.

14 When IIS/Sony interface LRCK/SCLK is set in “follow IIS” mode, the bit clock and word clock become exactly identical to bit
and word clock of the “followed” interface. If e.g. LRCK/SCLK for IIS interface 2 is set in “follow IIS1”, the DAC or ADC
connected to IIS2 can use the bit clock and word clock of IIS1. Note:- Bit and word clock for IIS2 can be used then used as
GPIO if desired.

15 Bit 16 extends the Tx FIFO control bit and the bit order becomes 16, 10, 9, 8.
16 These bits should be programmed to zero for normal operation. For IIS1 receiver, it is possible to use the special EF/CFLG

insertion mode, by setting bit 18 = 1. This mode is intended to interface with Philips CD decoders (SAA7324 and successors).
When this mode is used, IIS1CONFIG must be programmed to “Sony” mode, 16 bits. The SAA7324 must also be
programmed to “Sony” mode, 16 bits. The CFLG flag coming from SAA7324 must be connected with CFLG input. The EF
flag coming from SAA7324 must be connected with EF input. If all this is done correctly, the device will receive the 16 MSB
‘s of the incoming data in bits [17:2] of the received serial data. Bit [1] of the received data is the EF flag of the corresponding
word, as output by SAA7324. Bit [1] will be set if the MSB or the LSB or both are flagged. Bit [0] of the received data is the
CFLG flag of the corresponding word, as output by SAA7324. These flags can be used for implementing an electronic shock
protection FIFO.

17 For IIS4 only the SCLK4 setting can be used. See Chapter 12, “Analog to Digital Converter (ADC)” for the purpose of this
function.

Table 17-5. IIS Configuration Registers Field Descriptions (continued)

Field Description

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-12 Freescale Semiconductor

• One of the two I2S receivers.

• The digital audio (EBU) receiver.

• Digital zero.

The source of the transmit data is programmable.

17.5.2 IIS/EIAJ Transmitter Interrupts

There are a number of interrupts defined for use with the serial audio transmitters:

• Serial audio interface1 transmit FIFO overrun or underrun

• Serial audio interface1 transmit FIFO left/right resynchronization

• Serial audio interface1 transmit FIFO empty

• Serial audio interface 2 transmit FIFO overrun or underrun

• Serial audio interface 2 transmit FIFO left/right resynchronization

• Serial audio interface 2 transmit FIFO empty

The action of the IIS transmitters on FIFO underrun is to repeat the last sample.

Timing diagrams for IIS/EIAJ mode are shown in Figure 17-5 and Figure 17-6. Data and word clock
output is clocked on the falling edge of the SCLK bit clock (noninverted).

17.5.3 IIS/EIAJ Receiver Descriptions

Each of the two IIS receivers operate independently. For timing diagrams, see Figure 17-5 and Figure 17-6.
The data can be clocked into each receiver using an external or internally-generated SCLK/LRCK. Data is
always clocked on the rising edge of the SCLK bit clock (non-inverted).

Figure 17-5. IIS/EIAJ Timing Diagram (16 SCLK edges per word)

SCLK
(inverted clock)
SCLK
(noninverted)

LRCK(IIS) Left (if noninverted)

Data out

Data In

D19 D18 D17 D15 D13 D11 D9 D7 D5 D19 D17D4 D16 D14 D12 D10 D8 D6 D4 D18

LRCK(Sony-16 bit)
Left (if noninverted)

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-13

Figure 17-6. IIS/EIAJ Timing Diagram (24 or 32 SCLK edges per word)

NOTE
In 18-bit mode, bits D1 and D0 are set 0.
In 16-bit mode, bits D3,D2,D1 and D0 are set 0.

17.6 Digital Audio Interface (EBU/SPDIF) Register Descriptions
Figure 17-7 illustrates the valid bits in the EBU1Config Registers and Table 17-6 provides the descriptions
of the bit fields.

Address MBAR2 + 0x20 / 0x24 (Reset 0x3F00) Access: User read/write

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TXSOURCE

SELECT
CLOCKSEL

TX
FIFO

CONTROL

TXSOURCE
SELECT

IEC958
RECEIVE
SOURC
SELECT

VAL
CONTROL

IEC958
OUT

SELECT

U SOURCE
SELECTW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-7. EBU1Config Register

Table 17-6. EBU1Config Register Field Descriptions

Field Description Reset Notes

15–12
CLOCKSEL

0000 IEC958 clock: audioclk / 16
0001 IEC958 clock: audioclk / 12
0010 IEC958 clock: audioclk / 8
0011 IEC958 clock: audioclk / 6
0100 IEC958 clock: audioclk / 4
0101 IEC958 clock: audioclk / 3
0110 IEC958 clock: sclk1
0111 IEC958 clock: sclk2
1000 IEC958 clock: sclk3
1001 IEC958 clock: sclk4

0011 1,2,8

11
TX FIFO CONTROL

0 Normal operation
1 Reset to one sample remaining

1111 3,5,11

SCLK
(inverted clock)
SCLK
(noninverted)

LRCK(IIS) Left (if noninverted)

Data out

Data In

D19 D18 D17 D15 D13 D11 D9 D7 D5 D3 D1D16 D14 D12 D10 D8 D6 D4 D2

LRCK(Sony-16 bit) Left (if noninverted)

D0

LRCK(Sony-20 bit)

LRCK(Sony-18 bit)

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-14 Freescale Semiconductor

16,10–8
TXSOURCE

SELECT

0 000 Digital zero
0 001 PDOR1
0 010 PDOR2
0 011 PDOR3
0 100 iis1RcvData
0 101 iis3RcvData
0 110 Reserved
0 111 ebu1RcvData
1 000 ebu2RcvData

1111 3,6,9

7–6
IEC958 RECEIVE
SOURCE SELECT

00 EBU in 1
01 EBU in 2
10 EBU in 3
11 EBU in 4

00

5
VALCONTROL

0 Outgoing V flag always 1
1 Outgoing V flag always 0

0 10

4–2
IEC958 OUT SELECT

000 Off. Output 0
001 Feed-through EBUIn1
010 Feed-through EBUIn2
011 Feed-through EBUIn3
100 Feed-through EBUIn4
101 Normal operation

000 12

Table 17-6. EBU1Config Register Field Descriptions (continued)

Field Description Reset Notes

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-15

Figure 17-8 illustrates the valid bits in the EBU2Config Register and Table 17-7 provides the description
of the bit fields.

Figure 17-8. EBU2Config Register

1–0
U SOURCE SELECT

00 No embedded U channel
01 U channel from IEC958 receive block. (CD mode)
10 Reserved, undefined
11 U channel from on-chip U channel transmitter.

00 4

1 The IEC958 interface needs 64 * audio sample frequency clock for good operation. This is 2.822 MHz for operation at a
sample rate of 44.1 kHz.

2 When The IEC958 transmitter is set to follow SCLK1, SCLK2, SCLK3, or SCLK4, it will transmit at the same rate as the serial
audio interface only if the interface uses 64 bit clocks / word clock format.

3 When bit 11 is set, the FIFO is in its reset condition. The FIFO is always re-set to “contain 1 sample”. This sample value is
re-set at the same time to “all-zeros”.

4 U channel selection is described on section handling subcode processing.
5 Before starting IEC958 transmission to copy data from another incoming channel, first reset the FIFO to one sample

remaining, while the source selector is set to correct source. When the FIFO is switched to normal operation, transmission
will start normally.

6 Digital zero means data transmitted is digital zero, while “C” and “U” channel contain valid data. When digital zero is
transmitted, the IEC958 transmit FIFO is not read any more by the IEC958 transmit hardware.

7 PDOR1, PDOR2, PDOR3: Processor Data Out Register.
8 Reprogramming bits 15-12 during functional operation is not allowed. Reprogramming is only allowed while FIFO is in its

reset condition (bit 11 set ‘1’)
9 When “digital zero” is selected as a source, the FIFO outputs “zero” on its outgoing data bus, regardless of the input side and

content of the FIFO. No FIFO related exceptions are generated.
10 This bit controls the outgoing validity flag of the EBU transmitter. When it is re-set, all outgoing data is flagged as “valid”. If it

is set, all data is flagged “invalid”.
11 When the FIFO leaves the reset state, because the user write a “normal operation” state into the control register, the FIFO

is kept into reset until first long-word is written to it. As a result, the “start” of the normal operation is synchronized with
the writing of the first data into the FIFO.

12 This field selects what is output on EBUOUT1. If the field is “000,” the SPDIF output is off and outputs 0. If the field is “001”
to “100,” it muxes out one of the EBUIN’s to the EBUOUT, without any reformatting. When the field is set to “101,” this is
normal operation of the SPDIF transmitter.

Address MBAR2 + 0XD0: 0XD3 (RESET 0X3F00) Access: User read/write

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IEC958 RECEIVE SOUCE SELECT

W

Reset 0 0 0 1 1 1 1 1 1 0 0 00 0 0 0 0 0

Table 17-6. EBU1Config Register Field Descriptions (continued)

Field Description Reset Notes

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-16 Freescale Semiconductor

17.6.1 IEC958 Receive Interface

The IEC958 (SPDIF) receive interface consists of 2 blocks:

1. The source selector

2. The IEC958 receiver itself

The source is selected by programming the appropriate EBU Control Register bits 7:6. The receiver then
extracts the data from the stream and outputs the data on the internal audio bus. The data can then be used
by the processor (using the PDIR and other registers) or by the IIS or EBU transmit interface. In the case
of the data being used as input to one of the IIS transmitters, the data rate of the incoming EBU data must
match exactly with that of the IIS transmitter. The following functions are performed by the block.

17.6.1.1 Audio Data Reception

The IEC958 receive block (19) extracts the audio data from the stream and puts this in 20-bit format on
the Internal Audio Data bus. The format is exactly the same as the format produced by the serial data
interfaces.

17.6.1.2 Control Channel Reception Register Descriptions

There are two 32-bit registers, one for each receiver, which receive the first 32 bits of the “C” channel. No
interpretation is done. For a description of the control (or “C”) channel in EBU data formatting, refer to
the IEC958-3 specification’s description of control channel. Figure 17-9 illustrates the valid bits in the
EBURcvCChannel.

Table 17-7. EBU2Config Register Field Descriptions

Field Description Reset

7–6 IEC958 Receive source select.
00 EBU in 1
01 EBU in 2
10 EBU in 3
11 EBU in 4

00

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-17

Bits are ordered first bit left. So, C-channel bit “0” is seen in bit position 31 in the EBURcvCChannel
register. C-channel bit “31” is seen as the LSB bit in the register.

17.6.1.3 Control Channel Interrupt (IEC958 “C” Channel New Frame)

When the value of a new IEC958 “C” channel frame is loaded into the EBURcvCChannel register, an
interrupt is generated. This interrupt is cleared when the processor writes the corresponding bit in the
InterruptClear register. EBURcvCChannel is double buffered. However the register can be read at any time
and provide true values the interrupt only indicates that a NEW “C” channel value has been loaded.

17.6.1.4 Validity Flag Reception

An interrupt is associated with the Validity flag. (interrupt 24 - IEC958ValNoGood). This interrupt is set
every time a frame is seen on the IEC958 interface with the validity bit set to “invalid”.

17.6.1.5 IEC958 Exception Definition

There are several IEC958 exceptions defined that will trigger an interrupt. These are:

• Control channel change—Set when EBURcvCChannel register is updated. The register is updated
for every new C-Channel received. The exception is reset when EBURcvCChannel register is read.

• EBU Illegal Symbol—Set on reception of illegal symbol during IEC958 receive. Reset by writing
register InterruptClear. Refer to Section 17.7.7, “Audio Interrupts” for details. The EBU input is a
biphase/mark modulated signal. The time between any two successive transitions of the EBU
signal is always 1, 2 or 3 EBU symbol periods long. The EBU receiver will parse the stream, and
split it in so-called symbols. It recognizes s1, s2 and s3 symbols, depending on the length of the
symbols. Not all sequences of these symbols are allowed. To give an example, a sequence
s2-s1-s1-s1-s2 cannot occur in a error-free EBU signal. If the receiver finds such an illegal
sequence, the illegal symbol interrupt is set. No corrective action is undertaken.

When the interrupt occurs, this means:

a) The EBU signal is has been affected by noise

Address EBU1RCVCCHANNEL MBAR2 + 0X24
EBU2RCVCCHANNEL MBAR2 + 0XD4

Access: User read only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R EBURcvC Channel1 and Channel2

W

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R EBURcvC Channel1 and Channel2

W

Reset – – – – – – – – – – – – – – – –

Figure 17-9. EBURcvCChannel Register

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-18 Freescale Semiconductor

b) The EBU frequency has changed

• IEC958 bit error—Set on reception of bit error. (Parity bit does not match). Reset on write to
InterruptClear register. Refer to Section 17.7.7, “Audio Interrupts” for details.

17.6.1.6 EBU Extracted Clock

The clock from the EBU signal is extracted for measurement purposes only. It cannot be used as a clock
to drive other audio interfaces like IIS. The average rate is 128 x the sampling frequency (ex. 128 * 44.1
KHz for 44.1 KHz input sampling frequency). The internal signal is used by the FreqMeas circuit (and with
suitable software) to calculate the incoming sample rate. It can also be used to calculate the offset between
the incoming SPDIF audio clock and the audio clock input at CRIN. This offset value can then be used to
calculate the necessary trim required to have the CRIN clock locked to the incoming SPDIF clock. This is
achieved via suitable external hardware and the XTRIM pin. In this way we can provide a inherently stable
and jitter free SPDIF locked clock for the rest of the application. The resultant audio clock jitter produced
is then solely a result of the stability of the crystal used as the CRIN clock source.

17.6.1.7 Reception of User Channel and CD-Subcode Over IEC958 Receiver

The IEC958 receiver is capable of extracting the User Channel bits out of the data stream. The extracted
bits are assembled in the 32-bit UChannelReceive register, with the first U-Channel bit in the MSB position
(bit 31). The interface can be configured to detect Sync patterns in the U-Channel in the case the
U-Channel contains CD subcode (CD-mode). The Sync Detection can be enabled by setting the
USyncMode bits in the CD-Subcode register (Table 17-11). Sync recognition is done as follows:

• Internally, a symbol starting with a “1” is treated as a “data symbol”. Any consecutive 11 zeros are
treated as a “zero symbol”.

• The sync detector will assume User Channel sync whenever:
(a) A sequence of 4 symbols, data-sync-sync-data, is found.
(b) 98 symbols (does not matter data or zero) after the previous “sync symbols”.

• The ChannelLengthError interrupt is set when a new sync is not found at the correct distance from
the previous sync, or if UChannelReceive or QChannelReceive do not contain the correct number
of bits/bytes.

Furthermore, in CD-mode, the Q-channel receiver extracts the Q-channel CD-Subcode from the
U-Channel stream and assembles the bits in the 32-bit “QChannelReceive” with the first bit in the MSB
position.

17.6.1.8 U Channel Receive and Q Channel Receive Register Descriptions

Figure 17-10 illustrates the valid bits in the U Channel Receive and Q Channel Receive Registers and
Table 17-8 provides the description of the bit fields.

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-19

Figure 17-11 illustrates the valid bits in the CDTEXTCONTROL Register and Table 17-9 provides the
description of the bit fields.

Address MBAR2 + 0x88: 0x8B (U channel 1)
MBAR2 + 0xD8: 0xDB (U channel 2)
MBAR2 + 0x8C: 0x8F (Q channel 1)
MBAR2 + 0xDC: 0xDF (Q channel 2)

Access: User read only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R UChannel Receive 1 and 2
QChannel Receive 1 and 2

W

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R UChannel Receive 1 and 2
QChannel Receive 1 and 2

W

Reset – – – – – – – – – – – – – – – –

Figure 17-10. U Channel Receive and Q Channel Receive Registers

Table 17-8. U Channel Receive and Q Channel Receive Registers Field Descriptions

Field Description

31–0
UCHANNEL RECEIVE 1 AND 2

U channel receive register. Contains next 4 U channel bytes.

31–0
QCHANNEL RECEIVE 1 AND 2

Q channel receive register. Contains next 4 Q channel bytes.

Address MBAR2 + 0x92 Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PRESETEN PRESETCOUNT(6:0)

USYNCMODE
EBU2

USYNCMODE
EBU1

UCHANTXTIM
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-11. CDTEXTCONTROL Register

Table 17-9. CDTEXTCONTROL Register Field Descriptions

Field Description Notes

15
PRESETEN

0 No action on free-running sync position counter
1 Preset free-running sync position counter

2, 3

14–8
PRESETCOUNT

Sync presetting count 1, 3

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-20 Freescale Semiconductor

17.6.1.9 U and Q Receive Register Interrupts

• UChannelRcvFull—Receive register full

• UChannelRcvOverrun—Overrun error

• QChannelRcvFull—Receive register full

• QChannelOverrun—Overrun error on Q channel

• ChannelSyncFound—Received sync on U/Q channel.

• ChannelLengthError—Set when ChannelSyncFound occurs when there are less than 32 bits
waiting in QchannelReceive register, or less than 4 bytes in UChannelReceive, or when a syncing
error is found. To regain correct syncing, U channel receive register and Q channel receive register
must be read to establish correct synchronization.

On the input interface, 2 data receive registers are defined:

1. UChannelReceive—32-bit register to receive U-channel incoming subcode.

2. QChannelReceive—32-bit register to receive Q-channel of incoming subcode.

The hardware associated with the IEC958 receiver U-channel reception is intended for reception of the
following kind of data:

• CD or CD-compatible User channel subcode (P,Q and R-W, or Q and R-W). See the CD Red Book
specification for a detailed description.

• Other types of subcode.

17.6.1.10 Behavior of User Channel Receive Interface (CD Data)

This section details the behavior of the user channel receive interface on incoming CD user channel
subcode in the IEC958 receiver. This mode is selected if UsyncMode (bit 1) in register CD-Subcode
control, is set.

7–3 Reserved. –

2
USYNCMODE

EBU2

0 Other data
1 CD user channel reception

–

1
USYNCMODE

EBU1

0 Other data
1 CD user channel reception

–

0
UCHANTXTIM

0 Timing to reg. UChannelTx from cd-text output interface
1 Timing to reg. UChannelTx from EBU1 output interface

–

1 On read back, last written value is returned.
2 On read back, zero is returned.
3 PRESETCOUNT(6:0) will only affect the free running counter when the register is written with PRESETEN = ‘1’.

Writing with PRESETEN = ‘0’ does not affect the counter.

Table 17-9. CDTEXTCONTROL Register Field Descriptions (continued)

Field Description Notes

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-21

The CD subcode stream embedded into the IEC958 User channel consists of a sequence of packets. Every
packet contains 98 symbols. The first two symbols of every packet are sync symbols and the other 96
symbols are data symbols.

Any sequence found in the IEC958 U-channel stream starting with a leading one, followed by 7
information bits, is recognized as a data symbol. Subsequent data symbols are separated by pauses. During
the pause, zero bits are seen on the IEC958 U-channel.

Data symbols come in MSB first. The MSB is the leading one and is always received as bit 7.

When a long pause is seen between 2 subsequent data symbols, the IEC958 receiver assumes the reception
of one or more sync symbols. Table 17-10 shows this functionality.

The recognition of the number of sync symbols derives from the fact that the U-channel transmitter in the
CD channel decoder will transmit one symbol on average every 12 IEC958 channel bits. On this average
rate, there is a tolerance of 5% maximum.

The IEC958 receiver is tolerant on symbol error. Due to the physical nature of the transmission of the data
over the CD disc, not more than one out of any 5 consecutive user channel symbols may be in error. The
error may cause a change in data value, which is not treated by this interface, or it may cause a data symbol
to be seen as a sync symbol, or a sync symbol to be seen as a data symbol. However, not more than one
out of any 5 consecutive user channel symbols can be affected in this way.

The IEC958 User channel circuitry will recognize the 98-symbol packet structure. The 96 symbol payload
is transferred using 2 registers as follows:

• The UChannelRcv register—In this register, data is presented 4 symbols at a time. Every time 4
new valid symbols, received on the IEC958 U-Channel, are present, the UChannelRcvFull
interrupt is asserted. For one 98-symbol packet, 96 symbols are carried across UChannelRcv. To
transfer all this data, 24 UChannelRcvFull interrupts are generated.

• The QChannelRcv register—In this register, only the Q bit of the packet is accumulated. Operation
is similar to UChannelRcv. Because only Q-bit is transferred, only 96 Q-bits are transferred for any
98-symbol packet. To transfer this data, 3 QChannelRcvFull interrupts are generated. When
QChannelRcvFull occurs, it is coincident with UChannelRcvFull. There is only one
QChannelRcvFull for every 8 UChannelRcvFull. The convention is that the most significant data
is transmitted first, and is left-aligned in the registers.

Table 17-10. Correlation Between Zero Bits and Sync Symbols

No of U Channel Zero Bits Corresponding Number of Sync Symbols

0–1 Unpredictable, not allowed

2–10 0

11–22 1

23–34 2

35–45 3

> 45 Unpredictable, not allowed

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-22 Freescale Semiconductor

The timing, as it applies to packet boundary, is extracted by hardware.The last UChannelRcvFull
corresponding to a given packet should be coincident with the last QChannelRcvFull. In this last U, Q
channel interrupt, symbols 95-98 are received, as are Q-channel bits 67-98. The interrupts are coincident
with ChannelSyncFound, flagging the last symbols of the current frame.

When the start of a new packet is found before the current packet is complete (less than 98 symbols in the
packet), the ChannelLengthError interrupt is set. The application software should read out UChannelRcv
and QchannelRcv registers, discard the value, and assume the start of a new packet.

As previously mentioned, packet sync extraction is tolerant for single-symbol errors. Packet sync detection
is based on the recognition of the sequence data-sync-sync-data in the symbol stream, because this is the
only syncing sequence that is not affected by single errors. If the sync symbol is not found 98 symbols after
the previous occurrence, it is assumed to be destroyed by channel error, and a new sync symbol is
interpolated.

Normally, only data bytes are passed to the application software. Every data byte will have its most
significant bit set. If sync symbols are passed to the application software (i.e., the processor), they are seen
as all-zero symbols. Sync symbols can only end up in the data stream due to channel error.

17.6.1.11 Behavior of User Channel Receive Interface (non-CD data)

This section details the behavior of the user channel receive interface on incoming non-CD data.

This mode is selected if UsyncMode (bit 1) in register CD Text control is set ‘0’.

In non-CD mode, the IEC958 User channel stream is recognized as a sequence of data symbols. No packet
recognition is done.

Any sequence found in the IEC958 U-channel stream starting with a leading one, followed by 7
information bits, is recognized as a data symbol. Subsequent data symbols are separated by pauses. During
the pause, zero bits are seen on the IEC958 U-channel.

Four consecutive data symbols seen in the IEC958 U-Channel stream are grouped together into the
UChannelRcv register. First symbol is left, last symbol is right aligned. Whenever UChannelRcv contains
4 new data symbols, UChannelRcvFull is asserted.

In this mode, the operation of QchannelRcv and associated interrupt QChannelRcvFull is reserved,
undefined. Also reserved, undefined is the operation of ChannelLengthError and ChannelSyncFound.

The U-channel is extracted and output by the IEC958 Receive block on EBURcvUChannelStream.
Processing is done by the CD-Subcode as described in Section 17.7, “Processor Interface Overview.”

17.6.2 IEC958 (SPDIF) Transmit Interface

The IEC958 interface provides the necessary features to allow transmitting of digital data according to the
IEC958 specification with the exception that only 20-bit data is supported. The 4 LSB’s of the 24-bit data
word are always ‘0’. In addition to data, the interface allows for transmission of the C- and U-channels and
control over the Valid flag. Note: For the U-channel, only the CD User Data format is supported.

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-23

NOTE
EBUOUT1 will output a clock signal just after reset and before they can be
configured as GPIO. The frequency of the clock output will be CRIN/16.

17.6.2.1 Transmit “C” Channel

The “C” channel includes control bits such as data valid, copy protected, transmitted sample rate etc.

17.6.2.2 IEC958 Transmitter Interrupt Conditions

There are three transmitter interrupt conditions:

1. Transmit FIFO underrun

2. Transmit FIFO overrun

3. Transmit FIFO empty

17.6.2.3 IEC958-3 Ed2 and Tech 3250-E Standards Compliance

The IEC958 transmitter is compliant with IEC958-3 Ed2 and Tech 3250-E documents from international
IEC standards committee and European Broadcasting Union organizations.

The IEC958 transmitter implementation allows any sample frequency. Operation is guaranteed up to a
maximum incoming transmit clock of 16MHz. The mark/space ratio of the transmit clock must be equal
to or better than 38/62.

17.6.2.4 Transmission of U-Channel and CD Subcode Data

The user channel transmitter is intended to assemble the CD subcode stream, and conform to the IEC958
CD standard specification. The generation of the data needs to be done in software and loaded into
hardware registers. The Audio peripheral has provisions to insert this CD subcode stream into the outgoing
IEC958 stream, or to transmit it over a dedicated 3-wire interface, called the CD-Subcode interface. The
3-wire CD-Subcode is intended to connect Philips Semiconductor CD encoder devices.

Table 17-11. EBU1TxCChannel Registers Addresses

Address Name Width Description
Reset
Value

Access

MBAR2 + 0x28 EBU1TxC
Channel1

32 “C” channel bit settings for IEC958 transmitter - Consumer format Undefined RW

Table 17-12. Formatting of EBUOUT1 (Consumer “C” Channel)

IEC958 Bits1

1 Ordering of bits in Ebu1TxCChannel1 is MSB sent out first. So, Ebu1TxCChannel1(31) is sent out as IEC958 bit 0.

Field Name Description Taken From

0–31 CONTROL Relevant data EBU1TXCCHANNEL1(31:0)

32–191 – – Always 0

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-24 Freescale Semiconductor

This combined interface provides output formats for both CD-Subcode and IEC958 U-channel. The same
data is used for both output formats.

Figure 17-12. CD-Subcode Interface

17.6.3 CD Subcode Interrupts

The following interrupts are associated with the CD Subcode data:

• UChannelTxEmpty—Register is empty, needs re-loaded.

• UChannelTxUnderrun—Under run error on register.

• UChannelTxNextFirstByte—Received indication from CD-Subcode output interface that next
word to be written contains first byte of the 96-byte U-channel frame.CD Subcode Interface: SFSY,
RCK and SUBR.

Table 17-13. UChannel Transmit Register

Address Name Width Description Reset Value Access

MBAR2 + 0x84 UChannel Transmit 32 U channel transmit register. Contains next 4 U channel
bytes.

– RW

Address MBAR2 + 0x92 Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PRESET

EN
PRESET COUNT(6:0)

Usync
mode
EBU1

Usync
mode
EBU1

UChan
TxTimW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-13. CD-Subcode Register

CD Text
Transmit

U channel transmit register

U channel receive register

Q channel receive register

EBU U channel in

To EBU transmitter

U channel source selector

RCK

SFSY

SUBR

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-25

Figure 17-14. Data Format on CD-Subcode Interface Out

RCK is the incoming clock from the channel encoder. SFSY is used to flag the first symbol bit, and first
packet symbol. During the first bit of every symbol, SFSY is low, During the first two bits of the first
symbol of every packet, SFSY is low.

SUBR is the data out, used to transmit outgoing data in serial form. The most significant bit is transmitted
first.

RCK is an input, SFSY and SUBR are outputs.

CD User channel subcode is transmitted out of the 3-wire CD subcode interface. This user channel subcode
needs to be assembled by the ColdFire processor application software.

The CD-Subcode format has a 98-symbol packet structure. Of these 98 packets, the first 2 symbols are
sync symbols, followed by 96 8-bit data symbols.

The boundaries of the 98-symbol packets are determined by free-run counters. The first symbol of any
packet is transmitted with the special sync sequence on SFSY. The first and second symbols are all-0
symbols. The other 96 symbols need to be uploaded by the application software in register
UChannelTransmit.

Upload is done by application software handshaking to interrupt UChannelTxEmpty. If this interrupt is set,
the application software uploads 4 symbols of the current user channel packets into register UChannelTx.

The interrupt UChannelTxNextFirstByte flags the start of a new U-channel packet. It is always coincident
with UChannelTxEmpty, and signal that the first 4 symbols of a new packet need to be loaded into
UChannelTx.

The following pseudo-code reacts on both interrupts. One interrupt handler can take care of both
UchannelTxEmpty and UChannelTxNextFirstByte. This last interrupt is not enabled.
if(UChannelTxEmpty interrupt) then
 if(UChannelTxNextFirstByt interrupt set also) then
 reset this interrupt
 synchronize pointer to sent out new frame
 end if ;
 load UChannelTransmit with data from pointer
 update pointer
 reset interrupt
end if ;

17.6.3.1 Free Running Counter Synchronization

There is a synchronization issue on start-up between the MCF5251 and some channel encoders. On
start-up, the RCK clock is kept silent. At a certain point in time, the CDR601 will start clocking the RCK,

RCK

SFSY

SUBR

(MCF5251 in)

(MCF5251 out)

(MCF5251 out)

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-26 Freescale Semiconductor

and then it will require that the first symbol transmitted from the MCF5251 to the CDR60 is a sync symbol.
If this is not the case, the CDR60 fails to synchronize.

To solve the synchronization issue, the counter that determines the sync position can be preset using the
register CdTextControl (Table 17-11).

17.6.3.2 Controlling the SFSY Sync Position

When RCK is not clocking, it is possible to control the subcode byte number that will be sent out next by
the CD-Subcode interface by writing CdTextControl with PresetEn set to 1.

• When 0 is written to presetCount, the next byte sent out is a CD-Subcode sync byte. (SFSY low).

• When a value (97–i) is written to presetCount, i non-sync bytes are transmitted, followed by a sync
byte.

• After writing to CdTextControl with PresetEn set to 1, next bit out is always the first bit of a new
byte.

• Writing CdTextControl with PresetEn set to 1, while RCK is running, will result in unpredictable,
undefined operation.

17.6.4 Inserting CD User Channel Data Into IEC958 Transmit Data

Source selection of data transmitted into the User Channel of the IEC958 transmitter is selected by bits
(1,0) of register EBUConfig.

• When selected the source is the IEC958 receiver, every user channel data byte received into the
input of the IEC958 user channel, is inserted into the outgoing stream at approximately. the same
time it was found in the incoming stream.

• When the selected source is CD-Subcode, every data byte transmitted over the CD-Subcode output
is also inserted into the IEC958 output stream. The most significant bit of every byte is transmitted
as a “1”. All sync symbols are transmitted as all-0.

• In case the RCK clock is not present, it is still possible to use the CD-Subcode interface to assemble
the outgoing IEC958 User channel data. In this case, bit UChanTxTim in register
CDTEXTCONTROL must be set ‘1’ (Table 17-11). It will cause the timing to the CD-Subcode
registers to be controlled by the IEC958 transmitter. One symbol (data or sync) will be transmitted
into the IEC958 output every 12 User Channel data bits.

17.7 Processor Interface Overview
The interface between the processor and the Audio Modules is given in this section. Figure 17-15, shows
a simplified picture of the interface between the audio modules and the processor core.

NOTE

The audio module register addresses are relative to the MBAR2 register.

1. CDR60 is the informal name for Philips CD-R channel encoder

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-27

Figure 17-15. Processor/Audio Module Interface

17.7.1 Data Exchange Register Descriptions

Table 17-14 shows the Data Exchange Registers. To read/write data to/from the audio modules, use the
registers as shown in Table 17-1.

Table 17-14. Data Exchange Register Descriptions

Address
MBAR2 +

Name Width Description1, 2 Reset
Value

Access

0x34
0x38
0x3C
0x40

PDIR1-L 32 Processor data in Left.
Multiple address to read this register allows MOVEM instruction to read FIFO.

– R

0x44
0x48
0x4C
0x50

PDIR3-L 32 Processor data in Left.
Multiple address to read this register allows MOVEM instruction to read FIFO.

– R

0x54
0x58
0x5C
0x60

PDIR1-R 32 Processor data in Right
Multiple address to read this register allows MOVEM instruction to read FIFO.

– R

0x64
0x68
0x6C
0x70

PDIR3-R 32 Processor data in Right
Multiple address to read this register allows MOVEM instruction to read FIFO.

– R

0x34
0x38
0x3C
0x40

PDOR1-L 32 Processor data out 1 Left.
Multiple address to write this register allows MOVEM instruction to write FIFO.

undef W

Processor
Core

Control Registers Data Exchange

Registers

Interrupt Registers

DATA[31:0]

CTRL (R/W, etc.)

ADDRESS[7:0]

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-28 Freescale Semiconductor

17.7.2 Data Exchange Register Overview
• PDOR1-L, PDOR1-R: (Processor Data Out 1). These are 32-bit registers. Both registers have 4

consecutive longword addresses assigned (multiple decode). This allows easy transfer of multiple
samples using MOVEM instructions. Data written to these registers will end in one of the FIFO ‘s
(Figure 17-1) 12, 14, 17, 17a, 17b or 25. The format of data in the registers is defined below.

• PDOR2-L, PDOR2-R: (Processor Data Out 2). Same function as PDOR1. Both (PDOR2-L and
PDOR2-R) registers occupy 4 consecutive longword addresses (multiple decoded.) Data written to
it will end in one of the FIFO ‘s. (fig. 17-1) 12,14,17, 17a, 17b or 25.

• PDOR3: (Processor Data Out3). Same function as PDOR1. But it is a single 32-bit register which
contains both Left + Right data in 16-bit precision occupying 4 consecutive longword addresses.
Data written to it will end in one of the FIFO ‘s. (fig 17-1) 12,14, 17a, 17b or 25.

• PDIR1-L, PDIR1-R (Processor data in). Used to transfer data to the processor. These 32-bit
registers, each occupy 4 consecutive longword addresses are used to read data from the audio bus.
Data flowing in is selected by source multiplexer 16a. Control via register DataInControl (12, 2:0).
Table 17-15.

0x44
0x48
0x4C
0x50

PDOR1-R 32 Processor data out 1 Right
Multiple address to write this register allows MOVEM instruction to write FIFO

undef W

0x54
0x58
0x5C
0x60

PDOR2-L 32 Processor data out 2 Left
Multiple address to write this register allows MOVEM instruction to write FIFO

undef W

0x64
0x68
0x6C
0x70

PDOR2-R 32 Processor data out 2 Right
Multiple address to write this register allows MOVEM instruction to write FIFO

undef W

0x74
0x78
0x7C
0x80

PDOR3 32 Processor data out 3 left + right undef W

0x74
0x78
0x7C
0x80

PDIR2 32 Processor data in 3 left + right undef R

1 Multiple addresses for PDOR/PDIR fields are intended for easy use of MOVEM instruction to move data into and out of the FIFOs.
The data read at each address of any range is exactly the same, being the next sample in/out of the FIFO. There is no difference
in FIFO operation between a read at address e.g. 0x74, 0x78, 0x7C.

2 There are memory overlaps between PDIR’s and PDOR’s. PDOR’s cannot be read, PDIR cannot be written.

Table 17-14. Data Exchange Register Descriptions (continued)

Address
MBAR2 +

Name Width Description1, 2 Reset
Value

Access

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-29

• PDIR2 (Processor data in). Same function as PDIR1. Single 32-bit register contains both Left +
Right in 16-bit precision. Data flowing in is selected by source multiplexer 16. Control via register
DataInControl(13,5:3) Table 17-15.

• PDIR3-L, PDIR3-R (Processor data in). This function is identical to PDIR1. Data flowing in is
selected by source multiplexer 16b. Control via register DataInControl(19:16). Table 17-15.

17.7.2.1 Data In Selection

The DataInControl register determines what data will be in the PDIR1 input FIFO, in PDIR2 input FIFO,
and in the PDIR3 input FIFO. All FIFO’s are six-deep, and have programmable “full” indication.

NOTE
The DataInControl register bits 7:6 allow selection when FIFO full flag is
set. This is necessary due to polling. It may be necessary to service the FIFO
when it is less than completely full. For PDIR2 only, interrupt-driven and
DMA-driven read-out is supported.

Address MBAR2 + 0X30 (RESET 0X00) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PDIR3
ZERO
CTRL

PDIR3
RESET

PDIR3 FULL
INTERRUPT

SELECT PDIR3
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PDIR2 FULL
INTERRUPT

SELECT

SELECT
PDIR2

SELECT
PDIR1

PDIR2
ZERO
CTRL

PDIR1
ZERO
CTRL

PDIR2
RESET

PDIR1
RESET

PDIR1 FULL
INTERRUPT

SELECT
SELECT PDIR2 SELECT PDIR1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-16. DataInControl Register

Table 17-15. DataInControl Register Field Descriptions

Field Description Reset

31–24 Reserved. 0

23
PDIR3 ZERO CONTROL

0 Normal operation
1 Always read zero from PDIR3

0

22
PDIR3 RESET

0 Normal operation
1 Reset PDIR3 to one sample remaining

0

21–20
PDIR3 FULL INTERRUPT SELECT

00 Full interrupt if at least 1 sample in FIFO
01 Full interrupt if at least 2 samples in FIFO
10 Full interrupt if at least 3 samples in FIFO
11 Full interrupt if at least 6 samples in FIFO

00

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-30 Freescale Semiconductor

19–16
SELECT PDIR3

0000 Off
0001 PDOR1
0010 PDOR2
0011 Unused
0100 iis1RcvData
0101 iis3RcvData
0110 Reserved
0111 ebu1RcvData
1000 ebu2RcvData

000

15–14
PDIR2 FULL INTERRUPT SELECT

00 Full interrupt if at least 1 sample in FIFO
01 Full interrupt if at least 2 samples in FIFO
10 Full interrupt if at least 3 samples in FIFO
11 Full interrupt if at least 6 samples in FIFO

00

11
PDIR2 ZERO CONTROL

0 Normal operation
1 Always read zero from PDIR2

0

10
PDIR1 ZERO CONTROL

0 Normal operation
1 Always read zero from PDIR1

0

9
PDIR2
RESET

0 Normal operation
1 Reset PDIR2 to one sample remaining

0

8
PDIR1
RESET

0 Normal operation
1 Reset PDIR1 to one sample remaining

0

7–6
PDIR1 FULL INTERRUPT SELECT

00 Full interrupt if at least 1 sample in FIFO
01 Full interrupt if at least 2 samples in FIFO
10 Full interrupt if at least 3 samples in FIFO
11 Full interrupt if at least 6 samples in FIFO

00

13, 5–3
SELECT PDIR2

0 000 Off
0 001 PDOR1
0 010 PDOR2
0 011 Unused
0 100 iis1RcvData
0 101 iis3RcvData
0 110 Reserved
0 111 ebu1RcvData
1 000 ebu2RcvData

000

12, 2–0
SELECT PDIR1

0 000 Off
0 001 PDOR1
0 010 PDOR2
0 011 Unused
0 100 iis1RcvData
0 101 iis3RcvData
0 110 Reserved
0 111 ebu1RcvData
1 000 ebu2RcvData

000

Table 17-15. DataInControl Register Field Descriptions (continued)

Field Description Reset

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-31

17.7.3 PDIR and PDOR Field Formatting

Each PDIR, PDOR 32-bit register contains only 20 relevant data bits. Formatting is done as follows:

1 L18 is bit 18 of left sample, ~L19 is inverse of bit 19 of left sample, R18 is bit 18 of right sample.
2 If incoming/outgoing interface use 16, 18 bits, data is aligned at the MSB side. LSB ‘s D1-D0 or D3-D0 will read all-zero. Written

values are disregarded.
3 PDOR3, PDIR2 use only 16 MSB of both left and right.
4 Inversion of MSB ‘s L19 and R19 translates the format from 2-complement to unsigned.

(The continuous range e.g. -0x8000 to +7FFF is translated to 0 to +0xFFFF)

17.7.4 Overrun and Underrun with PDIR and PDOR Registers

All PDOR and PDIR registers have different FIFOs for left and right channels. As a result, there is always
the possibility that the left and right FIFOs may go out of sync due to FIFO underruns and FIFO overruns
that affect only one part (left or right) of any FIFO. To prevent this from happening, two hardware
mechanisms are available:

1. If PDIR1, PDIR2, or PDIR3 FIFO overrun occurs on, as an example, the right half of the FIFO, the
sample that caused the overrun is not written to the right half (due to overrun). Special hardware
will make sure the next sample is not written to the left half of the FIFO. If the overrun occurs on
the left half of the FIFO, the next sample is not written to the right half of the FIFO.

Table 17-16. PDIR1-L, PDIR3-L, PDOR1-L, PDOR2-L Formatting

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24 Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16

N/A N/A L19 L18 L17 L16 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

L5 L4 L3 L2 L1 L0 0 0 0 0 0 0 0 0 0 0

Table 17-17. PDIR1-R, PDIR3-R, PDOR1-R, PDOR2-R Formatting

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24 Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16

n/a n/a R19 R18 R17 R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

R5 R4 R3 R2 R1 R0 0 0 0 0 0 0 0 0 0 0

Table 17-18. PDIR2, PDOR3 Formatting

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24 Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16

L19 L18 L17 L16 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

R19 R18 R17 R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-32 Freescale Semiconductor

2. If IIS1 or IIS2 Tx FIFO, or EBU Tx FIFO underruns on, for example, the right half of the FIFO,
no sample leaves that FIFO. (because it was already empty.) Special hardware ensures that the next
sample read from the left FIFO will not leave the FIFO. (No read strobe is generated). If the
underrun occurs on the left half of the FIFO, next read strobe to the right FIFO is blocked.

17.7.5 Automatic Resynchronization of FIFOs

An automatic FIFO resynchronization feature is available on the MCF5251. It can be enabled or disabled
separately for every FIFO. If enabled, the hardware will check if the left and right FIFOs are in sync, and
if not, it will set the filling pointer of the right FIFO to be equal to the filling pointer of the left FIFO.

The operation is shown in Figure 17-17. Every FIFO auto-resync controller has a state machine with three
states:

1. Off

2. Stand-By

3. On

In the On state, the filling of the left FIFO is compared with the filling of right, and if they are not equal,
right is made equal to left, and an interrupt is generated.

Figure 17-17. Automatic Resynchronization FSM of Left-Right FIFOs

The controller will stay in the Off state when the feature is disabled. When not disabled, the state machine
will go to the Off state on any processor read or write to the FIFO. It will go from On or Off to Standby on
any left sample read from IIS, IIS2, and EBU Tx FIFO’s, or on any left sample write to PDIR1, PDIR2,
PDIR3 FIFO’s. The controller will go from Standby to On on any right sample read from IIS1, IIS2 and
EBU Tx FIFO’s, or on any right sample write to PDIR1, PDIR2 and PDIR3.

17.7.6 audioGlob Register Descriptions

Figure 17-18 illustrates the valid bits in the audioGlob Register and Table 17-19 provides the description
of the bit fields.

Off

Standby

On

Read left sample from IIS1, IIS2, EBU
Write left sample to PDIR1, PDIR2

Processor write to IIS1, IIS2, EBU fifo
Processo read from PDIR1, PDIR2

Read left sample from IIS1, IIS2, EBU
Write left sample to PDIR1, PDIR2

Read right sample from IIS1, IIS2, EBU
Write right sample to PDIR1, PDIR2

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-33

Address 0XCC Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PDIR3
FIFO
AUTO
SYNC

AUDIOTICK
SOURCE
EBU2 EXT

EBU1 TX
AUTO
SYNC

IIS2
FIFO

AUTO
SYNC

PDIR2
FIFO
AUTO
SYNC

PDIR1
FIFO
AUTO
SYNC

AUDIO_TICK
COUNT

AUDIOTICK
SOURCEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-18. audioGlob Register

Table 17-19. audioGlob Register Field (0xCE) Descriptions

Field Name Description1

1 The automatic FIFO resynchronization can be switched on, and will avoid all mismatch between left and right FIFO‘s, if
the software obeys following rules:
1.When left data is read or written to the left FIFO, in the same place of the program, data must be read or written to the

right FIFO. Maximum time difference between left and right is 1/2 sample clock. (E.g. if the sample frequency is 44 kHz,
then this is approximately 10 micro-seconds. For 88 kHz, then this approximately 5 micro-seconds.)

2.Writing or reading data to the FIFO ‘s must be at least 2 samples at the time. If there is a mis-match between Left-Right,
the resync logic may go on only 1 sample clock after last data is read/written to the FIFO. Also acceptable is polling the
FIFO, if at least part of the time, 2 samples will be read/written to it.

Reset Notes

12 PDIR3 FIFO AUTO SYNC 0 Auto synchronization off
1 Auto synchronization on

0

10 EBU TX AUTO SYNC 0 Auto synchronization off
1 Auto synchronization on

0

9 IIS2 FIFO AUTO SYNC 0 Auto synchronization off
1 Auto synchronization on

0

8 IIS1 FIFO AUTO SYNC 0 Auto synchronization off
1 Auto synchronization on

0

7 PDIR2 FIFO AUTO SYNC 0 Auto synchronization off
1 Auto synchronization on

0

6 PDIR1 FIFO AUTO SYNC 0 Auto synchronization off
1 Auto synchronization on

0

5–3 AUDIO TICK COUNT 000 1 Interrupt for every event
001 2 Interrupt for every 2 events
010 3
011 4
100 5
Other Reserved, unused

000

11, 2–0 AUDIO TICK SOURCE 0 000 Off
0 001 IIS1 Tx Right FIFO / Read
0 010 IIS2 Tx Right FIFO / Read
0 011 EBU Tx Right FIFO / Read
0 100 IIS1 Rcv Data
0 101 IIS3 Rcv Data
0 110 Reserved
0 111 EBU1 Rcv Data
1 000 EBU2 Rcv Data

000

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-34 Freescale Semiconductor

17.7.7 Audio Interrupts

17.7.7.1 AudioTick Interrupts

The audio tick interrupt is an interrupt to sustain an interrupt routine that is synchronous with one of the
audio interfaces, but not directly related to any FIFO being full or empty. Two fields control how this
interrupt is generated:

1. The source field controls the source event.

2. The count field controls the number of events (sample pairs) between any two audioTick interrupts.

For example, if the source is set to IIS1 Tx FIFO / Read, and count is set to three, the interrupt will occur
after every three read strobes to the IIS1 Tx FIFO. Even if the FIFO is in reset state, the interrupt will
continue running.

17.7.7.2 PDIR1, PDIR2, and PDIR3, Interrupts

With FIFO’s feeding data to the PDIR registers, three interrupts are associated.

1. Full

2. Under/over

3. Resync

When the Full condition is set for processor data input registers, the processor should read data from the
FIFO, before overrun occurs (this is within a 1/2 sample period). Reading of data should be done using
32-bit operands (ex. MOVE.L instruction). When the Full condition is set, and the FIFO contains, for
example six samples, it is acceptable for the software to read the first six samples from the LEFT address,
followed by six samples from the RIGHT address, or six samples from the RIGHT address, followed by
six samples from the LEFT address, or one sample LEFT, followed by one sample RIGHT repeated six
times. The order of reading does not need to be carried out in any specific order.

The implementation for PDIR1 is a double FIFO, one for left and one for right. The Full condition is set
when both FIFOs are full. The Underrun/Overrun condition is set when one of the FIFO’s actually
underrun’s or overrun’s. The resync interrupt is set when the hardware took special action to resynchronize
either the left or the right FIFO.

17.7.7.3 PDOR1, PDOR2, and PDOR3 Interrupts

Three interrupts are associated with FIFOs that can be written from PDOR1, PDOR2, PDOR3:

1. Empty

2. Under/over

3. Resync

When the Empty condition is set for processor data output registers, the processor should write data to the
FIFO, before underrun occurs. Writing of data should be done using MOVE LONG or MOVEM
instructions (with long-word oriented instructions). When Empty is set, and, for example, six samples need
to be written, it is acceptable for the software to write first six samples from the LEFT address, followed

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-35

by six samples from the RIGHT address, or one sample LEFT, followed by one sample RIGHT repeated
six times.

NOTE
In any chosen writing scheme the left should be written before the right.

The implementation of all data output FIFO’s is a double FIFO, one for left and one for right. The Empty
Interrupt is set when both FIFO’s are empty. The Underrun/Overrun interrupt is set when one of the FIFO’s
either underrun’s or overrun’s. Resync is set when the hardware resynchronizes the left and right FIFOs.

On receiving an Underrun/Overrun interrupt, synchronization between Left and Right words in the FIFOs
may be lost. Synchronization will not be lost when the underrun or overrun comes from the audio side of
the FIFO. If the processor reads or writes more data from, for example, the left than from the right,
synchronization will be lost. If automatic resynchronization is enabled, and if the software obeys the rules
to let this work, resynchronization will be automatic.

Table 17-20. Interrupt Register Field Description (0x94, 0x98)

Bit Interrupt Name Description How to Clear

31 IIS1TxUnOv IIS1 transmit FIFO under/overrun reg. IntClear

30 IIS1TxResyn IIS1 transmit FIFO resync reg. IntClear

29 IIS2TxUnOv IIS2 transmit FIFO under/overrun reg. IntClear

28 IIS2TxResyn IIS2 transmit FIFO resync reg. IntClear

27 EBUTxUnOv EBU (IEC958) transmit FIFO under/overrun reg. IntClear

26 EBUTxResyn EBU (IEC958) transmit FIFO resync reg. IntClear

25 EBUCNew EBU (IEC958) Rx change of value of the C channel reg. IntClear

24 IEC958ValNoGood IEC958 Validity Flag no good reg. IntClear

23 EBUSymErr IEC958 receiver found illegal symbol reg. IntClear

22 EBUBitErr IEC958 receiver found parity bit error reg. IntClear

21 UChanTxEm UChannelTransmit register empty write to tx reg

20 UChanTxUnder UchannelTransmit register underrun reg. IntClear

19 UChanTx-NextFirst UchannelTransmit register next byte will be first write to Tx reg

18 UChanRcvFull UChannelReceive register full read Rcv reg

17 UChanRcvOver UChannelReceive register overrun reg. IntClear

16 QChanRvFull QChannelReceive register full read rcv reg

15 QChanOverrun QChannelReceive register overrun reg. IntClear

14 UQChanSync U/Q channel sync found reg. IntClear

13 UQChanErr U/Q channel framing error reg IntClear

12 Pdir1UnOv Processor data input underrun/overrun reg IntClear

11 Pdir1Resyn Processor data input resync reg IntClear

10 Pdir2UnOv Processor data input underrun/overrun reg IntClear

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-36 Freescale Semiconductor

17.7.7.4 Audio Interrupt Routines and Timing

Usually, the processor will run an audio interrupt routine. Every time the audio interrupt routine runs, it
will process 2, 3, or 4 audio samples, and send this many samples to one or more PDOR output registers.
Also, the audio interrupt routine will read one or more PDIR registers until empty.

In the audio interrupt routine, typically at the beginning, the PDIR registers are read until empty, while the
PDOR registers are written at the end of the routine when all calculations are completed. Due to this
calculation latency, there is a delay between entering the audio interrupt routine and the filling of the
transmit FIFOs.

Due to this delay, it is difficult to “fire” the audio interrupt routine on a transmit FIFO empty interrupt.
Because of the extra delay before the data is written, the transmit FIFO will underrun before any data is
written.

To make it easy for the programmer, the audioTick interrupt was added. To start the audio interrupt routine,
use the following sequence:

1. Reset the transmit FIFOs

2. Program the transmit FIFOs to the correct source, then release the reset on transmit FIFOs

3. Reset the PDIR FIFOs

4. Load audio interrupt routine in on-chip SRAM

5. Release reset for the PDIR FIFOs and enable audioTick interrupt

The transmit FIFOs have a special feature. After the software releases the reset to them, they will stay in
reset until the audio Interrupt Routine writes data to them for the first time. So, during Step 2 of above
mentioned start-up procedure, all transmit FIFO’s are set in reset, with one sample remaining. They will
stay in this state, until the audio Interrupt Routine writes data to them. At this point in time, they are then
filled up with an extra 2, 3, or 4 samples to a total of 3, 4, or 5 samples. Also, the first data write to the

9 Pdir2Resyn Processor data input resync reg IntClear

8 audioTick audio tick interrupt reg IntClear

7 U2CHANRCVOVER
Q2CHANOVERRUN
UQ2CHANERR

IEC958 receiver 2 U/Q channel error reg IntClear

6 Pdir3Resyn Processor data input resync reg IntClear

5 PDIR3 full Processor data input full read from PDIR3

4 iis1TxEmpty IIS 1 transmit FIFO empty write to FIFO

3 iis2TxEmpty IIS 2 transmit FIFO empty write to FIFO

2 ebuTxEmpty IEC958 transmit FIFO empty write to FIFO

1 PDIR2 full Processor data input full read from PDIR2

0 PDIR1 full Processor data input full read from PDIR1

Table 17-20. Interrupt Register Field Description (0x94, 0x98) (continued)

Bit Interrupt Name Description How to Clear

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-37

FIFOs releases the reset, and starts transmission of the FIFO data on the corresponding transmit output.
(IIS1, IIS2 or IEC958). The next time that data is written to the FIFO’s in the audioTick interrupt routine,
2,3, or 4 samples have been transmitted and the FIFO is ready to accept new data.

To work properly, the jitter from one audioTick write point to the next is important. Jitter should be lower
than 1 sample period if data is written in groups of 2 or 3 samples to the transmit FIFOs, and lower than
1/2 sample period if data is written in groups of 4 samples to the transmit FIFOs.

The receive FIFO’s (PDIR’s) don’t have an auto-reset-de-assert mechanism, and should be released out of
reset just before enabling audioTick interrupt.

Figure 17-19 shows the timing (relative to the Word Clock) of the Empty, Under-run, and Audio Tick
interrupts. Each FIFO holds up to six audio samples (left and right).

The Empty Interrupt occurs when there is still one right sample left to be transmitted, thus giving the
system one audio sample length to fill the FIFO back-up. The Underrun Interrupt occurs when there are
no samples left to be transmitted. While this is a situation that should be taken seriously, it will rarely occur,
if at all. However, should this happen, the system will continue to repeat the last sample until the FIFO
buffer has new data.

The Audio Tick Interrupt was introduced to aid a busy system by allowing the Interrupt to occur after a
number of (programmable) sample pairs. In this example, the Audio Tick Interrupt has been set to trigger
after the 4th sample pair. This gives the system up to two audio sample pairs to respond and fill the FIFO.
This avoids the under-run issue. The decision to use the Audio Tick interrupt as apposed to the Empty
Interrupt is dependent on the system and the reaction time of that system. Therefore, it is not expected that
the Audio Tick Interrupt needs to be employed in all systems.

Figure 17-19. Audio Transmit / Receive FIFOs

17.7.8 CD-ROM Block Encoder and Decoder Register Descriptions

The processor interface registers PDOR3 and PDIR2 are equipped with a CD-ROM block
encoder/decoder. The two interfaces are fully independent. One control register is associated with the
interface.

Word Clock

1L 1R 2L 3R3L2R 4L 4R 5L 6R6L5R

Programmable
Audio Tick Interrupt

FIFO Empty Interrupt

FIFO Under-run Interrupt

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-38 Freescale Semiconductor

Address MBAR2 BAS + 0xC8 Access: User read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DECODE
SWAP

DECODE
SYNC

ALLOW

DECODE
DE-

SCRAMBLE

DECODE
MODE

ENCODE
SWAP

ENCODE
SYNC

ALLOW

ENCODE
SCRAMBLE

ENCODE
MODEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-20. BlockControl Register

Table 17-21. BlockControl Register Field Descriptions

Bit Number Bit Name Description Reset Notes

15–14 DECODE SWAP See note 1.
Block decode swap control.

00 1

13 DECODE-SYNC
ENABLE

See note 2.
1 Sync detection enabled.
0 Sync detection disabled

0 2

11 DECODE
ENABLE

See note 3.
1 Descramble enabled.
0 Escramble disabled

0 3

9, 10 DECODE
MODE

See note 4.
00 No CRC check
01 Mode 1
10 Mode 2, form 1
11 Mode 2, form 2

00 4

6, 7 ENCODE SWAP See note 1.
Block encode swap control

00 1

5 ENCODE SYNC
ENABLE

See note 2.
1 Outgoing sync detecting enabled
0 Outgoing sync detecting disabled

0 2

3 ENCODE
ENABLE

See note 3.
1 Scramble active
0 Scrambling inactive

0 3

1, 2 ENCODE
MODE

00 No CRC instructed
01 Mode 1
10 Mode 2, form 1
11 Mode 2, form 2

00 4, 5

Notes: 1. See Table 17-22 for definition of how the swap is done.
2. Decode Sync Allow and Encode Sync Allow define whether the interfaces recognize the CD-ROM syncs embedded in the

CD-ROM sectors. If this bit is switched on, then the interface will recognize the start of a new sector after finding the sync
sequence in the data. If the bit is switched off, or if no sync sequence is found, sector start is assumed to be one sector length
(2352 bytes) after the previous sector.

3. CDROM descrambling/scrambling control if required.
4. Mode selection determines how the CRC is calculated. The CRC depends on the CD-ROM mode/form, as defined in CD

standards.
5. inserted CRC will over-write processor written data. (Processor sets CRC to any value, logic overwrites this.)

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-39

Figure 17-21. Block Decoder

17.7.8.1 CD-ROM Decoder Interrupts

The block decoder can detect and flag sync patterns and error conditions. The following conditions are
flagged in status bits and each of these can generate an interrupt. All interrupts occur when the
corresponding data word reaches the output of the FIFO.

• newBlock interrupt—Set when the next longword to be read is the first word of new block.

• noSync interrupt—Set when the next longword to be read is the first word of new block, and no
valid sync pattern was found before the start of this new block in the stream.

• ilSync interrupt—Set when the next longword to be read is the first word of a new block, and the
length of previous block was not equal to 2352 bytes (the nominal block length).

Table 17-22. Swap Control in CD-ROM Encoder/Decoder

Swap Field Swap Action1

1 Notation used is 32-bit words. Bits31-16 are part of the LEFT sample, bits 15-0 are part of the RIGHT sample.

00 dataOut(31:0):= dataIn(31:0)

01 dataOut(31:16):= dataIn(15:0)
dataOut(15:0):= dataIn(31:16)

10 dataOut(31:24):= dataIn(23:16)
dataOut(23:16):= dataIn(31:24)
dataOut(15:8):= dataIn(7:0)
dataOut(7:0):= dataIn(15:8)

11 dataOut(31:24):= dataIn(7:0)
dataOut(23:16):= dataIn(15:8)
dataOut(15:8):= dataIn(23:16)
dataOut(7:0):= dataIn(31:24)

Swap
Bytes

Swap select

Descramble

On/Off select

Sync
Recognition

FIFO

CRC
Check

Mode
Form
Settings

Internal
Audio
Bus (DATA)

newBlockInt
ilSyncInt
noSyncInt
crcErrorInt

1 2 3

4 5

6

Sync Settings

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-40 Freescale Semiconductor

• crcError interrupt—Set when the next longword to be read is the first word of a new block, and
CRC check on the previous block failed.

Figure 17-22. Block Encoder

The block encoder works on the incoming PDOR3 stream. First, CRC insertion is done in the CRC
Calculate and Insert block (1), next the stream is scrambled in the Scramble block (2), and finally it is
byte-swapped in the Swap Bytes Block (3). All three operations can be configured by writing to the
blockControl register. CRC insertion and scrambling are done as described in CD Yellow Book.

The CRC insertion (1) and the Scrambling (2) are done on a block-by-block basis. A block is normally
2352 bytes long. A block starts after the so-called sync Pattern, “00FFFFFF-FFFFFFFF-FFFFFF00”. To
detect the start of a new block, two mechanisms are build into the encoder.

• First long-word of a new block is assumed after finding the sync pattern
“00FFFFFF-FFFFFFFF-FFFFFF00”

• First long-word of a new block is assumed exactly 2352 bytes after the first longword of the
previous block. This second detection mechanism builds in immunity for corrupted syncs. Even if
the sync is corrupted, the block encoder will correctly find the start of the a new block.

17.7.8.2 CD-ROM Encoder Interrupts

• newBlock interrupt—Active when transmission of a new block is started. No direct
synchronization with data written to the transmit FIFO.

• noSync interrupt—Set when the sync pattern was not recognized for the current newBlock
interrupt.

• ilSync interrupt—Set when the previous block did not have the correct length. (Length different
from 2352 bytes).

17.8 DMA Channel Interaction
It is possible to use the DMA to transfer data to/from the FIFO’s in the audio interface module. However,
only PDIR2 and PDOR3 registers support DMA transfer, as the others need more than 1 long-word to
transfer data to/from the FIFO and cannot be used with DMA operation.

Swap
Bytes

Swap select

Scramble

On/Off select

2 3Processor
Data

CRC
calculate
and
insert

Sync
Recognition

4

Sync Settings

To
audio
data
bus

1

newBlockInt
ilSyncInt
noSyncInt

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-41

Operation is as follows:

• If PDIR2 is full and DMAConfig(1) is set to ‘0’, DMA1REQ is activated.

• If PDIR2 is full and DMAConfig(0) is set to ‘0’, DMA0REQ is activated.

• If the FIFO connected to PDOR3 is empty, and DMAConfig(1) is set ‘1’, DMA1REQ is activated.

• If the FIFO connected to PDOR3 is empty, and DMAConfig(0) is set to ‘1’, DMA0REQ is
activated.

Both DMA1REQ and DMA0REQ can be routed to DMA channel 0 or DMA channel 1.

17.9 Phase/Frequency Determination and XTRIM Function
The Phase/Frequency determination function can be used to determine when a software sample rate
convertor should be enabled and provide the necessary control to steer the sample rate convertor clock
(when the incoming sample rate is other than 44.1 kHz). This applies to IIS inputs and the EBU input.

In addition, the Phase/Frequency determination function can also be used to determine when the incoming
IEC958 clock does not match the phase of the CRIN clock and use the XTRIM function to trim the CRIN
source to match (within a 150ppm range). Typically, when the IEC958 input is being used, the CRIN clock
requires trimming to match but this is only when the source is completely external to the application and
when any audio output must be synchronous to the input source.

When the source is internal to the application, such as from a CD player controlled by the processor, then
the input sample rate does not need to match the output sample rate, they can be asynchronous. When FIFO
under-run or over-run occurs, requests can be made to re-read the lost data by the system.

17.9.1 Incoming Source Frequency Measurement

A frequency measurement block exists to allow precise measurement of an incoming sampling frequency.
This can be used in conjunction with the XTRIM output (and with the appropriate control s/w) to “lock”
the clock being input to CRIN (either external generated clock or crystal) to the recovered SPDIF audio

Address MBAR2 + 0X9F Access: User read/write

 7 6 5 4 3 2 1 0

R
DMA1REQ DMA0REQ

W

Reset – – – – – – 0 0

Figure 17-23. DMA Config Register

Table 17-23. DMA Config Register Field Descriptions

Bit Name Description

DMA1REQ 0 PDIR2
1 PDOR3

DMA0REQ 0 PDIR2
1 PDOR3

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-42 Freescale Semiconductor

clock - if so desired. Some external hardware is required for this including a set of varicap diodes.

Upon request Freescale can supply example s/w code that implements the Frequency measurement and
controls the XTRIM output to allow CRIN to be locked to the EBU clock input.

The PLL maintaining phase relation between the incoming source signal and internal signal is mainly
digital. It is necessary, however, to measure the phase/frequency of the incoming signal in relationship with
the CRIN clock in order to be able to steer the sample rate convertor clock. The circuit shown in
Figure 17-24 is used for maintaining this phase relationship.

Figure 17-24. Frequency Measurement Circuit

Associated with the Frequency measurement block are two registers. (See Table 17-24). The circuit will
measure the frequency of the incoming clock by comparison with the audio CRIN clock (which is typically
16.93 MHz or 11.2896MHz). Multiplexer (1) selects the incoming clock source. Registers (2),(3), and xor
(4) are an edge detector. Multiplexer (5) is a by-pass for the IEC958 input. The rest of the circuit is a
second-order filter with a bandwidth of approximately 80 Hz. The output FreqMeas(31:0) is an unsigned
number, giving the frequency of the selected source as a function of the CRIN clock. The filter is calculated
internally in 48 bit precision. The 16 LSBs are not sent out.

The value read from the FreqMeas Register is calculated as follows:

• For measurement of the IIS inputs: FreqMeas = (IIS SCLK Freq × 2)/Faudio × (2 ** 15) × Gain

• For measurement of the EBU input: FreqMeas = (EBU Freq) / Faudio × (2 ** 15) × Gain

Table 17-24. PhaseConfig and Frequency Measure Register Addresses

Address Name Width Description Access

MBAR2 + 0xA3 PhaseConfig 8 Phase Configuration (gain and source select) R/W

MBAR2 + 0xA8 FreqMeas 32 Frequency measurement R

xor1 D D

D

D

2 3 4 5

6
+

7
8 9 10

11

+
12

13 14

15

16

sat

sat FreqMeas[31:0]

CRIN

SCLK1

SCLK2

SCLK3

EBU-In

Select

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-43

17.9.1.1 Filtering for the Discrete Time Oscillator

The frequency measurement circuit first detects the edges of the incoming clock. This pulse signal is then
passed through an 80 Hz band-width low-pass filter. The signal that comes after the low-pass filter is
low-noise, and is suitable for precision frequency measurement. (Expected noise level: order-of magnitude
-100 dB). Before it can be used as a frequency increment for the Discrete Time oscillator, it must undergo
additional filtering to push back the noise level on the phase.

17.9.2 XTRIM Option - Locking Xtal Clock to Incoming Signal

The XTRIM output allows use of varicap-controlled crystal. (See Figure 17-26). To do this, the XTRIM
must output a PWM/PDM modulated phase-error signal. One 16-bit config register is associated with this
functionality.

Address MBAR2 + 0XA3 Access: User read/write

 7 6 5 4 3 2 1 0

R
Gain select Source Select

W

Reset – – 0 0 0 0 0 0

Figure 17-25. PhaseConfig Register

Table 17-25. PhaseConfig Register Field Descriptions

Bit Name Description

7–6 Reserved.

5–3
GAIN SELECT

000 6 * 2 ** 15
001 4 * 2 ** 15
010 3 * 2 ** 15
011 4 * 2 ** 14
100 3 * 2 ** 14
101 4 * 2 ** 13
110 3 * 2 ** 13

2–0
SOURCE SELECT

000 SCLK1
001 SCLK2
010 SCLK3
011 Reserved
100 EBUIN
Others Reserved, undefined

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-44 Freescale Semiconductor

Figure 17-26. XTRIM External Circuit

The duty cycle output on XTRIM is proportional to the value written to register XTIM. 0x0000
corresponds with duty cycle 0, 0xFFFF corresponds with 100%. 0x8000 corresponds with 50%.

17.9.3 XTRIM Internal Logic

For XTRIM, the internal circuit of the PDM modulator is used as shown in Figure 17-27. It is a first-order
pulse density modulator, working from the system clock divided by 16.

Figure 17-27. PDM Modulator Used on XTRIM Output

Table 17-26. XTRIM Register Address and Description

Address Name Width Description
Reset
Value

Access

MBAR2 + 0xA6 XTRIM 16 XTRIM output value 0x8000 RW

CRIN CROUT XTRIM

16.98 or 11.2896MHz

1n 1n
2x100k

100k

MCF5251

sysclock/16

Reg

E

D

1

2

3 XTRIM
Output

16-bit
adderPdmOut[15:0]

Memory-mapped
Register

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 17-45

Audio Interface Module (AIM)

MCF5251 Reference Manual, Rev. 1

17-46 Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 18-1

Chapter 18
I2C Modules
This chapter provides the system configuration and protocol of the Inter IC Communications (I2C)
modules of the MCF5251, the memory map and register descriptions, and a programming example.

18.1 I2C Interface Features
• Compatibility with I2C Bus standard

• Multimaster operation

• Software-programmable for one of 64 different serial clock frequencies

• Software-selectable acknowledge bit

• Interrupt-driven byte-by-byte data transfer

• Arbitration-lost interrupt with automatic mode switching from master to slave

• Calling address identification interrupt

• Start and stop signal generation/detection

• Repeated START signal generation

• Acknowledge bit generation/detection

• Bus-busy detection

I2C Modules

MCF5251 Reference Manual, Rev. 1

18-2 Freescale Semiconductor

Figure 18-1. I2C Module Block Diagram

18.2 I2C Overview
The MCF5251 provides dual I2C interface capability. The I2C interface described in this chapter is fully
compatible with the I2C Bus Standard.

The I2C is a two-wire, bidirectional serial bus that provides a simple and efficient method of data exchange
between devices. This two-wire bus minimizes the interconnection between devices.

The I2C bus is suitable for applications requiring occasional communications over a short distance
between many devices. The flexible I2C allows additional devices to be connected to the bus for expansion
and system development.

The interface operates up to 100 kbps with maximum bus loading and timing. Operation can be extended
to operate at the high speed I2C specification (400 kbps) but this requires careful thought and design. To
adhere to the I2C bus timing specification load capacitance will have to be carefully controlled, to this end
the number of devices that can be attached to a high speed I2C bus interface will be limited. Also the value

ADDRESS
COMPARE

IN/OUT
DATA SHIFT
REGISTER

START, STOP, AND
ARBITRATION

CONTROL

INPUT
SYNC

CLOCK
CONTROL

REGISTERS AND COLDFIRE INTERFACE

ADDR_DECODE

CTRL_REG FREQ_REG ADDR_REG STATUS_REG DATA_REG

DATA_MUX

SDASCL

ADDR IRQ DATA

I2C Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 18-3

of the I2C pull-up resistors will need to be kept at a relatively low impedance, which may cause noise issues
in some systems.

The I2C system is a true multimaster bus including collision detection and arbitration that prevents data
corruption if two or more masters attempt to control the bus simultaneously. This feature allows for
complex applications with multiprocessor control. It can also be used for rapid testing and alignment of
end products using external connections to an assembly line computer.

18.3 I2C System Configuration
I2C module uses a serial data line (SDA) and a serial clock line (SCL) for data transfer. All devices
connected to these two signals must have open drain or open collector outputs. The logic AND function is
exercised on both lines with external pullup resistors.

The default state of I2C is as a slave receiver out of reset. Thus, when not programmed to be a master or
responding to a slave transmit address, the I2C module should always return to the default state of slave
receiver.

NOTE
This I2C module is designed to be compatible with the I2C bus protocol
from Philips. For further information on I2C system configuration, protocol,
and restrictions please refer to the Philips I2C Standard.

18.4 I2C Protocol
A standard communication is composed of four parts:

1. START signal

2. Slave address transmission

3. Data transfer

4. STOP signal

They are described briefly in the following sections and shown in Figure 18-2.

I2C Modules

MCF5251 Reference Manual, Rev. 1

18-4 Freescale Semiconductor

Figure 18-2. I2C Standard Communication Protocol

18.4.1 START Signal

When the bus is free, for example, no master device is engaging the bus (both SCL and SDA lines are at
logic high), a master can initiate communication by sending a START signal. As shown in Figure 18-2, a
START signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the
beginning of a new data transfer (each data transfer can contain several bytes of data) and awakens all
slaves.

18.4.2 Slave Address Transmission

The first byte of data transferred by the master immediately after the START signal is the slave address.
This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave data transfer direction.
No two slaves in the system can have the same address. In addition, if the I2C is master, it must not transmit
an address that is equal to its slave address. The I2C cannot be master and slave at the same time.

Only the slave with an address that matches the one transmitted by the master will respond. It returns an
acknowledge bit by pulling the SDA low at the 9th clock (see Figure 18-2).

18.4.3 Data Transfer

Once successful slave addressing is achieved, the data transfer can proceed on a byte-by-byte basis in the
direction specified by the R/W bit sent by the calling master.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

SCL 1 2 3 4 5 6 7 8 1 2 5 6 7 83 4

9 9

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W XXX D7 D6 D5 D4 D3 D2 D1 D0

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W

9 9

XX

NEW CALLING ADDRESSR/W NO

STOP

ACK
BIT

STOP
SIGNAL

REPEATED
START
SIGNAL

ACK
BIT

R/WCALLING ADDRESSSTART
SIGNAL

SDA

MSB LSB

START
SIGNAL

CALLING ADDRESS R/W ACK
BIT

MSB LSB

DATA BYTE NO
ACK
BIT

STOP
SIGNAL

LSBMSBLSBMSB

SDA

SCL

I2C Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 18-5

Each data byte is 8 bits long. Data can be changed only while SCL is low and must be held stable while
SCL is high, as shown in Figure 18-2 There is one clock pulse on SCL for each data bit with the MSB
being transferred first. Each byte of data must be followed by an acknowledge bit, which is signalled from
the receiving device by pulling the SDA low at the ninth clock. One complete data byte transfer needs nine
clock pulses.

If the slave receiver does not acknowledge the master, the SDA line must be left high by the slave. The
master can then generate a stop signal to abort the data transfer or a start signal (repeated start) to start a
new calling sequence.

If the master receiver does not acknowledge the slave transmitter after a byte transmission, it means “end
of data'’ to the slave. The slave releases the SDA line for the master to generate a STOP or START signal.

18.4.4 Repeated START Signal

As shown in Figure 18-2, a repeated START signal is a START signal generated without first generating a
STOP signal to terminate the communication. The master uses this method to communicate with another
slave or with the same slave in a different mode (transmit/receive mode) without releasing the bus.

18.4.5 STOP Signal

The master can terminate the communication by generating a STOP signal to free the bus. However, the
master can generate a START signal followed by a calling command without generating a STOP signal
first. This is called repeated START. A STOP signal is defined as a low-to-high transition of SDA while
SCL is at logical 1 (see Figure 18-2).

NOTE
A master can generate a STOP even if the slave has made an
acknowledgment at which point the slave must release the bus.

18.4.6 Arbitration Procedure

I2C is a true multimaster bus that allows connection to more than one master. If two or more masters try to
simultaneously control the bus, a clock synchronization procedure determines the bus clock, for which the
low period is equal to the longest clock low period and the high is equal to the shortest one among the
devices. A data arbitration procedure determines the relative priority of the contending masters. A bus
master loses arbitration if it transmits logic 1 while another master transmits logic 0. The losing masters
immediately switch over to slave-receive mode and stop driving SDA output. In this case, the transition
from master to slave mode does not generate a STOP condition. Meanwhile, hardware sets MBSR[IAL]
to indicate loss of arbitration.

18.4.7 Clock Synchronization

Because wire-AND logic is performed on SCL line, a high-to-low transition on SCL line affects all the
devices connected on the bus. The devices start counting their low period when the master drives the SCL
line low. Once a device clock has gone low, it holds the SCL line low until the clock high state is reached.
However, the change of low to high in the MCF5251 clock may not change the state of the SCL line if

I2C Modules

MCF5251 Reference Manual, Rev. 1

18-6 Freescale Semiconductor

another device clock is still within its low period. Therefore, SCL is held low by the device with the longest
low period. Devices with shorter low periods enter a high wait state during this time (see Figure 18-3).
When all devices concerned have counted off their low period, the SCL line is released and pulled high.
At this point, there is no difference between the device clocks and the state of the SCL line and all the
devices start counting their high periods. The first device to complete its high period pulls the SCL line
low again.

Figure 18-3. Synchronized Clock SCL

18.4.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices can hold
the SCL line low after completion of one byte transfer (9 clocks). In such cases, it halts the bus clock and
forces the master clock into wait states until the slave releases the SCL line.

18.4.9 Clock Stretching

Slaves can use the clock synchronization mechanism to slow down the transfer bit rate. After the master
has driven SCL low, the slave can drive SCL low for the required period and then release it. If the slave
SCL low period is greater than the master SCL low period, the resulting SCL bus signal low period is
stretched.

18.5 I2C Memory Map and Register Descriptions
Internal configuration of the five registers used in the I2C interface are detailed in the following sections.
Table 18-1 shows the register summary of the I2C interface.

Table 18-1. I2C Interfaces Register Summary

Address I2C Module Registers

MBAR+$280 I2C Address Register (MADR)

MBAR+$284 I2C Frequency Divider Register (MFDR)

INTERNAL COUNTER RESET

SCL1

SCL2

SCL

WAIT START COUNTING HIGH PERIOD

I2C Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 18-7

NOTE
External masters cannot access the MCF5251 on-chip memories or MBAR,
but can access any I2C module register.

18.5.1 I2C Address Registers (MADR)

This register contains the address that the I2C will respond to when addressed as a slave.

NOTE
It is not the address sent on the bus during the address transfer.

18.5.2 I2C Frequency Divider Registers (MFDR)

The MFDR provides a programmable prescalar to configure the clock for bit rate selection.

MBAR+$288 I2C Control Register (MBCR)

MBAR+$28C I2C Status Register (MBSR)

MBAR+$290 I2C Data I/O Register (MBDR)

MBAR2 + $440 MBAR2 I2C Address Register (MADR2)

MBAR2 + $444 MBAR2 I2C Frequency Divider Register (MFDR2)

MBAR2 + $448 MBAR2 I2C Control Register (MBCR2)

MBAR2 + $44C MBAR2 I2C Status Register (MBSR2)

MBAR2 + $450 MBAR2 I2C Data I/O Register (MBDR2)

Address MBAR+$280 (MADR)
MBAR2+$440 (MADR2)

Access: Supervisor or User read/write

 7 6 5 4 3 2 1 0

R
ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1

W

Reset 0 0 0 0 0 0 0 0

Figure 18-4. MADR Register

Table 18-2. MADR Register Field Descriptions

Field Description

7–1
ADR

Slave Address. Bit 1 to bit 7 contains the specific slave address to be used by the I2C module.

0 Reserved.

Table 18-1. I2C Interfaces Register Summary (continued)

Address I2C Module Registers

I2C Modules

MCF5251 Reference Manual, Rev. 1

18-8 Freescale Semiconductor

Address MBAR+ $284 (MFDR)
MBAR2+ $444 (MFDR2)

Access: Supervisor or User read/write

 7 6 5 4 3 2 1 0

R
IC5 IC4 IC3 IC2 IC1 IC0

W

Reset 0 0 0 0 0 0 0 0

Figure 18-5. MFDR Register

Table 18-3. MFDR Register1 Field Descriptions

1 The MFDR frequency value can be changed at any point in a program.

Field Description

7–6 Reserved

5–0
IC

I2C Clock Rate. This field is used to prescale the clock for bit rate selection. Due to the potential slow rise and
fall times of the SCL and SDA signals, bus signals are sampled at the prescaler frequency. The serial bit clock
frequency is equal to the system clock divided by the divider shown in Table 18-4

Table 18-4. I2C Prescaler Values

MBC5-0 (hex) Divider (dec) MBC5-0 (hex) Divider (dec)

00 28 20 20

01 30 21 22

02 34 22 24

03 40 23 26

04 44 24 28

05 48 25 32

06 56 26 36

07 68 27 40

08 80 28 48

09 88 29 56

0A 104 2A 64

0B 128 2B 72

0C 144 2C 80

0D 160 2D 96

0E 192 2E 112

0F 240 2F 128

10 288 30 160

11 320 31 192

I2C Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 18-9

18.5.3 I2C Control Registers (MBCR)

The MBCR enables the I2C module and the associated I2C interrupts. It also contains the bits that govern
operation as Master or Slave.

12 384 32 224

13 480 33 256

14 576 34 320

15 640 35 384

16 768 36 448

17 960 37 512

18 1152 38 640

19 1280 39 768

1A 1536 3A 896

1B 1920 3B 1024

1C 2304 3C 1280

1D 2560 3D 1536

1E 3072 3E 1792

1F 3840 3F 2048

Address MBAR+ $288 (MBCR)
MBAR2+ $448 (MBCR2)

Access: Supervisor or User read/write

 7 6 5 4 3 2 1 0

R
IEN IIEN MSTA MTX TXAK RSTA

W

Reset 0 0 0 0 0 0 0 0

Figure 18-6. MBCR Register

Table 18-4. I2C Prescaler Values (continued)

MBC5-0 (hex) Divider (dec) MBC5-0 (hex) Divider (dec)

I2C Modules

MCF5251 Reference Manual, Rev. 1

18-10 Freescale Semiconductor

18.5.4 I2C Status Registers (MBSR)

This status register is read-only with the exception of bit 1 (IIF) and bit 4 (IAL), which can be cleared by
software. All bits are cleared on reset except bit 7 (ICF) and bit 0 (RXAK), which are set (=1) at reset.

Table 18-5. MBCR Register Field Descriptions

Field Description

7
IEN

 The I2C Enable bit controls the software reset of the entire I2C module.

1 The I2C module is enabled. This bit must be set before any other MBCR bits have any effect.
0 The module is disabled, but registers can still be accessed.
If the I2C module is enabled in the middle of a byte transfer, the interface behaves as follows:
The slave mode ignores the current transfer on the bus and starts operating whenever a subsequent start condition
is detected. Master mode will not be aware that the bus is busy; therefore, if a start cycle is initiated, the current bus
cycle can become corrupt. This ultimately results in either the current bus master or the I2C module losing arbitration,
after which bus operation returns to normal.

6
IIEN

 I2C Interrupt Enable
1 Interrupts from the I2C module are enabled. An I2C interrupt occurs provided the IIF bit in the status register is

also set.
0 Interrupts from the I2C module are disabled. This does not clear any currently pending interrupt condition.

5
MSTA

At reset, the Master/Slave Mode Select Bit is cleared. When this bit is changed from 0 to 1, a START signal is
generated on the bus, and the master mode is selected. When this bit is changed from 1 to 0, a STOP signal is
generated and the operation mode changes from master to slave.
MSTA is cleared without generating a STOP signal when the master loses arbitration.

1 Master Mode
0 Slave Mode

4
MTX

The Transmit/Receive Mode Select Bit selects the direction of master and slave transfers. When addressed as a
slave this bit should be set by software according to the SRW bit in the status register. In master mode, this bit should
be set according to the type of transfer required. Therefore, for address cycles, this bit will always be high.

1 Transmit
0 Receive

3
TXAK

The Transmit Acknowledge Enable bit specifies the value driven onto SDA during acknowledge cycles for both
master and slave receivers.
Writing this bit only applies when the I2C bus is a receiver, not a transmitter.

1 No acknowledge signal response is sent (i.e., acknowledge bit = 1)
0 An acknowledge signal will be sent out to the bus at the 9th clock bit after receiving one byte data

2
RSTA

Writing a 1 to the Repeat Start bit will generate a repeated START condition on the bus, provided it is the current bus
master. This bit will always be read as a low. Attempting a repeated start at the wrong time, if the bus is owned by
another master, will result in loss of arbitration.
1 Generate repeat start cycle
0 No repeat start

1–0 Reserved.

I2C Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 18-11

Address MBAR+ $28C (MBSR)
MBAR2+ $44C (MBSR2)

Access: Supervisor or User read/write

 7 6 5 4 3 2 1 0

R
ICF IAAS IBB IAL SRW IIF RXAK

W

Reset 1 0 0 0 0 0 0 1

Figure 18-7. MBSR Register

Table 18-6. MBSR Register Field Descriptions

Field Description

7
ICF

While one byte of data is being transferred, the Data Transferring Bit bit is cleared. It is set by the falling edge of the 9th
clock of a byte transfer.
1 Transfer complete
0 Transfer in progress

6
IAAS

When its own specific address (I2C Address Register) is matched with the calling address, the Addressed as a Slave
Bit is set. The CPU is interrupted provided the IIEN is set. Next, the CPU must check the SRW bit and set its TX/RX
mode accordingly. Writing to the I2C Control Register clears this bit.
1 Addressed as a slave
0 Not addressed

5
IBB

The Bus Busy Bit indicates the status of the bus. When a START signal is detected, the IBB is set. If a STOP signal is
detected, it is cleared.
1 Bus is busy
0 Bus is idle

4
IAL

Hardware sets the Arbitration Lost bit (IAL) when the arbitration procedure is lost. Arbitration is lost in the following
circumstances:
 • SDA sampled as low when the master drives a high during an address or data-transmit cycle.
 • SDA sampled as a low when the master drives a high during the acknowledge bit of a data-receive cycle.
 • A start cycle is attempted when the bus is busy.
 • A repeated start cycle is requested in slave mode.
 • A stop condition is detected when the master did not request it.
This bit must be cleared by software by writing a zero to it.

3 Reserved

2
SRW

When IAAS is set, the Slave Read/Write bit indicates the value of the R/W command bit of the calling address sent from
the master. This bit is valid only when:
 • A complete transfer has occurred and no other transfers have been initiated.
 • I2C is a slave and has an address match.
Checking this bit, the CPU can select slave transmit/receive mode according to the command of the master.
1 Slave transmit, master reading from slave
0 Slave receive, master writing to slave

I2C Modules

MCF5251 Reference Manual, Rev. 1

18-12 Freescale Semiconductor

18.5.5 I2C Data I/O Registers (MBDR)

When an address and R/W bit is written to the MBDR and the I2C is the master, a transmission will start.
When data is written to the MBDR, a data transfer is initiated. The most significant bit is sent first in both
cases. In the master-receive mode, reading the MBDR register allows the read to occur but also initiates
next byte data receiving. In slave mode, the same function is available after it is addressed.

18.6 I2C Programming Examples

18.6.1 Initialization Sequence

A reset places the I2C Control Register into default status. Before the interface can transfer serial data,
users must perform an initialization procedure as follows:

1. Update the Frequency Divider Register (MFDR) and select the required division ratio to obtain
SCL frequency from the system bus clock.

2. Update the I2C Address Register (MADR) to define its slave address.

3. Set the IEN bit of the I2C Control Register (MBCR) to enable the I2C bus interface system.

4. Modify the MBCR to select master/slave mode, transmit/receive mode, and interrupt-enable or not.

1
IIF

The I2C Interrupt (IIF) bit is set when an interrupt is pending, which will cause a processor interrupt request (provided
IIEN is set). IIF is set when one of the following events occurs:
 • Complete one byte transfer (set at the falling edge of the 9th clock)
 • Receive a calling address that matches its own specific address in slave-receive mode
 • Arbitration lost
This bit must be cleared by software by writing a zero to it in the interrupt routine.

0
RXAK

The value of SDA during the acknowledge bit of a bus cycle. If the received acknowledge bit (RXAK) is low, it indicates
an acknowledge signal has been received after the completion of 8 bits data transmission on the bus. If RXAK is high,
it means no acknowledge signal has been detected at the 9th clock.
1 No acknowledge received
0 Acknowledge received

Address MBAR+$290 (MBDR)
MBAR2+$450 (MBDR2)

Access: Supervisor or User read/write

 7 6 5 4 3 2 1 0

R
D7 D6 D5 D4 D3 D2 D1 D0

W

Reset 0 0 0 0 0 0 0 0

Figure 18-8. MBDR Register

Table 18-6. MBSR Register Field Descriptions

Field Description

I2C Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 18-13

NOTE
During the initialization of the I2C bus module, the user should check the
IBB bit of the MBSR register. If the IBB bit is set when the I2C module is
enabled, then the following code sequence should be executed before
proceeding with the normal initialization code. This issues a STOP
command to the slave device, which places it into the idle state as if it were
recently power cycled.

MBCR = $0
MBCR = $A0
dummy read of MBDR
MBSR = $0
MBCR = $0

18.6.2 Generation of START

After completion of the initialization procedure, users can transmit serial data by selecting the “master
transmitter'’ mode. If the MCF5251 is connected to a multimaster bus system, users must test the state of
the I2C Busy Bit (IBB) to check whether the serial bus is free.

If the bus is free (IBB=0), the start condition and the first byte (the slave address) can be sent. The data
written to the data register comprises the address of the desired slave and the LSB is set to indicate the
direction of transfer required.

The bus free time (i.e., the time between a STOP condition and the following START condition) is built
into the hardware that generates the START cycle. Depending on the relative frequencies of the system
clock and the SCL period, users may have to wait until the I2C is busy after writing the calling address to
the MBDR before proceeding with the following instructions.

An example of a program that generates the START signal and transmits the first byte of data (slave
address) is shown as follows:
CHFLAG MOVE.B MBSR,-(A7);Check the MBB bit of the MBSR
BTST.B #5, (A7)+
BNE.S CHFLAG;If it is set, wait until it is clear

TXSTART MOVE.B MBCR,-(A7);Set transmit mode
BSET.B #4,(A7)
MOVE.B (A7)+, MBCR
MOVE.B MBCR, -(A7);Set master mode
BSET.B #5, (A7);Generate START condition

MOVE.B (A7)+, MBCR;
MOVE.B CALLING,-(A7);Transmit the calling address, D0=R/W
MOVE.B (A7)+, MBDR;

IFREE MOVE.B MBSR,-(A7);Check the IBB bit of the MBSR.
;If it is clear, wait until it is set.
BTST.B #5, (A7)+;
BEQ.S IBFREE;

I2C Modules

MCF5251 Reference Manual, Rev. 1

18-14 Freescale Semiconductor

18.6.3 Post-Transfer Software Response

Transmission or reception of a byte will set the data transferring bit (ICF) to 1, which indicates one byte
communication is finished. The interrupt bit (IIF) is also set. An interrupt will be generated if the interrupt
function is enabled during initialization by setting the IIEN bit. Software must clear the IIF bit in the
interrupt routine first. The ICF bit will be cleared by reading from the I2C Data I/O Register (MBDR) in
receive mode or writing to MBDR in transmit mode.

Software can service the I2C I/O in the main program by monitoring the IIF bit if the interrupt function is
disabled. Polling should monitor the IIF bit rather than the ICF bit because that operation is different when
arbitration is lost.

When an interrupt occurs at the end of the address cycle, the master will always be in transmit mode. For
example, the address is transmitted. If master receive mode is required, indicated by MBDR[R/W], then
the MTX bit should be toggled.

During slave-mode address cycles (IAAS=1), the SRW bit in the status register is read to determine the
direction of the subsequent transfer and the MTX bit is programmed accordingly. For slave-mode data
cycles (IAAS=0), the SRW bit is not valid. The MTX bit in the control register should be read to determine
the direction of the current transfer.

The following is an example of a software response by a “master transmitter’' in the interrupt routine (see
Figure 18-9).
MBSR LEA.L MBSR,-(A7) ;Load effective address

BCLR.B #1,(A7)+ ;Clear the IIF flag
MOVE.B MBCR,-(A7) ;Push the address on stack,
BTST.B #5,(A7)+ ;check the MSTA flag
BEQ.S SLAVE ;Branch if slave mode
MOVE.B MBCR,-(A7) ;Push the address on stack
BTST.B #4,(A7)+ ;check the mode flag
BEQ.S RECEIVE ;Branch if in receive mode
MOVE.B MBSR,-(A7) ;Push the address on stack,
BTST.B #0,(A7)+ ;check ACK from receiver
BNE.B

END ;If no ACK, end of transmission
TRANSMIT MOVE.B DATABUF,-(A7) ;Stack data byte

MOVE.B (A7)+, MBDR) ;Transmit next byte of data

18.6.4 Generation of STOP

A data transfer ends with a STOP signal generated by the “master’' device. A master transmitter can
generate a STOP signal after all the data has been transmitted. The following code is an example showing
how a master transmitter generates a stop condition.
MASTX MOVE.B MBSR, -(A7) ; If no ACK, branch to end

BTST.B #0,(A7)+
BNE.B END
MOVE.B TXCNT,D0 ;Get value from the transmitting counter
BEQ.S END ;If no more data, branch to end
MOVE.B DATABUF,-(A7) ;Transmit next byte of data
MOVE.B (A7)+,MBDR
MOVE.B TXCNT,D0 ;Decrease the TXCNT
SUBQ.L #1,D0

I2C Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 18-15

MOVE.B D0,TXCNT
BRA.S EMASTX ;Exit

END LEA.L MBCR,-(A7) ;Generate a STOP condition
BCLR.B #5,(A7)+

EMASTX RTE; Return from interrupt

If a master receiver wants to terminate a data transfer, it must inform the slave transmitter by not
acknowledging the last byte of data, which can be done by setting the transmit acknowledge bit (TXAK)
before reading the next-to-last byte of data. Before reading the last byte of data, a STOP signal must first
be generated. The following code is an example showing how a master receiver generates a STOP signal.
MASR MOVE.B RXCNT,D0 ;Decrease RXCNT

SUBQ.L #1,D0
MOVE.B D0,RXCNT
BEQ.S ENMASR ;Last byte to be read
MOVE.B RXCNT,D1 ;Check second-to-last byte to be read
EXTB.L D1
SUBI.L #1,D1 ;
BNE.S NXMAR ; Not last one or second last

LAMAR BSET.B #3,MBCR ;Disable ACK
BRA NXMAR

ENMASR BCLR.B #5,MBCR ; Last one, generate 'STOP'signal
NXMAR MOVE.B MBDR,RXBUF ; Read data and store RTE

18.6.5 Generation of Repeated START

At the end of data transfer, if the master still wants to communicate on the bus, it can generate another
START signal followed by another slave address without first generating a STOP signal. A program
example follows.
RESTART MOVE.B MBCR,-(A7) ; Another START (RESTART)

BSET.B #2, (A7)
MOVE.B (A7)+, MBCR
MOVE.B CALLING,-(A7) ;Transmit the calling address, D0=R/W-
MOVE.B CALLING,-(A7) ;
MOVE.B (A7)+, MBDR

18.6.6 Slave Mode

In the slave interrupt service routine, the module that is addressed as slave bit (IAAS), should be tested to
check if a calling of its own address was received. If IAAS is set, software should set the transmit/receive
mode select bit (MTX bit of MBCR) according to the R/W command bit (SRW). Writing to the MBCR
clears the IAAS automatically. The only time IAAS is read as set is from the interrupt at the end of the
address cycle where an address match occurred; interrupts resulting from subsequent data transfers will
have IAAS cleared. A data transfer can now be initiated by writing information to MBDR, for slave
transmits, or read from MBDR, in slave-receive mode. A dummy read of the MBDR in slave/receive mode
will release SCL, allowing the master to transmit data.

In the slave transmitter routine, the received acknowledge bit (RXAK) must be tested before transmitting
the next byte of data. Setting RXAK means an “end-of-data’' signal from the master receiver, after which
it must be switched from transmitter mode to receiver mode by software. A read from MBDR then releases
the SCL line so that the master can generate a STOP signal.

I2C Modules

MCF5251 Reference Manual, Rev. 1

18-16 Freescale Semiconductor

18.6.7 Arbitration Lost

If several devices try to engage the bus at the same time, only one becomes master and the others lose
arbitration. The devices that lost arbitration are immediately switched to slave receive mode by the
hardware. Their data output to the SDA line is stopped, but SCL is still generated until the end of the byte
during which arbitration was lost. An interrupt occurs at the falling edge of the ninth clock of this transfer
with IAL=1 and MSTA=0. If one master tries to transmit or do a START while the bus is being engaged
by another master, the hardware does the following:

1. Inhibits the transmission

2. Switches the MSTA bit from 1 to 0 without generating STOP condition

3. Generates an interrupt to CPU

4. Sets the IAL to indicate the failed attempt to engage the bus

When considering these cases, the slave service routine should test the IAL first and the software should
clear the IAL bit if it is set.

I2C Modules

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 18-17

Figure 18-9. Flow-Chart of Typical I2C Interrupt Routine

Clear

Master
Mode?

TX/RX
?

Last Byte
Transmitted

?

RXAK=0
?

End Of
Addr Cycle
(Master Rx)

?

Write Next
Byte To MBDR

Switch To
Rx Mode

Dummy Read
From MBDR

Generate
Stop Signal

Read Data
From MBDR
And Store

Set TXAK =1 Generate
Stop Signal

2nd Last
Byte To Be

Last
Byte To Be

Arbitration
Lost?

Clear IAL

IAAS=1
?

IAAS=1
?

SRW=1
?

TX/RX
?

Set Tx
Mode

Write Data
To MBDR

Set Rx
Mode

Dummy Read
From MBDR

Ack From
Receiver

?

Tx Next
Byte

Read Data
From MBDR
And Store

Switch To
Rx Mode

Dummy Read
From MBDR

RTE

Y N

Y

Y

Y

Y

Y

Y

Y

Y

N

N

N

NN

N

N

N

Y

TX RX

RX

TX(Write)

(Read)

IIF

Address
Cycle

Data
Cycle

Read?

Read?

?

Y

Y

N

N

I2C Modules

MCF5251 Reference Manual, Rev. 1

18-18 Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 19-1

Chapter 19
Boot ROM
This chapter describes the BootROM operation, the boot modes, and creation of record files.

19.1 Overview
The boot ROM on the MCF5251 serves to boot the CPU in designs which do not have external Flash
memory or ROM. Typically these systems use a separate MCU for control, and/or the MCF5251 is used
as a stand-alone decoder.

The boot loader resides in 8 K byte on-chip ROM and is enabled by means of a pull-down resistor
connected to address pin A23.

With the exception of the UART modes, the boot ROM assumes that the maximum input clock frequency
will be 33.8688 MHz.

Therefore, in I2C master or SPI Master modes the generated serial clock will scale with the input clock
frequency.

For the UART boot modes there are three different settings available to allow operation with the following
crystal or external clock frequencies: 5, 5.6448, 8.4672, 10, 11.2896, 16.9344, 20 and 33.8688 MHz.

19.1.1 Boot Modes

The MCF5251 can be booted in one of three modes:

• External ROM

• Internal ROM Master mode

• Internal ROM Slave mode

Boot from external ROM is selected by pulling A23 high during system Power-on Reset. In this mode, the
internal boot ROM is not available in the memory map, and the boot process is under control of the user
program in external memory connected to CS0.

By pulling A23 low during Power-on Reset, CS0 is assigned to the internal boot ROM, where code
execution will begin after RESET.

Pin CS0/CS4 is assigned the function of CS4.

The internal boot ROM code supports master and slave modes.

In Master mode operation, the MCF5251 will control the communication with the boot device. It will
attempt to load code from a slave device to RAM (either internal or external) and execute this code when
it receives an execute command. In this mode, no error recovery is performed by the boot loader.

Boot ROM

MCF5251 Reference Manual, Rev. 1

19-2 Freescale Semiconductor

This mode supports booting from the following:

• I2C connected slave device

• SPI connected slave device

• Hard Disk Drive (IDE)

In slave mode, the MCF5251 will wait for communication from a controlling MCU and store the code it
receives in RAM. It executes this code after receiving an execute command. The controlling MCU must
control the data transfer and handle error recovery if required.

This mode supports booting from the following:

• I2C connected master device

• UART connected master

19.2 Boot ROM Operation

19.2.1 Initialization

19.2.1.1 Boot ROM Memory map
bootrom:origin = 0x00000000, length = 0x00002000
mbar:origin = 0xb0000000, length = 0x10000000
mbar2:origin = 0xc0000000, length = 0x40000000
sram1:origin = 0x10000000, length = 0x00010000
sram0:origin = 0x10010000, length = 0x00010000

19.2.1.2 Internal SRAM usage

The boot ROM data resides in the upper range of the internal SRAM.

The SRAM allocation is as follows:
0x1001FC90 – 0x1001FF13Bootloader uninitialized data (HDD) (644 bytes)
0x1001FF14 – 0x1001FF3FBootloader uninitialized data (Serial) (44 bytes)
0x1001FF40 – 0x1001FFFFBootloader Stack (192 bytes)

NOTE
The HDD data space is available for use when booting from a serial device.
If the user routine exceeds the assigned stack allocation, then it would be
more appropriate for the user to define their own stack space, especially if
the user routine returns to the bootloader.

Initialization sequence
_Boot:

move.w #0x2700,SR
move.l #VECTOR_TABLE,d0
movec d0,VBR

; /* Invalidate the cache and disable it */
move.l #0x01000000,d0
movec d0,cacr

Boot ROM

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 19-3

; /* Disable ACRs */
moveq.l #0,d0
movec d0,ACR0
movec d0,ACR1

; /* Initialize SRAMBAR */
move.l #SRAM0base+1,d0; /* locate SRAM0, validate it! */
movec d0,SRAMBAR
move.l #SRAM1base+1,d0; /* locate SRAM1, validate it! */
movec d0,SRAMBAR1

move.l #___MBAR+1,d0; /* locate MBAR and validate */
movec d0,MBAR;
move.l #___MBAR2+1,d0; /* locate MBAR2 and validate*/
movec d0,MBAR2;

; /* Initialize CS0 */
move.l #ROMbase,d0;
move.l d0,CSAR0; /* locate ROM */
move.l #0xFFFF0001,d0; /* block size 64 KB, validate */
move.l d0,CSMR0;
move.l #0x0580,d0; /* port size 16 bit, AA, 1WS */
move.l d0,CSCR0;

move.l #___SP_INIT,sp
move.w #0x2000,SR; /* enable interrupts */
jsr _main
bra .; /* loop in case main returns */

19.2.2 Boot Type Detection

Three GPIO lines define the boot mode and device type. After initialization of the on-chip resources, the
boot loader reads the status of the GPIO lines and selects the requested device to boot from. Boot type
encoding is described in Table 19-1.

Table 19-1. Boot Detection GPIO

Boot Mode GPIO50 GPIO49 GPIO48

I2C master 0 0 0

SPI (master) 0 0 1

IDE (master) 0 1 0

I2C slave 1 0 0

UART (5.6448/11.2896 MHz Xtal) 1 0 1

UART (8.4672/16.9344/33.8688 MHz Xtal) 1 1 0

UART (5/10/20 MHz Xtal) 1 1 1

Boot ROM

MCF5251 Reference Manual, Rev. 1

19-4 Freescale Semiconductor

19.2.3 Serial Boot Data Format

All serial boot modes use the same data structure to read data from the external device. All data is
organized in boot records. The boot loader reads one or more boot records and processes the data according
to the command which is supplied in the boot record header. A boot record has the following structure:

The first byte of a boot record is a sync byte with value 0x55. The boot-loader will ignore all data up to
and including this byte. The second byte contains the command to execute and the data width of the
data/code section. The command is coded in the upper nibble; the size is coded in the lower nibble. The
size specification defines the word length to be used to store the data in the MCF5251 memory space. This
allows writing to registers through the boot loader.

The following tables describe the encoding of the command and size bits:

19.2.3.1 Command Encoding/Size Encoding

The destination address is the base address for the data in the boot record. Data will be stored sequentially
starting at this address.

The Byte Count (BC) is the number of data bytes in the boot record. After the loader has read the number
of bytes specified, it assumes the next byte to be the start of a new record.

The data/code section in a command block contains the actual data to be written. This section can be empty
(BC=0). Typically used to start program execution at the address specified in the address field.

Table 19-2. Boot Records

Offset # Bytes Description

0 1 Sync Byte (0x55)

1 1 Command/Data width (byte, word, longword)

2 4 Destination address in MCF5251 memory space

6 4 Number of bytes in data/code section (BC)

10 BC Data/Code section

Table 19-3. Command Bits

Command Code

Store Immediate 0b0001

Execute 0b0011

Table 19-4. Size Bits

Size Code

Byte 0b0001

Word 0b0010

Long Word 0b0100

Boot ROM

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 19-5

19.2.3.2 Supported Commands

• Store Immediate

— The store immediate command causes the boot loader to read from the serial device and store
the data at the destination address as soon as a complete unit (1, 2 or 4 bytes) has been read.
The unit size is defined in the lower nibble of the command word.

• Execute

— The execute command has no data associated to it. The address field contains the entry point
of the code to be executed. The byte count is 0. Upon reception of an execute command, the
loader calls the routine at the specified address by means of a JSR instruction. If the called
routine returns, the loader will continue and read the next boot record.

19.2.4 IDE Boot Data Format

An IDE boot record has the following structure:

The load address provides the start location where the boot record will be stored within the MCF5251’s
memory map, the execution address provides the entry point code execution will begin from after the boot
record has been loaded into memory. The CRC allows the boot record to be validated before attempting to
begin code execution. The length of the boot record is described in number of sectors (512 bytes) it
occupies on the drive, up to a maximum of 256, making the maximum boot file size 131,060 bytes, 12
bytes are required for the boot record.

The boot record must be stored as the first three files in the root directory of a newly formatted FAT32
device. The files have to be in a continuous cluster (single section) and named as IDEBOOT1.IDE,
IDEBOOT2.IDE and IDEBOOT3.IDE.

19.2.5 Boot Modes

19.2.5.1 Boot From I2C / SPI – Master Mode

In I2C master mode, the boot loader reads data from a serial EEPROM/FLASH connected to I2C0 (SCL0
and SDA0). The I2C address of the device must be 0b1010000x, as this address is standard for serial
memories. Only devices which use a 16-bit memory address are supported. The I2C clock speed is set at
100KHz when the maximum crystal / external clock input is used (33.8688 MHz). The I2C clock speed

Table 19-5. Boot Records

Offset # Bytes Description

0 4 Load address in MCF5251 memory space

4 4 Execution address

8 2 Boot record CRC

10 2 Length of record in sectors (max 256)

12 – Data/Code section

Boot ROM

MCF5251 Reference Manual, Rev. 1

19-6 Freescale Semiconductor

will scale in a linear fashion with lower clock frequencies. Obviously the boot time will increase with lower
frequencies, but the interface will still operate.

The loader uses ‘sequential read mode’ to retrieve the data, and starts reading from address zero.

Figure 19-1. I2C Master Boot Mode

Boot from a serial device over the SPI interface is similar to the I2C master mode. In SPI mode the
maximum bit rate is used, which is dependent on the clock input. QSPI_CS0, QSPI_DIN, QSPI_DOUT
and QSPI_CLK provide the interface to the external device.

19.2.5.2 Boot from I2C - Slave Mode

In I2C slave mode, an external master can transfer boot records and data to the boot loader via I2C0, using
the slave address 0b0101000x.

19.2.5.3 Boot from UART

In UART mode, the MCF5251 acts as a slave device and receives data over UART1 (TXD1 and RXD1).

UART configuration:
Baud rate:19200 / 9600 / 4800 baud @ Xtal = 33.8688 / 16.9344 / 8.4672 MHz (see config GPIO’s)

19200 / 9600 baud @ Xtal = 11.2896 / 5.6448 MHz (see config GPIO’s)
19200 / 9600 / 4800 baud @ Xtal = 20 / 10 / 5 MHz (see config GPIO’s)

Bits: 8
Parity None
Stop Bits1

NOTE
The baud rate generator must be configured such that the actual baud rate is
within +/- 3% of the intended baud rate.

19.2.5.3.1 UART Protocol

To allow a master device to synchronize with the MCF5251 during the boot process, the boot loader will
echo all data received from the master. Data bytes are echoed as they are received. The master can use the
echo to determine if the data has been received correctly or determine when an execute command has been
completed.

19.2.5.4 Boot from IDE Device

The boot loader expects a partitioned disk, with the first partition being a FAT32 partition.

16-bit addressing mode

Boot ROM

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 19-7

It will attempt to read the file IDEBOOT1.IDE and then verify the checksum. If this fails it tries
IDEBOOT2.IDE eventually followed by IDEBOOT3.IDE.

Typically, the data in the boot file is a second stage boot loader which performs the system initialization
(SDRAM etc) and loads the application code.

This second stage boot loader now performs the system boot, allowing the boot process to be customized,
supporting different file systems, if necessary.

Figure 19-2. Boot Loader IDE Interface

19.3 Creating Appropriate Boot Record Files
For serial boot modes typically at least two boot record headers must be added to the raw binary file
generated by the user code. The first must be at the start of the file and should be a ‘Store Immediate’
header with an appropriate load address and byte count, the second, an ‘Execute’ header, should be at the
end of the file with an appropriate execute address.

Multiple ‘Store Immediate’ headers can be used if several separate blocks of data need to be loaded before
code execution can begin.

Example utilities are available from Freescale to generate appropriate boot record files if required, contact
your local Freescale representative for further details.

74LCX16245

DIR
OE

74LCX16245

DIR
OE

IDE Interface

A1-A5

D31-D15

RW
BUFENB2

IDE_DIOW
IDE_DIOR
IDE_IORDY
GPIO04
GPIO18

IOW
IOR
IORDY
IRQ
RESET

D15-D0

A0-A2
CS0, CS1

MCF5251 Interface

Boot ROM

MCF5251 Reference Manual, Rev. 1

19-8 Freescale Semiconductor

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-1

Chapter 20
Background Debug Mode (BDM) Interface
This chapter details the MCF5251 hardware debug support. The topics discussed are real-time trace
support, background debug mode (BDM), and real-time debug support. The memory map, register
descriptions and debug support operation are provided.

The MCF5251 implements an enhanced debug architecture. The original design plus these enhancements
is known as Revision A (or Rev. A). The enhanced functionality is clearly identified in this chapter. The
Rev. A enhancements are backward compatible with the original ColdFire debug definition.

The general topic of debug support is divided into three separate areas:

1. Real-Time Trace Support

2. Background Debug Mode (BDM)

3. Real-Time Debug Support

NOTE
To enable Debug Mode, TEST[2:0] pins must be = 001.

The logic required to support these three areas is contained in a debug module as shown in Figure 20-1.

Figure 20-1. Processor/Debug Module Interface

20.1 Debug Support Signals
This section describes signals associated with the debug module. All ColdFire debug signals are
unidirectional and are related to the rising-edge of the processor core’s clock signal.

COLDFIRE CPU

DEBUG

MODULE

HIGH SPEED
CORE

TRACE PORT
DDATA, PST, PSTCLK

COMMUNICATION PORT
DSCLK, DSI, DSOCONTROL

BKPT

LOCAL BUS

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-2 Freescale Semiconductor

20.1.1 Breakpoint (BKPT)

The BKPT active-low input signal is used to request a manual breakpoint. Its assertion causes the processor
to enter a halted state after the completion of the current instruction. The halt status is reflected on the
processor status (PST) pins as the value $F.

20.1.2 Debug Data (DDATA[3:0])

These output signals display the hardware register breakpoint status as a default, or optionally, captured
address and operand values. The capturing of data values is controlled by the setting of the
configuration/status register (CSR). Additionally, execution of the WDDATA instruction by the processor
captures operands which are displayed on DDATA. These signals are updated each processor cycle.

20.1.3 Development Serial Clock (DSCLK)

This input signal is synchronized internally and provides the clock for the serial communication port to the
debug module. The maximum frequency is 1/5 the speed of the processor’s clock (CLK). At the
synchronized rising edge of DSCLK, the data input on DSI is sampled, and the DSO output changes state.
See Figure 20-3 for more information.

20.1.4 Development Serial Input (DSI)

The input signal is synchronized internally and provides the data input for the serial communication port
to the debug module.

20.1.5 Development Serial Output (DSO)

This signal provides serial output communication for the debug module responses.

20.1.6 Processor Status (PST[3:0])

These output signals report the processor status. Table 20-1 shows the encoding of these signals. These
outputs indicate the current status of the processor pipeline and are not related to the current bus transfer.
The PST value is updated each processor cycle.

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-3

20.1.7 Processor Status Clock (PSTCLK)

Since the debug trace port signals transition each processor cycle and are not related to the external bus
frequency, an additional signal is output from the ColdFire microprocessor. The PSTCLK signal is a
delayed version of the processor’s high-speed clock and its rising-edge is used by the development system
to sample the values on the PST and DDATA output buses. The PSTCLK signal is intended for use in the
standard 26-pin debug connector. See Figure 20-39.

If the real-time trace functionality is not being used, the PCD bit of the CSR may be set (CSR[17] = 1) to
force the PSTCLK, PST, and DDATA outputs to be disabled.

20.2 Real-Time Trace Support
In the area of debug functions, one fundamental requirement is support for real-time trace functionality.
For example, definition of the dynamic execution path. The ColdFire solution is to include a parallel output
port providing encoded processor status and data to an external development system. This port is
partitioned into two nibbles (4 bits): one nibble allows the processor to transmit information concerning
the execution status of the core (processor status: PST), while the other nibble allows operand data to be

Table 20-1. Processor Status Encoding

PST[3:0]
Definition

(Hex) (Binary)

$0 0000 Continue execution

$1 0001 Begin execution of an instruction

$2 0010 Reserved

$3 0011 Entry into user-mode

$4 0100 Begin execution of PULSE and WDDATA
instructions

$5 0101 Begin execution of taken branch or Sync_PC

$6 0110 Reserved

$7 0111 Begin execution of RTE instruction

$8 1000 Begin 1-byte transfer on DDATA

$9 1001 Begin 2-byte transfer on DDATA

$A 1010 Begin 3-byte transfer on DDATA

$B 1011 Begin 4-byte transfer on DDATA

$C 1100 Exception processing†

$D 1101 Emulator-mode entry exception processing†

$E 1110 Processor is stopped, waiting for interrupt†

$F 1111 Processor is halted †

Note: †These encodings are asserted for multiple cycles.

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-4 Freescale Semiconductor

displayed. (debug data: DDATA). The processor status (PST) timing is synchronous with the processor
status clock (PSTCLK) and may not be related to the current bus transfer. Table 20-1 shows the encoding
of these signals.

The PST outputs can be used with an external image of the program to completely track the dynamic
execution path of the machine when used with external development systems. The tracking of this dynamic
path is complicated by any change-of-flow operation. This is especially evident when the branch target
address is calculated based on the contents of a program-visible register (variant addressing.) For this
reason, the DDATA outputs can be configured to display the target address of these types of
change-of-flow instructions. Because the DDATA bus is only 4 bits wide, the address is displayed a nibble
at a time across multiple clock cycles.

The debug module includes two 32-bit storage elements for capturing the internal ColdFire bus
information. These two elements effectively form a FIFO buffer connecting the processor’s high-speed
local bus to the external development system through the DDATA signals. The FIFO buffer captures
branch target addresses along with certain operand data values for eventual display on the DDATA output
port, a nibble at a time, starting with the least-significant bit. The execution speed of the ColdFire processor
is affected only when both storage elements contain valid data waiting to be dumped onto the DDATA port.
In this case, the processor core is stalled until one FIFO entry is available. In all other cases, data output
on the DDATA port does not impact execution speed.

20.2.1 Processor Status Signal Encoding

The PST signals are encoded to reflect the state of the Operand Execution Pipeline, and are generally not
related to the current external bus transfer.

20.2.1.1 Continue Execution (PST = $0)

Many instructions complete in a single processor cycle. If an instruction requires more clock cycles, the
subsequent clock cycles are indicated by driving the PST outputs with this encoding.

20.2.1.2 Begin Execution of an Instruction (PST = $1)

For most instructions, this encoding signals the first clock cycle of an instruction’s execution. Certain
change-of-flow opcodes, plus the PULSE and WDDATA instructions generate different encodings.

20.2.1.3 Entry into User Mode (PST = $3)

This encoding indicates the ColdFire processor has entered user mode. This encoding is signaled after the
instruction which caused the user mode entry has executed.

20.2.1.4 Begin Execution of PULSE or WDDATA instructions (PST = $4)

The ColdFire instruction set architecture includes a PULSE opcode. This opcode generates a unique PST
encoding, $4, when executed. This instruction can define logic analyzer triggers for debug and/or
performance analysis. Additionally, a WDDATA instruction is supported that allows the processor core to
write any operand (byte, word, longword) directly to the DDATA port, independent of any debug module

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-5

configuration. This opcode also generates the special PST encoding ($4) when executed, followed by the
appropriate marker and then the data transfer on the DDATA outputs. The length of the data transfer is
dependent on the operand size of the WDDATA instruction.

20.2.1.5 Begin Execution of Taken Branch (PST = $5)

This encoding is generated whenever a taken branch is executed. For certain opcodes, the branch target
address may be optionally displayed on DDATA depending on the control parameters contained in the
configuration/status register (CSR). The number of bytes of the address to be displayed is also controlled
in the CSR and indicated by the PST marker value immediately preceding the DDATA outputs.

The bytes are always displayed in a least-significant to most-significant order. The processor captures only
those target addresses associated with taken branches using a variant addressing mode. For example, all
JMP and JSR instructions using address register indirect or indexed addressing modes, all RTE and RTS
instructions as well as all exception vectors.

The simplest example of a branch instruction using a variant address is the compiled code for a C language
“case” statement. Typically, the evaluation of this statement uses the variable of an expression as an index
into a table of offsets, where each offset points to a unique case within the structure. For these types of
change-of-flow operations, the ColdFire processor uses the debug pins to output a sequence of information
on successive processor clock cycles:

1. Identify a taken branch has been executed using the PST pins ($5).

2. Using the PST pins, optionally signal the target address is to be displayed on the DDATA pins. The
encoding ($9, $A, $B) identifies the number of bytes that are displayed.

3. The new target address is optionally available on subsequent cycles using the nibble-wide DDATA
port. The number of bytes of the target address displayed on this port is a configurable parameter
(2, 3, or 4 bytes).

Another example of a variant branch instruction would be a JMP (A0) instruction. Figure 20-2 shows the
outputs of the PST and DDATA signals when a JMP (A0) instruction executed, assuming the CSR is
programmed to display the lower two bytes of an address.

Figure 20-2. Example PST/DDATA Diagram

PST is driven with a $5 indicating a taken branch. In the second cycle, PST is driven with a marker value
of $9 indicating a two-byte address that is displayed four bits at a time on the DDATA signals over the next
four clock cycles. The remaining four clock cycles display the lower two-bytes of the address (A0), least
significant nibble to most significant nibble. The output of the PST signals after the JMP instruction
completes is dependent on the target instruction. The PST can continue with the next instruction before the
address has completely displayed on the DDATA because of the DDATA FIFO. If the FIFO is full and the

PSTCLK

PST

DData

$5

$0 $0

$9

A[3:0] A[7:4] A[11:8] A[15:12]

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-6 Freescale Semiconductor

next instruction needs to display captured values on DDATA, the pipeline stalls (PST = $0) until space is
available in the FIFO.

20.2.1.6 Begin Execution of RTE Instruction (PST = $7)

The unique encoding is generated whenever the return-from-exception (RTE) instruction is executed.

20.2.1.7 Begin Data Transfer (PST = $8–$B)

These encodings serve as markers to indicate the number of bytes to be displayed on the DDATA port on
subsequent clock cycles. This encoding is driven onto the PST port one processor cycle before the actual
data is displayed on DDATA. When PST outputs a $8/$9/$A/$B marker value, the DDATA port outputs
1/2/3/4 bytes of captured data respectively on consecutive processor cycles.

20.2.1.8 Exception Processing (PST = $C)

This encoding is displayed during normal exception processing. Exceptions which enter emulation mode
(debug interrupt, or optionally trace) generate a different encoding. Because this encoding defines a
multicycle mode, the PST outputs are driven with this value until exception processing is completed.

20.2.1.9 Emulator Mode Exception Processing (PST = $D)

This encoding is displayed during emulation mode (debug interrupt, or optionally trace). Because this
encoding defines a multicycle mode, the PST outputs are driven with this value until exception processing
is completed.

20.2.1.10 Processor Stopped (PST = $E)

This encoding is generated as a result of the STOP instruction. The ColdFire processor remains in the
stopped state until an interrupt occurs. Because this encoding defines a multicycle mode, the PST outputs
are driven with this value until the stopped mode is exited.

20.2.1.11 Processor Halted (PST = $F)

This encoding is generated when the ColdFire processor is halted (Refer to Section 20.3.1, “CPU Halt.”)
Because this encoding defines a multicycle mode, the PST outputs are driven with this value until the
processor is restarted, or reset.

20.3 Background-Debug Mode (BDM)
Background debug mode (BDM) implements a low-level system debugger in the microprocessor
hardware. Communication with the development system is handled through a dedicated, high-speed,
full-duplex serial command interface. The BDM features are as follows:

• ColdFire implements the BDM controller in a dedicated hardware module. Although some BDM
operations do require the CPU to be halted (For example, CPU register accesses), other BDM
commands such as memory accesses can be executed while the processor is running.

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-7

• The read/write control register commands, RCREG and WCREG use the register coding scheme
from the MOVEC instruction.

• The read/write debug module register commands, RDMREG and WDMREG support debug
module register accesses.

• Illegal command responses can be returned using the FILL and DUMP commands, if not
immediately preceded by certain, specific BDM commands.

• For any command performing a byte-sized memory read operation, the upper 8 bits of the response
data are undefined. The referenced data is returned in the lower 8 bits of the response.

• The debug module forces alignment for memory-referencing operations: long accesses are forced
to a 0-modulo-4 address; word accesses are forced to a 0-modulo-2 address. An address error
response is never returned.

20.3.1 CPU Halt

Although many BDM operations can occur in parallel with CPU operation, unrestricted BDM operation
requires the CPU to be halted. A number of sources can cause the CPU to halt, including the following as
shown in order of priority:

1. The occurrence of the catastrophic fault-on-fault condition automatically halts the processor.

2. The occurrence of a hardware breakpoint can be configured to generate a pending halt condition in
a manner similar to the assertion of the BKPT signal. In all cases, the assertion of this type of halt
is first made pending in the processor. Next, the processor samples for pending halt and interrupt
conditions once per instruction. Once the pending condition is asserted, the processor halts
execution at the next sample point. See Section 20.4.1, “Theory of Operation,” for more detail.

3. The execution of the HALT ColdFire instruction immediately suspends execution. By default this
is a supervisor instruction and attempted execution while in user mode generates a privilege
violation exception. A User Halt Enable (UHE) control bit is provided in the Configuration/Status
Register (CSR) to allow execution of HALT in user mode. The processor may be restarted after the
execution of the HALT instruction by serial shifting a “GO” command into the debug module.
Execution continues at the instruction following the HALT opcode.

4. The assertion of the BKPT input pin is treated as a pseudo-interrupt. For example, the halt
condition is made pending until the processor core samples for halts/interrupts. The processor
samples for these conditions once during the execution of each instruction. If there is a pending halt
condition at the sample time, the processor suspends execution and enters the halted state.

There are two special cases involving the assertion of the BKPT pin to be considered.

After the system reset signal is negated, the processor waits for 16 clock cycles before beginning reset
exception processing. If the BKPT input pin is asserted within the first eight cycles after RSTI is negated,
the processor enters the halt state, signaling that halt status, ($F), on the PST outputs. While in this state,
all resources accessible through the debug module can be referenced. This is the only opportunity to force
the ColdFire processor into emulation mode using the EMU bit in the configuration/status register (CSR).
Once the system initialization is complete, the processor response to a BDM GO command is dependent
on the set of BDM commands performed while breakpointed. Specifically, if the processor’s PC register

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-8 Freescale Semiconductor

was loaded, then the GO command simply causes the processor to exit the halted state and pass control to
the instruction address contained in the PC.

NOTE
In this case, the normal reset exception processing is bypassed. Conversely,
if the PC register was not loaded, then the GO command causes the
processor to exit the halted state and continue with reset exception
processing.

ColdFire also handles a special case of the assertion of BKPT while the processor is stopped by execution
of the STOP instruction. For this case, the processor exits the stopped mode and enters the halted state.
Once halted, all BDM commands may be exercised. When the processor is restarted, it continues with the
execution of the next sequential instruction. For example, the instruction following the STOP opcode.

The halt source is indicated in CSR[27:24]. For simultaneous halt conditions, the highest priority source
is indicated.

20.3.2 BDM Serial Interface

Once the CPU is halted and the halt status reflected on the PST outputs, the development system may send
unrestricted commands to the debug module. The debug module implements a synchronous protocol using
a three-pin interface: development serial clock (DSCLK), development serial input (DSI), and
development serial output (DSO). The development system serves as the serial communication channel
master and is responsible for generation of the clock (DSCLK). The maximum operating bandwidth of the
serial channel is DC to 1/5 of the processor frequency. The channel uses a full duplex mode, where data is
transmitted and received simultaneously by both master and slave devices. The transmission consists of
17-bit packets composed of a status/control bit and a 16-bit data word. As shown in Figure 20-3, all state
transitions are enabled on a rising edge of the processor clock when DSCLK is high. For example, DSI is
sampled and DSO is driven. The DSCLK signal must also be sampled low (on a positive edge of CPUCLK)
between each bit exchange. The MSB is transferred first.

Figure 20-3. BDM Serial Transfer

Both DSCLK and DSI are synchronized inputs.The DSCLK signal essentially acts as a pseudo “clock
enable” and is sampled on the rising edge of CPUCLK as well as the DSI. The DSO output is delayed from
the DSCLK-enabled CPUCLK rising edge. All events in the debug module’s serial state machine are based
on the rising edge of the microprocessor clock.

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-9

20.3.2.1 Receive Packet Format

The basic receive packet of information is 17 bits long,16 data bits plus a status bit, as shown in
Figure 20-4.

Table 20-2 describes the receive BDM packets. Bit descriptions are described in Table 20-3.

20.3.2.2 Transmit Packet Format

The basic transmit packet of information is 17 bits long,16 data bits plus a control bit, as shown in
Figure 20-5.

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S DATA FIELD [15:0]

Figure 20-4. Receive BDM Packet Register

Table 20-2. CPU-Generated Command Responses

S Bit Data Message Type

0 xxxx Valid data transfer

0 $FFFF Status OK

1 $0000 Not ready with response; try again

1 $0001 Error—terminated bus cycle; data invalid

1 $FFFF Illegal command

Table 20-3. Receive BDM Packet Register Field Descriptions

Field Description

16
S-Status

The status bit indicates the status of CPU-generated messages as shown in Table 20-2.

15–0
Data

 The data field contains the message data to be communicated from the debug module to the development
system. The response message is always a single word, with the data field encoded as shown in Table 20-2.

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C DATA FIELD [15:0]

Figure 20-5. Transmit BDM Packet Register

Table 20-4. Transmit BDM Packet Register Field Descriptions

Field Description

16
C-Control

The Control Bit (Bit 16) is reserved. Command and data transfers initiated by the development system should
clear bit 16.

15–0
Data Field

The data field contains the message data to be communicated from the development system to the debug
module.

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-10 Freescale Semiconductor

20.3.3 BDM Command Set

ColdFire supports a subset of BDM commands to provide access to new hardware features. The BDM
commands must not be issued when the ColdFire processor is accessing the debug module registers using
the WDEBUG instruction, or the resulting behavior is undefined.

20.3.3.1 BDM Command Set Summary

The BDM command set is summarized in Table 20-5. Subsequent sections contain detailed descriptions
of each command.

Table 20-5. BDM Command Summary

Command Mnemonic Description
CPU

Impact1
Command

(HEX)
Section

Page

READ A/D
REGISTER

RAREG/RDREG Read the selected address or data register and
return results through the serial interface.

Halted $218 {A/D,
Reg[2:0]}

20.3.4.1.
1/20-13

WRITE A/D
REGISTER

WAREG/WDREG The data operand is written to the specified
address or data register.

Halted $208 {A/D,
Reg[2:0]}

20.3.4.1.
2/20-14

READ MEMORY
LOCATION

READ Read the data at the memory location specified
by the longword address.

Steal $1900–byte
$1940–wd

$1980–long

20.3.4.1.
3/20-14

WRITE MEMORY
LOCATION

WRITE Write the operand data to the memory location
specified by the longword address.

Steal $1800–byte
$1840–wd

$1880–long

20.3.4.1.
4/20-16

DUMP MEMORY
BLOCK

DUMP Used with the READ command to dump large
blocks of memory. An initial READ is executed to
set up the starting address of the block and to
retrieve the first result. Subsequent operands
are retrieved with the DUMP command.

Steal $1D00–byte
$1D40–wd

$1D80–long

20.3.4.1.
5/20-17

FILL MEMORY
BLOCK

FILL Used with the WRITE command to fill large
blocks of memory. An initial WRITE is executed
to set up the starting address of the block and to
supply the first operand. Subsequent operands
are written with the FILL command.

Steal $1C00–byte
$1C40–word
$1C80–long

20.3.4.1.
6/20-19

RESUME
EXECUTION

GO The pipeline is flushed and refilled before
execution resumes at the current PC.

Halted $0C00 20.3.4.1.
7/20-21

NO OPERATION NOP NOP performs no operation and may be used as
a null command.

Parallel $0000 20.3.4.1.
8/20-21

READ CONTROL
REGISTER

RCREG Read the system control register. Halted $2980 20.3.4.1.
9/20-22

WRITE CONTROL
REGISTER

WCREG Write the operand data to the system control
register.

Halted $2880 20.3.4.1.
10/20-23

READ DEBUG
MODULE REGISTER

RDMREG Read the debug module register. Parallel $2D {$4†
DRc[4:0]}

20.3.4.1.
11/20-24

WRITE DEBUG
MODULE REGISTER

WDMREG Write the operand data to the debug module
register.

Parallel $2C {$4†
Drc[4:0]}

20.3.4.1.
12/20-24

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-11

All ColdFire Family BDM commands include a 16-bit operation word followed by an optional set of one
or more extension words as shown in Table 20-6.

Table 20-6 describes the BDM fields.

1 General command effect and/or requirements on CPU operation:
Halted—The CPU must be halted to perform this command

Steal—Command generates bus cycles which can be interleaved with CPU accesses

Parallel—Command is executed in parallel with CPU activity
Refer to command summaries for detailed operation descriptions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPERATION 0 R/W OP SIZE 0 0 A/D REGISTER

EXTENSION WORD(S)

Figure 20-6. BDM Command Register

Table 20-6. BDM Command Register Field Descriptions

Field Description

Operation The operation field specifies the command.

R/W The R/W field specifies the direction of operand transfer. When the bit is set, the transfer is from the CPU
to the development system. When the bit is cleared, data is written to the CPU or to memory from the
development system.

Operand Size For sized operations, this field specifies the operand data size. All addresses are expressed as 32-bit
absolute values. The size field is encoded as listed in Table 20-7.

Address/Data (A/D) The A/D field is used in commands that operate on address and data registers in the processor. It
determines whether the register field specifies a data or address register. A one indicates an address
register; zero, a data register.

Register In commands that operate on processor registers, this field specifies which register is selected. The field
value contains the register number.

Extension Word(s)
(as required)

Certain commands require extension words for addresses and/or immediate data. Addresses require two
extension words because only absolute long addressing is permitted. Immediate data can be either one
or two words in length—byte and word data each require a single extension word; longword data requires
two words. Both operands and addresses are transferred most significant word first. In the following
descriptions of the BDM command set, the optional set of extension words is defined as “Address,” “Data,”
or “Operand Data.”

Table 20-7. BDM Size Field Encoding

Encoding Operand Size Bit Values

00 Byte 8 bits

01 Word 16 bits

10 Longword 32 bits

11 Reserved

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-12 Freescale Semiconductor

20.3.4 Command Sequence Diagram

A command sequence diagram (see Figure 20-7) shows the serial bus traffic for each command. Each
bubble in the diagram represents a single 17-bit transfer across the bus. The top half in each bubble
corresponds to the data transmitted by the development system to the debug module; the bottom half
corresponds to the data returned by the debug module in response to the previous development system
commands. Command and result transactions are overlapped to minimize latency.

Figure 20-7. Command Sequence Diagram

The cycle in which the command is issued contains the development system command mnemonic (in this
example, “read memory location”). During the same cycle, the debug module responds with either the
low-order results of the previous command or a command complete status (if no results were required).

During the second cycle, the development system supplies the high-order 16 bits of the memory address.
The debug module returns a “not ready” response unless the received command was decoded as
unimplemented, in which case the response data is the illegal command encoding. If an illegal command
response occurs, the development system should retransmit the command.

NOTE
The “not ready” response can be ignored unless a memory-referencing cycle
is in progress. Otherwise, the debug module can accept a new serial transfer
after 32 processor clock periods.

In the third cycle, the development system supplies the low-order 16 bits of a memory address. The debug
module always returns the “not ready” response in this cycle. At the completion of the third cycle, the

Next CMD

Read
Memory
Location

“Not Ready”

Next CMD

LS Result

BERR

XXX

“Not Ready”

Next CMD

“Not Ready”

LS Addr

“Not Ready”

XXX

“Illegal”

MS Addr

“Not Ready”

Read (Long)

???

Commands Transmitted to the Debug Module

Command Code Transmitted During This Cycle

Responses from the Debug Module

Results From Previous Command

XXX

MS Result

XXX

High-Order 16 Bits of Memory Address
Low-Order 16 Bits of Memory Address

Non-Serial Related Activity

Sequence Taken If
Operation Has Not
Completed

Next

Mode
Command

Data Unused From
This Transfer

Sequence Taken if Illegal Command
is Received by Debug Module Sequence Taken if Bus

Error Occurs On
Memory Access

High and Low-Order
16 Bits of Results

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-13

debug module initiates a memory read operation. Any serial transfers that begin while the memory access
is in progress return the “not ready” response.

Results are returned in the two serial transfer cycles following the completion of the memory access. The
data transmitted to the debug module during the final transfer is the opcode for the following command. If
a memory or register access is terminated with a bus error, the error status (S=1, DATA=$0001) is returned
in place of the result data.

20.3.4.1 Command Set Descriptions

The BDM command set is summarized in Table 20-5. Subsequent sections contain detailed descriptions
of each command.

NOTE
The BDM status bit (S) is zero for normally-completed commands, while
illegal commands, “not ready” responses and bus-error transfers return a
logic one in the S bit. Refer to Section 20.3.2, “BDM Serial Interface,” for
information on the serial packet receive packet format.

Unassigned command opcodes are reserved by Freescale for future expansion. All unused command
formats within any revision level perform a NOP and return the ILLEGAL command response.

20.3.4.1.1 Read Address/Data Register (RAREG/RDREG)

RAREG and RDREG reads the selected address or data register and return the 32-bit result. A bus error
response is returned if the CPU core is not halted.

Figure 20-8. Command/Result Formats

Command Sequence:

Figure 20-9. Read A/D Register Command Sequence

Operand Data:

None

Next CMD

“Not Ready”

Next CMD

LS Result

BERR

RAREG/RDREG

???
XXX

MS Result

XXX

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-14 Freescale Semiconductor

Result Data:

The contents of the selected register are returned as a longword value. The data is returned most significant
word first.

20.3.4.1.2 Write Address/Data Register (WAREG and WDREG)

WAREG and WDREG write the operand longword data to the specified address or data register. All 32
register bits are altered by the write. A bus error response is returned if the CPU core is not halted.

Command Format:

Command Sequence:

Figure 20-10. Write A/D Register Command Sequence

Operand Data:

Longword data is written into the specified address or data register. The data is supplied most significant
word first.

Result Data:

Command complete status is indicated by returning the data $FFFF (with the status bit cleared) when the
register write is complete.

20.3.4.1.3 Read Memory Location (READ)

The READ command reads the operand data from the memory location specified by the longword address.
The address space is defined by the contents of the low-order 5 bits {TT, TM} of the BDM Address
Attribute Register (BAAR). The hardware forces the low-order bits of the address to zeros for word and
longword accesses to ensure that operands are always accessed on natural boundaries: words on
0-modulo-2 addresses, longwords on 0-modulo-4 addresses.

Table 20-8. WAREG/WDREG Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $0 $8 A/D REGISTER

DATA [31:16]

DATA [15:0]

Next CMD

“Not Ready”

LS Data

BERR

WDREG/WAREG

???
MS Data

XXX

“Not Ready” “Not Ready”
Next CMD

“Cmd Complete”

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-15

Figure 20-11. WAREG/WDREG Command Format

Figure 20-12. READ Command/Result Format

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-16 Freescale Semiconductor

Command Sequence:

Figure 20-13. Read Memory Location Command Sequence

Operand Data:

The single operand is the longword address of the requested memory location.

Result Data:

The requested data is returned as either a word or longword. Byte data is returned in the least significant
byte of a word result, with the upper byte undefined. Word results return 16 bits of significant data;
longword results return 32 bits. A value of $0001 (with the status bit set) is returned if a bus error occurs.

20.3.4.1.4 Write Memory Location (WRITE)

The WRITE command writes the operand data to the memory location specified by the longword address.
The address space is defined by the contents of the low-order 5 bits {TT, TM} of the BDM Address
Attribute Register (BAAR). The hardware forces the low-order bits of the address to zeros for word and
longword accesses to ensure that operands are always accessed on natural boundaries: words on
0-modulo-2 addresses, longwords on 0-modulo-4 addresses.

Next CMD

Read
Memory
Location

“Not Ready”BERR

XXX

“Not Ready”

LS Addr

“Not Ready”

MS Addr

“Not Ready”

Read (B/W)

???

Next Cmd

Cmd Complete

XXX

Next CMD

Read
Memory
Location

“Not Ready”BERR

XXX

“Not Ready”

LS Addr

“Not Ready”

MS Addr

“Not Ready”

Read (Long)

???

XXX

XXX

MS Result

Next CMD

LS Result

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-17

Command Sequence:

Figure 20-14. Write Memory Location Command Sequence

Operand Data:

Two operands are required for this instruction. The first operand is a longword absolute address that
specifies a location to which the operand data is to be written. The second operand is the data. Byte data
is transmitted as a 16-bit word, justified in the least significant byte; 16- and 32-bit operands are
transmitted as 16 and 32 bits, respectively.

Result Data:

Command complete status is indicated by returning the data $FFFF (with the status bit cleared) when the
register write is complete. A value of $0001 (with the status bit set) is returned if a bus error occurs.

20.3.4.1.5 Dump Memory Block (DUMP)

DUMP is used in conjunction with the READ command to access large blocks of memory. An initial
READ is executed to set up the starting address of the block and to retrieve the first result. The DUMP
command retrieves subsequent operands. The initial address is incremented by the operand size (1, 2, or

Write
Memory
Location

BERR

XXX

“Not Ready”

LS Addr

“Not Ready”

MS Addr

“Not Ready”

Read (B/W)

???

Next Cmd

Result

XXX

Data

“Not Ready”

“Not Ready”

Next Cmd

Write
Memory
Location

BERR

XXX

“Not Ready”

LS Addr

“Not Ready”

MS Addr

“Not Ready”

Write (Long)

???

Next Cmd
“Cmd Complete”

XXX

MS Data

“Not Ready”

“Not Ready”

Next Cmd

LS Data

“Not Ready”

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-18 Freescale Semiconductor

4) and saved in a temporary register. Subsequent DUMP commands use this address, perform the memory
read, increment it by the current operand size, and store the updated address in the temporary register.

NOTE
The DUMP command does not check for a valid address. DUMP is a valid
command only when preceded by another DUMP, NOP, or by a READ
command. Otherwise, an illegal command response is returned. The NOP
command can be used for intercommand padding without corrupting the
address pointer.

The size field is examined each time a DUMP command is processed, allowing the operand size to be
dynamically altered.

Figure 20-15. DUMP Command/Result Format

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-19

Command Sequence:

Figure 20-16. DUMP Memory Block Command Sequence

Operand Data:

None

Result Data:

Requested data is returned as either a word or longword. Byte data is returned in the least significant byte
of a word result. Word results return 16 bits of significant data; longword results return 32 bits. A value of
$0001 (with the status bit set) is returned if a bus error occurs.

20.3.4.1.6 Fill Memory Block (FILL)

FILL is used in conjunction with the WRITE command to access large blocks of memory. An initial
WRITE is executed to set up the starting address of the block and to supply the first operand. The FILL
command writes subsequent operands. The initial address is incremented by the operand size (1, 2, or 4)
and saved in a temporary register after the memory write. Subsequent FILL commands use this address,
perform the write, increment it by the current operand size, and store the updated address in the temporary
register.

NOTE
The FILL command does not check for a valid address FILL is a valid
command only when preceded by another FILL, NOP or by a WRITE
command. Otherwise, an illegal command response is returned. The NOP
command can be used for intercommand padding without corrupting the
address pointer.

Read
Memory
Location

BERR

XXX
“Not Ready”

Dump (B/W)

???

Next Cmd

Result

XXX
“Not Ready”

Next Cmd
XXX

“Illegal” “Not Ready”

Next Cmd

Read
Memory
Location

BERR

XXX
“Not Ready”

Dump (Long)

???

Next Cmd

MS Result

XXX
“Not Ready”

Next Cmd
XXX

“Illegal” “Not Ready”

Next Cmd

LS Result

Next Cmd

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-20 Freescale Semiconductor

The size field is examined each time a FILL command is processed, allowing the operand size to be altered
dynamically.

Command Formats:

Command Sequence:

Figure 20-17. Fill Memory Block Command Sequence

Table 20-9. Byte FILL Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $C $0 $0

X X X X X X X X DATA [7:0]

Table 20-10. Word FILL Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $C $4 $0

DATA [15:0]

Table 20-11. Long FILL Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $C $8 $0

DATA [31:16]

DATA [15:0]

Write
Memory
Location

BERR

XXX
“Not Ready”

Fill (Long)

???

Next Cmd

“Cmd Complete”

XXX
“Not Ready”

Next Cmd

XXX
“Illegal” “Not Ready”

Next Cmd

MS Data
“Not Ready”

LS Data

“Not Ready”

Write
Memory
Location

BERR

XXX
“Not Ready”

Fill (B/W)

???

Next Cmd

“Cmd Complete”

XXX
“Not Ready”

Next Cmd

XXX
“Illegal” “Not Ready”

Next Cmd

Data

“Not Ready”

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-21

Operand Data:

A single operand is data to be written to the memory location. Byte data is transmitted as a 16-bit word,
justified in the least significant byte; 16- and 32-bit operands are transmitted as 16 and 32 bits, respectively.

Result Data:

Command complete status is indicated by returning the data $FFFF (with the status bit cleared) when the
register write is complete. A value of $0001 (with the status bit set) is returned if a bus error occurs.

20.3.4.1.7 Resume Execution (GO)

The GO command flushes and refills the pipeline before resuming normal instruction execution.
Prefetching begins at the current PC and current privilege level. If any register (For example, the PC or SR)
was altered by a BDM command while halted, the updated value is used as the prefetching resumes.

Command Formats:

Command Sequence:

Figure 20-18. Resume Execution

Operand Data:

None

Result Data:

The “command complete” response ($0FFFF) is returned during the next shift operation.

20.3.4.1.8 No Operation (NOP)

NOP performs no operation and may be used as a null command where required.

Command Formats:

Command Sequence:

Figure 20-19. No Operation Command Sequence

Table 20-12. GO Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$0 $C $0 $0

Table 20-13. NOP Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$0 $0 $0 $0

SYNC_PCGO
???

NEXT CMD
“CMD COMPLETE”

SYNC_PCNOP
???

NEXT CMD
“CMD COMPLETE”

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-22 Freescale Semiconductor

Operand Data:

None

Result Data:

The “command complete” response, $FFFF (with the status bit cleared), is returned during the next shift
operation.

20.3.4.1.9 Read Control Register (RCREG)

RCREG reads the selected control register and returns the 32-bit result. Accesses to the processor/memory
control registers are always 32 bits in size, regardless of the implemented register width. The second and
third words of the command effectively form a 32-bit address used by the debug module to generate a
special bus cycle to access the specified control register. The 12-bit Rc field is the same as that used by the
MOVEC instruction.

Figure 20-20. RCREG Command/Result Formats

Rc encoding:

Table 20-14. Control Register Map

Rc Register Definition

$002 Cache Control Register (CACR)

$004 Access Control Register 0 (ACR0)

$005 Access Control Register 1 (ACR1)

$801 Vector BASE Register (VBR)

$804 MAC Status Register (MACSR)

$805 MAC Mask Register (MASK)

$806 MAC Accumulator (ACC0)

$807 MAC Accumulator (ACC1)

$808 MAC Accumulator (ACC2)

$80B MAC Accumulator (ACC3)

$80E Status Register (SR)

$80F Program Register (PC)

$C04 RAM Base Address Register (RAMBAR0)

$C05 RAM Base Address Register (RAMBAR1)

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-23

20.3.4.1.10 Write Control Register (WCREG)

The operand (longword) data is written to the specified control register. The write alters all 32 register bits.

Figure 20-21. WCREG Command Sequence

Command Sequence:

Figure 20-22. Write Control Register Command Sequence

Operand Data:

Two operands are required for this instruction. The first long operand selects the register to which the
operand data is to be written. The second operand is the data.

Result Data:

Successful write operations return a $FFFF. Bus errors on the write cycle are indicated by the assertion of
bit 16 in the status message and by a data pattern of $0001.

$C0F Module Base Address Register (MBAR)

$C0E Module Base Address Register (MBAR2)

Table 20-14. Control Register Map

Rc Register Definition

Write
Control
Register

BERR

XXX

“Not Ready”

WCREG

Next Cmd

“Cmd Complete”

XXX

“Not Ready”

Next Cmd

MS Addr

“Not Ready”

LS Addr

“Not Ready”??? “Not Ready”

MS Data

“Not Ready”

LS Data

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-24 Freescale Semiconductor

20.3.4.1.11 Read Debug Module Register (RDMREG)

RDMREG reads the selected debug module register and return the 32-bit result. The only valid register
selection for the RDMREG command is the CSR (DRc = $0).

Figure 20-23. RDMREG Command/Result Register

DRc encoding:

Command Sequence:

Figure 20-24. Read Debug Module Register Command Sequence

Operand Data:

None

Result Data:

The contents of the selected debug register are returned as a longword value. The data is returned most
significant word first.

20.3.4.1.12 Write Debug Module Register (WDMREG)

The operand (longword) data is written to the specified debug module register. All 32 bits of the register
are altered by the write. The DSCLK signal must be inactive while debug module register writes from the
CPU accesses are performed using the WDEBUG instruction.

Figure 20-25. WDMREG BDM Command Register

Table 20-15. Definition of DRc Encoding—Read

DRc[3:0] Debug Register Definition Mnemonic Initial State

$0 Configuration/Status CSR $0

$1-$F Reserved – –

Next CMD

“Not Ready”

Next CMD

LS Result

“Illegal”

RDMREG

???

XXX

MS Result

XXX

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-25

DRc encoding:

Command Sequence:

Figure 20-26. Write Debug Module Register Command Sequence

Operand Data:

Longword data is written into the specified debug register. The data is supplied most significant word first.

Result Data:

Command complete status ($0FFFF) is returned when register write is complete.

20.3.4.1.13 Unassigned Opcodes

Unassigned command opcodes are reserved by Freescale. All unused command formats within any
revision level perform a NOP and return the ILLEGAL command response.

20.3.4.2 BDM Accesses of the eMAC Registers

The presence of rounding logic in the output data path of the eMAC requires special care for
BDM-initiated reads and writes of its programming model. In particular, any result rounding modes must

Table 20-16. Definition of DRc Encoding—Write

DRc[3:0] Debug Register Definition Mnemonic Initial State

$0 Configuration/Status CSR $0

$1-$4 Reserved – –

$5 BDM Address Attribute BAAR $5

$6 Bus Attributes and Mask AATR $5

$7 Trigger Definition TDR $0

$8 PC Breakpoint PBR –

$9 PC Breakpoint Mask PBMR –

$A-$B Reserved – –

$C Operand Address High Breakpoint ABHR –

$D Operand Address Low Breakpoint ABLR –

$E Data Breakpoint DBR –

$F Data Breakpoint Mask DBMR –

Next CMD

“Not Ready”

LS Data

“Illegal”

WDMREG

???

MS Data

XXX

Next CMD

“Cmd Complete”“Not Ready”“Not Ready”

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-26 Freescale Semiconductor

be disabled during the read/write process so the exact bit-wise eMAC register contents are accessed. For
example, a BDM read of an accumulator (ACCx) requires the following sequence:
Bdm Read ACCx (

rcreg macsr; // read current macsr contents & save
wcreg #0,macsr; // disable all rounding modes
rcreg ACCx; // read the desired accumulator
wcreg #saved_data,macsr; // restore the original macsr

Likewise to write an accumulator register, the following BDM sequence is needed:
Bdm Write ACCx (

rcreg macsr; // read current macsr contents & save
wcreg #0,macsr; // disable all rounding modes
wcreg #data,ACCx; // write the desired accumulator
wcreg #saved_data,macsr; // restore the original macsr
)

Additionally, writes to the accumulator extension registers must be performed after the corresponding
accumulators are updated because a write to any accumulator alters the corresponding extension register
contents.

Command Sequence:

Figure 20-27. Read Control Register Command Sequence

Operand Data:

The single operand is the 32-bit Rc control register select field.

Result Data:

The contents of the selected control register are returned as a longword value. The data is returned most
significant word first. For those control registers with widths less than 32 bits, only the implemented
portion of the register is guaranteed to be correct. The remaining bits of the longword are undefined.

20.4 Real-Time Debug Support
The ColdFire Family provides support for the debug of real-time applications. For these types of embedded
systems, the processor cannot be halted during debug, but must continue to operate. The foundation of this
area of debug support is that while the processor cannot be halted to allow debugging, the system can
generally tolerate small intrusions into the real-time operation.

The debug module provides a number of hardware resources to support various hardware breakpoint
functions. Specifically, three types of breakpoints are supported: PC with mask, operand address range,
and data with mask. These three basic breakpoints can be configured into one- or two-level triggers with

MS ADDR
“NOT READY”

MS ADDR
“NOT READY”

READ

REGISTER

XXX
“NOT READY”

XXX
MS RESULT

XXX
BERR

NEXT CMD
LS RESULT

NEXT CMD
“NOT READY”

RCREG
??? CONTROL

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-27

the exact trigger response also programmable. The debug module programming model is accessible from
either the external development system using the serial interface or from the processor’s supervisor
programming model using the WDEBUG instruction.

20.4.1 Theory of Operation

The breakpoint hardware can be configured to respond to triggers in several ways. The desired response is
programmed into the Trigger Definition Register (TDR). In all situations where a breakpoint triggers, an
indication is provided on the DDATA output port, when not displaying captured operands or branch
addresses, as shown in Table 20-17.

The breakpoint status is also posted in the CSR.

The BDM instructions load and configure the desired breakpoints using the appropriate registers. As the
system operates, a breakpoint trigger generates a response as defined in the TDR. If the system can tolerate
the processor being halted, a BDM-entry can be used. With the TRC bits of the TDR equal to $1, the
breakpoint trigger causes the core to halt as reflected in the PST = $F status.

NOTE
For PC breakpoints, the halt occurs before the targeted instruction is
executed. For address and data breakpoints, the processor may have
executed several additional instructions. As a result, trigger reporting is
considered imprecise.

If the processor core cannot be halted, the special debug interrupt can be used. With this configuration,
TRC bits of the TDR equal to $2, the breakpoint trigger is converted into a debug interrupt to the processor.
This interrupt is treated higher than the nonmaskable level 7 interrupt request. As with all interrupts, it is
made pending until the processor reaches a sample point, which occurs once per instruction. Again, the
hardware forces the PC breakpoint to occur immediately (before the execution of the targeted instruction).
This is possible because the PC breakpoint comparison is enabled at the same time the interrupt sampling
occurs. For the address and data breakpoints, the reporting is considered imprecise because several
additional instructions may be executed after the triggering address or data is seen.

Once the debug interrupt is recognized, the processor aborts execution and initiates exception processing.
At the initiation of the exception processing, the core enters emulator mode. After the standard 8-byte

Table 20-17. DDATA[3:0], CSR[31:28] Breakpoint Response

DDATA[3:0], CSR[31:28] Breakpoint Status

$000x No Breakpoints Enabled

$001x Waiting for Level 1 Breakpoint

$010x Level 1 Breakpoint Triggered

$101x Waiting for Level 2 Breakpoint

$110x Level 2 Breakpoint Triggered

All other encodings are reserved for future use.

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-28 Freescale Semiconductor

exception stack is created, the processor fetches a unique exception vector, 12, from the vector table (Refer
to the ColdFire Programmer’s Reference Manual).

Execution continues at the instruction address contained in this exception vector. All interrupts are ignored
while in emulator mode. Users can program the debug-interrupt handler to perform the necessary context
saves using the supervisor instruction set. As an example, this handler may save the state of all the
program-visible registers as well as the current context into a reserved memory area.

Once the required operations are completed, the return-from-exception (RTE) instruction is executed and
the processor exits emulator mode. Once the debug interrupt handler has completed its execution, the
external development system can then access the reserved memory locations using the BDM commands
to read memory.

Prior to the Rev. A implementation, if a hardware breakpoint (For example, a PC trigger) is left unmodified
by the debug interrupt service routine, another debug interrupt is generated after the RTE instruction
completes execution. In the Rev. A design, the hardware has been modified to inhibit the generation of
another debug interrupt during the first instruction after the RTE exits emulator mode. This behavior is
consistent with the existing logic involving trace mode, where the execution of the first instruction occurs
before another trace exception is generated. This Rev. A enhancement disables all hardware breakpoints
until the first instruction after the RTE has completed execution, regardless of the programmed trigger
response.

20.4.1.1 Emulator Mode

Emulator mode is used to facilitate non-intrusive emulator functionality. This mode can be entered in three
different ways:

• The EMU bit in the CSR may be programmed to force the ColdFire processor to begin execution
in emulator mode. This bit is only examined when RSTI is negated and the processor begins reset
exception processing. It may be set while the processor is halted before the reset exception
processing begins. Refer to Section 20.3.1, “CPU Halt.”

• A debug interrupt always enters emulation mode when the debug interrupt exception processing
begins.

• The TCR bit in the CSR may be programmed to force the processor into emulation mode when
trace exception processing begins.

During emulation mode, the ColdFire processor exhibits the following properties:

• All interrupts are ignored, including level seven.

• If the MAP bit of the CSR is set, all memory accesses are forced into a specially mapped address
space signalled by TT = $2, TM = $5 or $6. This includes the stack frame writes and the vector
fetch for the exception which forced entry into this mode.

• If the MAP bit in the CSR is set, all caching of memory accesses is disabled. Additionally, the
SRAM module is disabled while in this mode.

The return-from-exception (RTE) instruction exits emulation mode. The processor status output port
provides a unique encoding for emulator mode entry ($D) and exit ($7).

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-29

20.4.1.2 Debug Module Hardware

20.4.1.2.1 Reuse of Debug Module Hardware (Rev. A)

The debug module implementation provides a common hardware structure for both BDM and breakpoint
functionality. Several structures are used for both BDM and breakpoint purposes. Table 20-18 identifies
the shared hardware structures.

The shared use of these hardware structures means the loading of the register to perform any specified
function is destructive to the shared function. For example, if an operand address breakpoint is loaded into
the debug module, a BDM command to access memory overwrites the breakpoint. If a data breakpoint is
configured, a BDM write command overwrites the breakpoint contents.

20.5 Debug Module Memory Map and Register Definitions
In addition to the existing BDM commands that provide access to the processor’s registers and the memory
subsystem, the debug module contains nine registers to support the required functionality. All of these
registers are treated as 32-bit quantities, regardless of the actual number of bits in the implementation. The
registers, known as the debug control registers, are accessed through the BDM port using two new BDM
commands: WDMREG and RDMREG. These commands contain a 4-bit field, DRc, which specifies the
particular register being accessed.

These registers are also accessible from the processor’s supervisor programming model through the
execution of the WDEBUG instruction. Thus, the breakpoint hardware within the debug module may be
accessed by the external development system using the serial interface, or by the operating system running
on the processor core. It is the responsibility of the software to guarantee that all accesses to these resources
are serialized and logically consistent. The hardware provides a locking mechanism in the CSR to allow
the external development system to disable any attempted writes by the processor to the breakpoint
registers (setting IPW = 1). The BDM commands must not be issued if the ColdFire processor is accessing
the debug module registers using the WDEBUG instruction.

Table 20-18. Shared BDM/Breakpoint Hardware

Register BDM Function Breakpoint Function

AATR Bus Attributes for All Memory Commands Attributes for Address Breakpoint

ABHR Address for All Memory Commands Address for Address Breakpoint

DBR Data for All BDM Write Commands Data for Data Breakpoint

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-30 Freescale Semiconductor

Figure 20-28. Debug Programming Mode

20.5.1 Address Breakpoint Registers

The address breakpoint registers (ABLR and ABHR) define a region in the operand address space of the
processor that can be used as part of the trigger. The full 32-bits of the ABLR and ABHR values are
compared with the address for all transfers on the processor’s high-speed local bus. The trigger definition
register (TDR) determines if the trigger is the inclusive range bound by ABLR and ABHR, all addresses
outside this range, or the address in ABLR only. The ABHR is accessible in supervisor mode as debug
control register $C using the WDEBUG instruction and through the BDM port using the RDMREG and
WDMREG commands. The ABLR is accessible in supervisor mode as debug control register $D using the
WDEBUG instruction and through the BDM port using the WDMREG commands. The ABHR is
overwritten by the BDM hardware when accessing memory as described in Section 20.4.1.2, “Debug
Module Hardware.”

ADDRESS[31:0]–Low Address

This field contains the 32-bit address which marks the lower bound of the address breakpoint range.
Additionally, if a breakpoint on a specific address is required, the value is programmed into the ABLR.

Access: User write only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W ADDRESS[31:0]

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W ADDRESS[31:0]

Reset – – – – – – – – – – – – – – – –

Figure 20-29. Address Breakpoint Low Register (ABLR)

Address
Breakpoint Registers

PC Breakpoint
Registers

Data Breakpoint
Registers

ABLR
ABHR

PBR
PBMR

DBMR
DBR

TDR

15

0

31

Trigger Definition
Register

Address Attribute
Trigger RegisterAATR

7

0

15

CSR
Configuration/Status Register

BDM ADDRESS Attribute
RegisterBAAR

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-31

ADDRESS[31:0]–High Address

This field contains the 32-bit address which marks the upper bound of the address breakpoint range.

20.5.2 Address Attribute Trigger Register

The AATR defines the address attributes and a mask to be matched in the trigger. The AATR value is
compared with the address attribute signals from the processor’s local high-speed bus, as defined by the
setting of the TDR. The AATR is accessible in supervisor mode as debug control register $6 using the
WDEBUG instruction and through the BDM port using the WDMREG command. The lower five bits of
the AATR are also used for BDM command definition to define the address space for memory references
as described in Section 20.4.1.2, “Debug Module Hardware.”

Access: User write only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W ADDRESS[31:0]

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W ADDRESS[31:0]

Reset – – – – – – – – – – – – – – – –

Figure 20-30. Address Breakpoint High Register (ABHR)

Access: User write only

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W RM SZM TTM TMM R SZ TT TM

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Figure 20-31. Address Attribute Trigger Register (AATR)

Table 20-19. Address Attribute Trigger Register Field Descriptions

Field Description

15
RM

The Read/Write Mask field corresponds to the R-field. Setting this bit causes R to be ignored in address
comparisons.

14–13
SZM

The Size Mask field corresponds to the SZ field. Setting a bit in this field causes the corresponding bit in SZ
to be ignored in address comparisons.

12–11
TTM

The Transfer Type Mask field corresponds to the TT field. Setting a bit in this field causes the corresponding
bit in TT to be ignored in address comparisons.

10–8
TMM

The Transfer Modifier Mask field corresponds to the TM field. Setting a bit in this field causes the
corresponding bit in TM to be ignored in address comparisons.

7
R

The Read/Write field is compared with the R/W signal of the processor’s local bus.

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-32 Freescale Semiconductor

20.5.3 Program Counter Breakpoint Register (PBR, PBMR)

The PC breakpoint registers (PBR and PBMR) define a region in the code address space of the processor
that can be used as part of the trigger. The PBR value is masked by the PBMR value, allowing only those
bits in PBR that have a corresponding zero in PBMR to be compared with the processor’s program counter
register, as defined in the TDR. The PBR is accessible in supervisor mode as debug control register $8
using the WDEBUG instruction and through the BDM port using the RDMREG and WDMREG

6–5
SZ

The Size field is compared to the size signals of the processor’s local bus. These signals indicate the data
size for the bus transfer.
00 Longword
01 Byte
10 Word
11 Reserved

4–3
TT

The transfer type field is compared with the transfer type signals of the processor’s local bus. These signals
indicate the transfer type for the bus transfer. These signals are always encoded as if the ColdFire is in the
ColdFire IACK mode.
00 Normal Processor Access
01 Reserved
10 Emulator Mode Access
11 Acknowledge/CPU Space Access
These bits also define the TT encoding for BDM memory commands. In this case, the 01 encoding
generates an alternate master access (for backward compatibility).

2–0
TM

The transfer modifier field is compared with the transfer modifier signals of the processor’s local bus. The
signals provide supplemental information for each transfer type.
The encoding for normal processor transfers (TT = 0) is:
000 Explicit Cache Line Push
001 User Data Access
010 User Code Access
011 Reserved
100 Reserved
101 Supervisor Data Access
110 Supervisor Code Access
111 Reserved
The encoding for emulator mode transfers (TT = 10) is:
0xx Reserved
100 Reserved
101 Emulator Mode Data Access
110 Emulator Mode Code Access
111 Reserved
The encoding for acknowledge/CPU space transfers (TT = 11) is:
000 CPU Space Access
001 Interrupt Acknowledge Level 1
010 Interrupt Acknowledge Level 2
011 Interrupt Acknowledge Level 3
100 Interrupt Acknowledge Level 4
101 Interrupt Acknowledge Level 5
110 Interrupt Acknowledge Level 6
111 Interrupt Acknowledge Level 7
These bits also define the TM encoding for BDM memory commands (For backward compatibility).

Table 20-19. Address Attribute Trigger Register Field Descriptions

Field Description

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-33

commands. The PBMR is accessible in supervisor mode as debug control register $9 using the WDEBUG
instruction and through the BDM port using the WDMREG command.

ADDRESS[31:0]–PC Breakpoint Address

This field contains the 32-bit address to be compared with the PC as a breakpoint trigger.

MASK[31:0]–PC Breakpoint Mask

This field contains the 32-bit mask for the PC breakpoint trigger. A zero in a bit position causes the
corresponding bit in the PBR to be compared to the appropriate bit of the PC. A one causes that bit to be
ignored.

20.5.4 Data Breakpoint Registers (DBR, DBMR)

The data breakpoint registers (DBR and DBMR) define a specific data pattern that can be used as part of
the trigger into debug mode.The DBR value is masked by the DBMR value, allowing only those bits in
DBR that have a corresponding zero in DBMR to be compared with the data value from the processor’s
local bus, as defined in the TDR. The DBR is accessible in supervisor mode as debug control register $E
using the WDEBUG instruction and through the BDM port using the RDMREG and WDMREG
commands. The DBMR is accessible in supervisor mode as debug control register $F using the WDEBUG
instruction and through the BDM port using the WDMREG command. The DBR is overwritten by the
BDM hardware when accessing memory as described in Section 20.4.1.2, “Debug Module Hardware.”

Access: User write only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W ADDRESS[31:0]

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W ADDRESS[31:0]

Reset – – – – – – – – – – – – – – – –

Figure 20-32. Program Counter Breakpoint Register (PBR)

Access: User write only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W MASK [31:0]

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W MASK [31:0]]

Reset – – – – – – – – – – – – – – – –

Figure 20-33. Program Counter Breakpoint Mask Register (PBMR)

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-34 Freescale Semiconductor

DATA[31:0]–Data Breakpoint Value

This field contains the 32-bit value to be compared with the data value from the processor’s local bus as a
breakpoint trigger.

MASK[31:0]–Data Breakpoint Mask

This field contains the 32-bit mask for the data breakpoint trigger. A zero in a bit position causes the
corresponding bit in the DBR to be compared to the appropriate bit of the internal data bus. A one causes
that bit to be ignored.

The data breakpoint register supports both aligned and misaligned references. The relationship between
the processor address, the access size, and the corresponding location within the 32-bit data bus is shown
in Table 20-20.

Access: User write only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W ADDRESS[31:0]

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W ADDRESS[31:0]

Reset – – – – – – – – – – – – – – – –

Figure 20-34. Data Breakpoint Register (DBR)

Access: User write only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W MASK [31:0]

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W MASK [31:0]]

Reset – – – – – – – – – – – – – – – –

Figure 20-35. Data Breakpoint Mask Register (DBMR)

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-35

.

20.5.5 Trigger Definition Register (TDR)

The TDR configures the operation of the hardware breakpoint logic within the debug module and controls
the actions taken under the defined conditions. The breakpoint logic may be configured as a one- or
two-level trigger, where bits [31:16] of the TDR define the 2nd level trigger and bits [15:0] define the first
level trigger. The TDR is accessible in supervisor mode as debug control register $7 using the WDEBUG
instruction and through the BDM port using the WDMREG command.

Table 20-20. Access and Operand Data Location

Address[1:0] Access Size Operand Location

00 Byte Data[31:24]

01 Byte Data[23:16]

10 Byte Data[15:8]

11 Byte Data[7:0]

0x Word Data[31:16]

1x Word Data[15:0]

xx Long Data[31:0]

Access: User write only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W TRC EDLW EDWL EDWU EDLL EDLM EDUM EDUU DI EAI EAR EAL EPC PCI

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W EBL EDLW EDWL EDWU EDLL EDLM EDUM EDUU DI EAI EAR EAL EPC PCI

Reset – – – – – – – – – – – – – – – –

Figure 20-36. Trigger Definition Register (TDR)

Table 20-21. Trigger Definition Register (TDR) Field Descriptions

Field Description

31–29
TRC

The trigger response control determines how the processor is to respond to a completed trigger condition. The
trigger response is always displayed on the DDATA pins.
00 Display on DDATA only
01 Processor halt
10 Debug interrupt
11 Reserved

15
TDR

0 Level-2 trigger = PC_condition & Address_range & Data_condition
1 Level-2 trigger = PC_condition | (Address_range & Data_condition)

14
TDR

0 Level-1 trigger = PC_condition & Address_range & Data_condition
1 Level-1 trigger = PC_condition | (Address_range & Data_condition)

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-36 Freescale Semiconductor

20.5.6 Configuration/Status Register (CSR)

The CSR defines the debug configuration for the processor and memory subsystem. In addition to defining
the microprocessor configuration, this register also contains status information from the breakpoint logic.
The CSR is cleared during system reset. The CSR can be read and written by the external development
system and written by the supervisor programming model. The CSR is accessible in supervisor mode as
debug control register $0 using the WDEBUG instruction and through the BDM port using the RDMREG
and WDMREG commands.

13
EBL

If set, the Enable Breakpoint Level bit serves as the global enable for the breakpoint trigger. If cleared, all breakpoints
are disabled.

28, 12
EDLW

If set, the Enable Data Breakpoint for the Data Longword bit enables the data breakpoint based on the entire
processor’s local data bus. The assertion of any of the ED bits enables the data breakpoint. If all bits are cleared,
the data breakpoint is disabled.

27, 11
EDWL

If set, the Enable Data Breakpoint for the Lower Data Word bit enables the data breakpoint based on the low-order
word of the processor’s local data bus.

26, 10
EDWU

If set, the Enable Data Breakpoint for the Upper Data Word bit enables the data breakpoint trigger based on the
high-order word of the processor’s local data bus.

25, 9
EDLL

If set, the Enable Data Breakpoint for the Lower Lower Data Byte bit enables the data breakpoint trigger based on
the low-order byte of the low-order word of the processor’s local data bus.

24, 8
EDLM

If set, the Enable Data Breakpoint for the Lower Middle Data Byte bit enables the data breakpoint trigger based on
the high-order byte of the low-order word of the processor’s local data bus.

23, 7
EDUM

If set, the Enable Data Breakpoint for the Upper Middle Data Byte bit enables the data breakpoint trigger on the
low-order byte of the high-order word of the processor’s local data bus.

22, 6
EDUU

If set, the Enable Data Breakpoint for the Upper Upper Data Byte bit enables the data breakpoint trigger on the
high-order byte of the high-order word of the processor’s local data bus.

21, 5
DI

The Data Breakpoint Invert bit provides a mechanism to invert the logical sense of all the data breakpoint
comparators. This can develop a trigger based on the occurrence of a data value not equal to the one programmed
into the DBR.

20, 4
EAI

If set, the Enable Address Breakpoint Inverted bit enables the address breakpoint based outside the range defined
by ABLR and ABHR. The assertion of any of the EA bits enables the address breakpoint. If all three bits are cleared,
this breakpoint is disabled.

19, 3
EAR

If set, the Enable Address Breakpoint Range bit enables the address breakpoint based on the inclusive range
defined by ABLR and ABHR.

18, 2
EAL

If set, the Enable Address Breakpoint Low bit enables the address breakpoint based on the address contained in
the ABLR.

17, 1
EPC

If set, the Enable PC Breakpoint bit enables the PC breakpoint.

16, 0
PCI

If set, the PC Breakpoint Invert bit allows execution outside a given region as defined by PBR and PBMR to enable
a trigger. If cleared, the PC breakpoint is defined within the region defined by PBR and PBMR.

Table 20-21. Trigger Definition Register (TDR) Field Descriptions

Field Description

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-37

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R STATUS FOF TRG HALT BKPT HRL
BKD PCD IPW

W

Reset 0 0 0 0 0 0 0 0 – – – – – – – 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MAP TRC EMU DDC UHE BTB NPL IPI SSM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 – – – –

Note: The CSR is a write only register from the programming model. It can be read from and written to through the BDM port.

Figure 20-37. Configuration/Status Register (CSR)

Table 20-22. Configuration/Status Register (CSR) Field Descriptions

Field Description

31–28
STATUS

The Breakpoint Status 4-bit field provides read-only status information concerning the hardware breakpoints.
This field is defined as follows:

000x No breakpoints enabled
001x Waiting for level 1 breakpoint
010x Level 1 breakpoint triggered
101x Waiting for level 2 breakpoint
110x Level 2 breakpoint triggered
The breakpoint status is also output on the DDATA port when it is not busy displaying other processor data. A
write to the TDR resets this field.

27
FOF

If the read-only Fault-on-Fault status bit is set, a catastrophic halt has occurred and forced entry into BDM.
This bit is cleared on a read from the CSR.

26
TRG

If the read-only Hardware Breakpoint Trigger status bit is set, a hardware breakpoint has halted the processor
core and forced entry into BDM. This bit is cleared by reading CSR.

25
HALT

If the read-only Processor Halt status bit is set, the processor has executed the HALT instruction and forced
entry into BDM. This bit is cleared by reading the CSR.

24
BKPT

If the read-only Breakpoint Assert status bit is set, the BKPT signal was asserted, forcing the processor into
BDM. This bit is cleared on a read from the CSR.

23–20
HRL

This hardware revision level indicates the level of functionality implemented in the debug module. This
information could be used by an emulator to identify the level of functionality supported. A zero value would
indicate the initial debug functionality. For example, a value of 1 would represent Revision A while a value of
0 would represent the earlier release of Revision A.

18
BKD

The Disable the Normal BKPT Input Signal Functionality bit is used to disable the normal BKPT input signal
functionality, and allow the assertion of this pin to generate a debug interrupt. If set, the assertion of the BKPT
pin is treated as an edge-sensitive event. Specifically, a high-to-low edge on the BKPT pin generates a signal
to the processor indicating a debug interrupt. The processor makes this interrupt request pending until the
next sample point occurs. At that time, the debug interrupt exception is initiated. In the ColdFire architecture,
the interrupt sample point occurs once per instruction. There is no support for any type of “nesting” of debug
interrupts.

17
PCD

If set, the PSTCLK Disable bit disables the generation of the PSTCLK output signal, and forces this signal to
remain quiescent.

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-38 Freescale Semiconductor

16
IPW

If set, the Inhibit Processor Writes to Debug Registers bit inhibits any processor-initiated writes to the debug
module’s programming model registers. This bit can only be modified by commands from the external
development system.

15
MAP

If set, the Force Processor References in Emulator Mode bit forces the processor to map all references while
in emulator mode to a special address space, TT = $2, TM = $5 or $6. If cleared, all emulator-mode references
are mapped into supervisor code and data spaces.

14
TRC

If set, the Force Emulation Mode on Trace Exception bit forces the processor to enter emulator mode when a
trace exception occurs.

13
EMU

If set, the Force Emulation Mode bit forces the processor to begin execution in emulator mode. Refer to
Section 20.4.1.1, “Emulator Mode.”

12–11
DDC

The 2-bit Debug Data Control field provides configuration control for capturing operand data for display on the
DDATA port. The encoding is:
00 No operand data is displayed
01 Capture all M-Bus write data
10 Capture all M-Bus read data
11 Capture all M-Bus read and write data
In all cases, the DDATA port displays the number of bytes defined by the operand reference size. For example,
byte displays 8 bits, word displays 16 bits, and long displays 32 bits (one nibble at a time across multiple clock
cycles.) Refer to Section 20.2.1.7, “Begin Data Transfer (PST = $8–$B).”

10
UHE

The User Halt Enable bit selects the CPU privilege level required to execute the HALT instruction.
0 HALT is a privileged, supervisor-only instruction
1 HALT is a non-privileged, supervisor/user instruction

9–8
BTB

The 2-bit Branch Target Bytes field defines the number of bytes of branch target address to be displayed on
the DDATA outputs. The encoding is:
00 0 bytes
01 Lower two bytes of the target address
10 Lower three bytes of the target address
11 Entire four-byte target address
Refer to Section 20.2.1.5, “Begin Execution of Taken Branch (PST = $5).”

6
NPL

If set, the Non-Pipelined Mode bit forces the processor core to operate in a nonpipeline mode of operation. In
this mode, the processor effectively executes a single instruction at a time with no overlap.
When operating in non-pipelined mode, performance is severely degraded. For the V3 design, operation in
this mode essentially adds 6 cycles to the execution time of each instruction. Given that the measured
Effective Cycles per Instruction for V3 is ~2 cycles/instruction, meaning performance in non-pipeline mode
would be ~8 cycles/instruction, or approximately 25% compared to the pipelined performance.
Regardless of the state of CSR[6], if a PC breakpoint is triggered, it is always reported before the instruction
with the breakpoint is executed. The occurrence of an address and/or data breakpoint trigger is imprecise in
normal pipeline operation. When operating in non-pipeline mode, these triggers are always reported before
the next instruction begins execution. In this mode, the trigger reporting can be considered to be precise.
As previously detailed, the occurrence of an address and/or data breakpoint should always happen before the
next instruction begins execution. Therefore the occurrence of the address/data breakpoints should be
guaranteed.

Table 20-22. Configuration/Status Register (CSR) Field Descriptions (continued)

Field Description

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 20-39

20.5.7 BDM Address Attribute Register (BAAR)

The BAAR register defines the address space for memory-referencing BDM commands. Bits [7:5] are
loaded directly from the BDM command, while the low-order 5 bits can be programmed from the external
development system. To maintain compatibility with the Rev. A implementation, this register is loaded any
time the AATR is written. The BAR is initialized to a value of $5, setting “supervisor data” as the default
address space.

20.5.8 Concurrent BDM and Processor Operation

The debug module supports concurrent operation of both the processor and most BDM commands. BDM
commands may be executed while the processor is running, except for the operations that access
processor/memory registers as follows:

5
IPI

If set, the Ignore Pending Interrupts bit forces the processor core to ignore any pending interrupt requests
signalled while executing in single-instruction-step mode.

4
SSM

If set, the Single-Step Mode bit forces the processor core to operate in a single-instruction-step mode. While
in this mode, the processor executes a single instruction and then halts. While halted, any of the BDM
commands may be executed. On receipt of the GO command, the processor executes the next instruction and
then halts again. This process continues until the single-instruction-step mode is disabled.

Access: User write only

 7 6 5 4 3 2 1 0

R

W R SZ TT TM

Reset 0 0 0 0 0 1 0 1

Figure 20-38. BDM Address Attribute Register (BAAR)

Table 20-23. BDM Address Attribute (BAAR) Register Field Descriptions

Field Description

7
R

0 Write
1 Read

6–5
SZ

Size
00 Longword
01 Byte
10 Word
11 Reserved

4–3
TT

Transfer Type
See the TT definition in the AATR description, Section 20.5.2, “Address Attribute Trigger Register.”

2–0
TM

Transfer Modifier
See the TM definition in the AATR description, Section 20.5.2, “Address Attribute Trigger Register.”

Table 20-22. Configuration/Status Register (CSR) Field Descriptions (continued)

Field Description

Background Debug Mode (BDM) Interface

MCF5251 Reference Manual, Rev. 1

20-40 Freescale Semiconductor

• Read/Write Address and Data Registers

• Read/Write Control Registers

For BDM commands that access memory, the debug module requests the processor’s local bus. The
processor responds by stalling the instruction fetch pipeline and then waiting until all current bus activity
is complete. At that time, the processor relinquishes the local bus to allow the debug module to perform
the required operation. After the conclusion of the debug module bus cycle, the processor reclaims
ownership of the bus.

The development system must use caution in configuring the breakpoint registers if the processor is
executing. The debug module does not contain any hardware interlocks, so Freescale recommends that the
TDR be disabled while the breakpoint registers are being loaded. At the conclusion of this process, the
TDR can be written to define the exact trigger. This approach guarantees that no spurious breakpoint
triggers occur.

Because there are no hardware interlocks in the debug unit, no BDM operations are allowed while the CPU
is writing the debug’s registers (BKPT and DSCLK must be inactive).

20.5.9 Freescale-Recommended BDM Pinout

The ColdFire BDM connector is a 26-pin Berg Connector arranged 2x13, shown in Figure 20-39.

Figure 20-39. Recommended BDM Connector

1

3

5

7

9

11

13

15

17

19

21

23

25

2

4

6

8

10

12

14

16

18

20

22

24

26

Developer Reserved

GND

GND

RESET

+3.3V1

GND

PST2

PST0

DDATA2

DDATA0

Freescale Reserved

GND

Vdd_CPU1

BKPT

DSCLK

Developer Reserved2

DSI

DSO

PST3

PST1

DDATA3

DDATA1

GND

Freescale Reserved

PSTCLK

TA
1 Supplied by target
2 Pins reserved for BDM developer use. Contact developer.

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 21-1

Chapter 21
IEEE 1149.1 Test Access Port (JTAG)
This chapter discussed the JTAG signal descriptions, TAP controller, register descriptions, and how to
disable the standard operation.

The MCF5251 JTAG test architecture implementation currently supports circuit board test strategies that
are based on the IEEE standard. This architecture provides access to all of the data and chip control pins
from the board edge connector through the standard four-pin test access port (TAP) and the active-low
JTAG reset pin, TRST. The test logic uses static design and is wholly independent of the system logic,
except where the JTAG is subordinate to other complimentary test modes (see Chapter 20, “Background
Debug Mode (BDM) Interface,” for more information). When in subordinate mode, the JTAG test logic is
placed in reset and the TAP pins can be used for other purposes in accordance with the rules and restrictions
set forth using a JTAG compliance-enable pin.

21.1 Features
The MCF5251 JTAG implementation can do the following:

• Perform boundary-scan operations to test circuit board electrical continuity

• Bypass the MCF5251 by reducing the shift register path to a single cell

• Sample the MCF5251 system pins during operation and transparently shift out the result

• Set the MCF5251 output drive pins to fixed logic values while reducing the shift register path to a
single cell

• Protect the MCF5251 system output and input pins from backdriving and random toggling (such
as during in-circuit testing) by placing all system signal pins to high- impedance state

NOTE
The IEEE Standard 1149.1 test logic cannot be considered completely
benign to those planning not to use JTAG capability. Users must observe
certain precautions to ensure that this logic does not interfere with system or
debug operation. Refer to Section 21.7, “Disabling IEEE 1149.1A Standard
Operation.”

21.2 Block Diagram
Figure 21-1 is a block diagram of the MCF5251 implementation of the 1149.1A IEEE Standard. The test
logic includes several test data registers, an instruction register, instruction register control decode, and a
16-state dedicated TAP controller.

IEEE 1149.1 Test Access Port (JTAG)

MCF5251 Reference Manual, Rev. 1

21-2 Freescale Semiconductor

Figure 21-1. JTAG Test Logic Block Diagram

21.3 JTAG Signal Descriptions
The JTAG operation on the MCF5251 is enabled when TEST[2:0]= 000, in which case the external pin
descriptions in Table 21-1 apply.Otherwise, the JTAG Test Access Port signals
(TCK/TMS/TDI/TDO/TRST) are interpreted as the debug port pins.

Table 21-1. JTAG Pin Descriptions

Pin Description

TCK A test clock input that synchronizes test logic operations

TMS A test mode select input with a default internal pullup resistor that is sampled on the rising
edge of TCK to sequence the TAP controller

BYPASS

4-BIT INSTRUCTION DECODE

4-BIT INSTRUCTION REGISTER

MUX

TAP
CONTROLLER

TEST DATA REGISTERS

TDI

TMS

TCK

TRST

TDO

V+

BOUNDARY SCAN REGISTER

IDCODE REGISTER

M
U
X

V+

V+

IEEE 1149.1 Test Access Port (JTAG)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 21-3

21.3.1 Test Clock (TCK)

TCK is the dedicated JTAG test logic clock that is independent of the MCF5251 processor clock. Various
JTAG operations occur on the rising or falling edge of TCK. The internal JTAG controller logic is designed
such that holding TCK high or low for an indefinite period of time will not cause the JTAG test logic to
lose state information. If TCK is not used, it should be tied to Vdd. There is an internal pullup connected
to this pin.

21.3.2 Test Reset/Development Serial Clock (TRST/DSCLK)

The TEST[2:0] signals determine the function of this dual-purpose pin. If TEST[2:0]=001, the DSCLK
function is selected. If TEST[2:0]= 000, the TRST function is selected, the pin has an internal pullup and
the JTAG reset is executed. For all other modes the signal is forced internally to its active value. TEST[2:0]
should not be changed while RSTI is asserted.

When used as TRST, this pin asynchronously resets the internal JTAG controller to the test logic reset state,
causing the JTAG instruction register to choose the “idcode” command. When this occurs, all the JTAG
logic is benign and will not interfere with the normal functionality of the MCF5251 processor. Although
this signal is asynchronous, Freescale recommends that TRST make only a 0 to 1 (asserted to negated)
transition while TMS is held at a logic 1 value. TRST has an internal pullup so that if it is not driven low
its value will default to a logic level of 1. However, if TRST is not used, it can either be tied to ground or,
if TCK is clocked, it can be tied to VDD. The former connection will place the JTAG controller in the test
logic reset state immediately, while the later connection will cause the JTAG controller (if TMS is a logic
1) to eventually end up in the test logic reset state after 5 clocks of TCK.

This pin is also used as the development serial clock (DSCLK) for the serial interface to the debug
module.The maximum frequency for the DSCLK signal is 1/2 the SYSCLK frequency.

21.3.3 Test Mode Select/ Breakpoint (TMS/BKPT)

The TEST[2:0] signals determine this pin’s dual function. If TEST[2:0] =001, the BKPT function is
selected. If TEST[2:0] = 000, then the TMS function is selected. TEST[2:0] should not change while RSTI
is asserted. When used as TMS, this input signal provides the JTAG controller with information to
determine which test operation mode should be performed. The value of TMS and current state of the
internal 16-state JTAG controller state machine at the rising edge of TCK determine whether the JTAG
controller holds its current state or advances to the next state. This directly controls whether JTAG data or

TDI A serial test data input with a default internal pullup resistor that is sampled on the rising
edge of TCK.

TDO A tri-state test data output that is actively driven only in the Shift-IR and Shift-DR controller
states and only updates on the falling edge of TCK.

TRST An active-low asynchronous reset with a default internal pullup resistor that forces the TAP
controller into the test-logic-reset state.

Table 21-1. JTAG Pin Descriptions

Pin Description

IEEE 1149.1 Test Access Port (JTAG)

MCF5251 Reference Manual, Rev. 1

21-4 Freescale Semiconductor

instruction operations occur. TMS has an internal pullup so that if it is not driven low, its value will default
to a logic level of 1. However, if TMS will not be used, it should be tied to Vdd. This pin also signals a
hardware breakpoint to the processor when in the debug mode.

21.3.4 Test Data Input/Development Serial Input (TDI/DSI)

This is a dual-function pin. If TEST[2:0] = 001, then DSI is selected. If TEST[2:0] = 000, then TDI is
selected. When used as TDI, this input signal provides the serial data port for loading the various JTAG
shift registers composed of the boundary scan register, the bypass register, and the instruction register.
Shifting in of data depends on the state of the JTAG controller state machine and the instruction currently
in the instruction register. This data shift occurs on the rising edge of TCK. TDI also has an internal pullup
so that if it is not driven low its value will default to a logic level of 1. However, if TDI will not be used, it
should be tied to VDD.

This pin also provides the single-bit communication for the debug module commands.

21.3.5 Test Data Output/Development Serial Output (TDO/DSO)

This is a dual-function pin. When TEST[2:0] = 001, then DSO is selected. When TEST[2:0] = 000, TDO
is selected. When used as TDO, this output signal provides the serial data port for outputting data from the
JTAG logic. Shifting out of data depends on the state of the JTAG controller state machine and the
instruction currently in the instruction register. This data shift occurs on the falling edge of TCK. When
TDO is not outputting test data, it is tri-stated. TDO can also be placed in tri-state mode to allow bussed
or parallel connections to other devices having JTAG.

21.4 TAP Controller
The state of TMS at the rising edge of TCK determines the current state of the TAP controller. There are
basically two paths that the TAP controller can follow: The first, for executing JTAG instructions; the
second, for manipulating JTAG data based on the JTAG instructions. The various states of the TAP
controller are shown in Figure 21-2. For more detail on each state, refer to the IEEE 1149.1A Standard
JTAG document.

NOTE
From any state that the TAP controller is in, Test-Logic-Reset can be entered
if TMS is held high for at least five rising edges of TCK.

IEEE 1149.1 Test Access Port (JTAG)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 21-5

Figure 21-2. JTAG TAP Controller State Machine

TEST - LOGIC - RESET

TLR

RUN - TEST - IDLE

RTI

SELECT - DR - SCAN

SeDR

CAPTURE - IR

UPDATE - IR

EXIT2 - IR

PAUSE - IR

EXIT1 - IR

SHIFT - IR

CAPTURE - DR

UPDATE - DR

EXIT2 - DR

PAUSE - DR

EXIT1 - DR

SHIFT - DR

0

0

0

1

0

1

1

0

0

0

1

1

0

1 1
1

1 1

0

1 1

1 1

0 0

0

1

CaDR

ShDR

E1DR

PaDR

E2DR

UpDR

CaIR

ShIR

E1IR

PaIR

E2IR

UpIR

<-- VALUE OF TMS AT RISING EDGE OF TCK

SELECT - IR - SCAN
SeIR

1

0

0 0

1

0

IEEE 1149.1 Test Access Port (JTAG)

MCF5251 Reference Manual, Rev. 1

21-6 Freescale Semiconductor

21.5 JTAG Register Definitions

21.5.1 JTAG Instruction Shift Register

The MCF5251 IEEE 1149.1A Standard implementation uses a 4-bit instruction-shift register without
parity. This register transfers its value to a parallel hold register and applies one of eight possible
instructions on the falling edge of TCK when the TAP state machine is in the update-IR state. To load the
instructions into the shift portion of the register, place the serial data on the TDI pin prior to each rising
edge of TCK.

Table 21-2 lists the public, usable instructions that are supported along with their encoding.

The IEEE 1149.1A Standard requires the EXTEST, SAMPLE/PRELOAD, and BYPASS instructions.
IDCODE, CLAMP, HIGHZ are optional standard instructions that the MCF5251 implementation supports
and are described in the IEEE Standard 1149.1A. The RINGOSC and ORGATE are user defined
instructions only used for device test during manufacturing.

21.5.1.1 EXTEST Instruction

The external test instruction (EXTEST) selects the boundary-scan register. The EXTEST instruction forces
all output pins and bidirectional pins configured as outputs to the preloaded fixed values (with the
SAMPLE/PRELOAD instruction) and held in the boundary-scan update registers. The EXTEST
instruction can also configure the direction of bidirectional pins and establish high-impedance states on
some pins. The EXTEST instruction becomes active on the falling edge of TCK in the update-IR state
when the data held in the instruction-shift register is equivalent to hex 0.

21.5.1.2 IDCODE

The IDCODE instruction selects the 32-bit IDcode register for connection as a shift path between the TDI
pin and the TDO pin. This instruction lets users interrogate the MCF5251 to determine its version number

Table 21-2. JTAG Instructions

Instruction ABBR Class IR[3:0] Instruction Summary

EXTEST EXT Required 0000 Select BS register while applying fixed values to output pins and asserting functional
reset

IDCODE IDC Optional 0001 Selects IDCODE register for shift

SAMPLE/
PRELOAD

SMP Required 0010 Selects BS register for shift, sample, and preload without disturbing functional
operation

CLAMP CMP Optional 0011 Selects bypass while applying fixed values to output pins and asserting functional
reset

HIGHZ HI_Z Optional 0100 Selects the bypass register while tri-stating all output pins and asserting functional
reset

RINGOSC RING Optional 0111 User defined function for device test

ORGATE OR Optional 1000 User defined function for device test

BYPASS BYP Required 1111 Selects the bypass register for data operations

IEEE 1149.1 Test Access Port (JTAG)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 21-7

and other part identification data. The IDcode register has been implemented in accordance with IEEE
1149.1A so that the least significant bit of the shift register stage is set to logic 1 on the rising edge of TCK
following entry into the capture-DR state. Therefore, the first bit to be shifted out after selecting the IDcode
register is always a logic 1. The remaining 31-bits are also set to fixed values (see Section 21.5.2, “ID Code
Register”) on the rising edge of TCK following entry into the capture-DR state.

The IDCODE instruction is the default value placed in the instruction register when a JTAG reset is
accomplished by either asserting TRST or holding TMS high while clocking TCK through at least five
rising edges and the falling edge after the fifth rising edge. A JTAG reset will cause the TAP state machine
to enter the test-logic-reset state (normal operation of the TAP state machine into the test-logic-reset state
will also result in placing the default value of 1 into the instruction register). The shift register portion of
the instruction register is loaded with the default value of 1 when in the Capture-IR state and a rising edge
of TCK occurs.

21.5.1.3 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction provides two separate functions. First, it obtains a sample of the
system data and control signals present at the MCF5251 input pins and just prior to the boundary scan cell
at the output pins. This sampling occurs on the rising edge of TCK in the capture-DR state when an
instruction encoding of 2 is resident in the instruction register. Users can observe this sampled data by
shifting it through the boundary-scan register to the output TDO by using the shift-DR state. Both the data
capture and the shift operation are transparent to system operation. Users are responsible for providing
some form of external synchronization to achieve meaningful results because there is no internal
synchronization between TCK and the SYSCLK.

The second function of the SAMPLE/PRELOAD instruction is to initialize the boundary scan register
update cells before selecting EXTEST or CLAMP. This is achieved by ignoring the data being shifted out
of the TDO pin while shifting in initialization data. The update-DR state in conjunction with the falling
edge of TCK can then transfer this data to the update cells. This data will be applied to the external output
pins when one of the instructions listed above is applied.

21.5.1.4 CLAMP Instruction

The CLAMP instruction selects the bypass register and asserts functional reset while simultaneously
forcing all output pins and bidirectional pins configured as outputs to the fixed values that are preloaded
and held in the boundary-scan update registers. This instruction enhances test efficiency by reducing the
overall shift path to a single bit (the bypass register) while conducting an EXTEST type of instruction
through the boundary-scan register. The CLAMP instruction becomes active on the falling edge of TCK
in the update-IR state when the data held in the instruction-shift register is equivalent to 3.

21.5.1.5 HIGHZ Instruction

The HIGHZ instruction anticipates the need to backdrive the output pins and protect the input pins from
random toggling during circuit board testing. The HIGHZ instruction selects the bypass register, forcing
all output and bidirectional pins to the high-impedance state.

IEEE 1149.1 Test Access Port (JTAG)

MCF5251 Reference Manual, Rev. 1

21-8 Freescale Semiconductor

The HIGHZ instruction goes active on the falling edge of TCK in the update-IR state when the data held
in the instruction shift register is equivalent to 4.

21.5.1.6 BYPASS Instruction

The BYPASS instruction selects the single-bit bypass register, creating a single-bit shift register path from
the TDI pin to the bypass register to the TDO pin. This instruction enhances test efficiency by reducing the
overall shift path when a device other than the MCF5251 processor becomes the device under test on a
board design with multiple chips on the overall IEEE1149.1A defined boundary-scan chain. The bypass
register has been implemented in accordance with IEEE1149.1A so that the shift register stage is set to
logic zero on the rising edge of TCK following entry into the capture-DR state. Therefore, the first bit to
be shifted out after selecting the bypass register is always a logic zero (to differentiate a part that supports
an IDCODE register from a part that supports only the bypass register). The BYPASS instruction goes
active on the falling edge of TCK in the update-IR state when the data held in the instruction shift register
is equivalent to 0xF.

21.5.2 ID Code Register

An IEEE 1149.1A compliant JTAG identification register has been included on the MCF5251. The
MCF5251 JTAG instruction encoded as 1 provides for reading the JTAG IDcode register.

Address Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R VERSION NUMBER DESIGN CENTER DEVICE NUMBER

W

Reset 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DEVICE NUMBER JEDECID JTAGID

W

Reset 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1

Figure 21-3. ID Code Register Command

Table 21-3. ID Code Register Field Descriptions

Field Description

31–28 The Version Number bits indicate the revision number of the MCF5251.

27–22 The Design Center bits indicate the Munich design center.

21–12 The Device Number bits indicate an MCF5251.

11–1 The JEDEC ID bits indicate the reduced JEDEC ID for Freescale (JEDEC refers to the Joint Electron Device
Engineering Council. Refer to JEDEC publication 106-A and section 11 of the IEEE 1149.1A Standard for further
information on this field).

0 Differentiates this register as the JTAG ID code register (as opposed to the bypass register) according to the IEEE
1149.1A Standard.

IEEE 1149.1 Test Access Port (JTAG)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 21-9

21.5.3 JTAG Boundary Scan Register

The MCF5251 model includes an IEEE 1149.1A-compliant boundary-scan register. The boundary-scan
register is connected between TDI and TDO when the EXTEST or SAMPLE/PRELOAD instructions are
selected. This register captures signal pin data on the input pins, forces fixed values on the output signal
pins, and selects the direction and drive characteristics (a logic value or high impedance) of the
bidirectional and tri-state signal pins. A detailed description of the boundary scan register bits for the
MCF5251 is part of the BDSL file.

21.5.4 JTAG Bypass Register

The MCF5251 includes an IEEE 1149.1A-compliant bypass register, which creates a single bit shift
register path from TDI to the bypass register to TDO when the BYPASS instruction is selected.

21.6 Restrictions
The test logic is implemented using static logic design, and TCK can be stopped in either a high or low
state without loss of data. The system logic, however, operates on a different system clock which is not
synchronized to TCK internally. Any mixed operation requiring the use of IEEE 1149.1A test logic in
conjunction with system functional logic that uses both clocks, must have coordination and
synchronization of these clocks done externally to the MCF5251.

21.7 Disabling IEEE 1149.1A Standard Operation
There are two ways to use the MCF5251 without the IEEE 1149.1A test logic being active:

1. Non-use of the JTAG test logic by either non-termination (disconnection) or intentional fixing of
TAP logic values.

2. Intentional disabling of the JTAG test logic by setting TEST[2:0]= 001 (entering Debug mode).

There are several considerations that must be addressed if the IEEE 1149.1A logic is not going to be used
once the MCF5251 is assembled onto a board.

The prime consideration is to ensure that the IEEE 1149.1A test logic remains transparent and benign to
the system logic during functional operation. This requires the minimum of either connecting the TRST
pin to logic 0, or connecting the TCK clock pin to a clock source that will supply five rising edges and the
falling edge after the fifth rising edge, to ensure that the part enters the test-logic-reset state. The
recommended solution is to connect TRST to logic 0.

Another consideration is that the TCK pin does not have an internal pullup as is required on the TMS, TDI,
and TRST pins; therefore, it should not be left unterminated to preclude mid-level input values.
Figure 21-4 shows pin values recommended for disabling JTAG with the MCF5251 in JTAG mode.

IEEE 1149.1 Test Access Port (JTAG)

MCF5251 Reference Manual, Rev. 1

21-10 Freescale Semiconductor

Figure 21-4. Disabling JTAG in JTAG Mode

A second method of using the MCF5251 without the IEEE 1149.1A logic being active is to select Debug
mode by setting TEST[2:0]= 001. The IEEE 1149.1A test controller is now placed in the test-logic-reset
state by the internal assertion of the TRST signal to the controller and the TAP pins function as debug mode
pins. While in JTAG mode, input pins TDI/DSI, TMS/BKPT, and TRST/DSCLK have internal pullups
enabled. Figure 21-5 shows pin values recommended for disabling JTAG with the MCF5251 in debug
mode.

Figure 21-5. Disabling JTAG in Debug Mode

21.8 Obtaining the IEEE 1149.1A Standard
The IEEE 1149 Standard JTAG specification is a copyrighted document and must be obtained directly
from the IEEE:

IEEE Standards Department
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

http://standards.ieee.org

TDI/DSI

TCK

VDD

TRST/DSCLK

TMS/BKPT•

•
•

NOTE: TEST[2:0] SET TO ‘000’ ALLOWS JTAG MODE.

TDI /DSI

TCK

DEBUG INTERFACE

TRST/DSCLK

TMS/BKPT

NOTE: TEST[2:0] SET TO’ 001’ PROHIBITS JTAG.

http://standards.ieee.org/

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 22-1

Chapter 22
USB, ATA DMA, and Clock Integration Module
This chapter includes the memory map, register descriptions and functional description of the ATA DMA
integration module.

22.1 Introduction
This chapter includes registers that are used to configure the various modules that are new to the MCF5251
family. It also includes a shared 16 kB local memory for the ATA and USB modules.

22.2 Memory Map and Register Definitions
Table 22-1 provides the memory map and register definitions for the ATA DMA integration module.

22.2.1 Miscellaneous Configuration Register (MISCCR)

Table 22-1. Real Time Clock Memory Map

MBAR2
Offset

Register Access Reset Value Section/Page

0x500 Miscellaneous Configuration Register (MISCCR) R/W Undefined 22.2.1/22-1

0x504 ATA DMA Source and Destination Address Register (ATA_DADDR) R/W 0x0000_0000 22.2.2/22-3

0x508 ATA DMA Count Register (ATA_DCOUNT) R/W 0x0000_0000 22.2.3/22-3

0x50C RTC Time Register (RTC_TIME) R Undefined 26.3.2/26-2

0x510 USB/FlexCAN Clock Gating (USBCANCLK) R/W 0x0000_0000 22.2.5/22-4

 Offset: MBAR2 0x500 (MISCCR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R URIP 0
URIE

RTCPL RTC
CLR

DMA
END

CPU
END

ADIP
ADIE ADTD ADTA

W URIC ADIC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-1. Miscellaneous Configuration Register (MISCCR)

USB, ATA DMA, and Clock Integration Module

MCF5251 Reference Manual, Rev. 1

22-2 Freescale Semiconductor

Table 22-2. Miscellaneous Configuration Register (MISCCR) Field Descriptions

Field Description

31–15 Reserved, must be cleared.

14 Reserved, this bit must always be set to 1.

13
URIP

USB resume interrupt pending
0 USB resume interrupt not pending
1 USB resume interrupt pending

12
URIC

USB resume interrupt clear. Always reads 0
0 no effect
1 clear USB resume interrupt

11
URIE

USB resume interrupt enable
0 Pending USB resume interrupt not sent to CPU
1 Pending USB resume interrupt forward to CPU

10 Reserved, should always be set to 0.

9 Reserved, should always be set to 0.

8
RTCPL

Real-time clock power loss. To clear this bit, set the RTCCLR bit and then clear the RTCCLR bit.
0 RTC maintaining time OK
1 Power lost to RTC

7
RTCCLR

Real-time clock power loss clear.
0 No action
1 Clears the RTCPL bit

6
DMAEND

Endianess of DMA access to ATA
0 Little endian
1 Big endian

5
CPUEND

Endianess of CPU access to ATA
0 Little endian
1 Big endian

4
ADIP

ATA DMA interrupt pending.
0 ATA DMA interrupt not pending
1 ATA DMA interrupt pending

3
ADIC

ATA DMA interrupt clear. This bit always reads 0, and clearing this bit has no affect.
Write:
0 No affect
1 Clears ATA DMA interrupt

2
ADIE

ATA DMA interrupt enable.
0 ATA DMA interrupt disabled
1 ATA DMA interrupt will interrupt CPU

1
ADTD

ATA DMA channel transfer direction.
0 RAM to ATA
1 ATA to RAM

0
ADTA

ATA DMA transfer active.
1 ATA DMA armed. Will transfer data when needed as long as atadma_count > 0.
0 ATA DMA blocked. WIll not transfer data.

USB, ATA DMA, and Clock Integration Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 22-3

22.2.2 ATA DMA Address Register (ATA_DADDR)

22.2.3 ATA DMA Count Register (ATA_DCOUNT)

22.2.4 RTC Time Register (RTC_TIME)

See Chapter 26, “Real-Time Clock” for a detailed description of this register.

 Offset: MBAR2 0x504 (ATA_DADDR) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RAMADDR ATAADDR

W

Reset 0

Figure 22-2. ATA DMA Address Register (ATA_DADDR)

Table 22-3. ATA DMA Address Register (ATA_DADDR) Field Descriptions

Field Description

31–18
RAMADDR

DMA address on the RAM side of the bus.

17–16 Reserved, should be cleared.

15–2
ATAADDR

DMA address on the ATA side of the bus.

1–0 Reserved, should be cleared.

 Offset: MBAR2 0x508 (ATA_DCOUNT) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
COUNT

W

Reset 0

Figure 22-3. ATA DMA Count Register (ATA_DCOUNT)

Table 22-4. ATA DMA Count Register (ATA_DCOUNT) Field Descriptions

Field Description

31–16 Reserved, should be cleared.

15–0
COUNT

ATA DMA word count. Indicates amount of words to transfer on the ATA DMA bus.

USB, ATA DMA, and Clock Integration Module

MCF5251 Reference Manual, Rev. 1

22-4 Freescale Semiconductor

22.2.5 USB/FlexCAN Clock Register (USBCANCLK)

22.3 Functional Description

22.3.1 ATA/USB Cache Memory

A 16 Kbytes local memory is put on a local bus, available as fast, local, memory to the ATA and USB
modules. A block diagram of how the devices are tied to this local bus is given in Figure 22-5.

Figure 22-5. ATA/USB Shared RAM Block Diagram

 Offset: MBAR2 0x510 (USBCANCLK) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CAN
CLK

USB
CLKW

Reset 0 1 1

Figure 22-4. USB/FlexCAN Clock Register (USBCANCLK)

Table 22-5. USB/FlexCAN Clock Register (USBCANCLK) Field Descriptions

Field Description

31–2 Reserved, should be cleared.

1
CANCLK

FlexCAN clock gating.
0 FlexCAN clock disabled. The FlexCAN modules are placed in sleep mode and its interface is not available.
1 FlexCAN clock enabled.

0
USBCLK

USB clock gating.
0 USB clock disabled. When disabled, the USB is placed in standby mode, and only the USB resume interrupt will

work. This interrupt will signal reception of USB resume condition on the USB bus. All other functions are not
available.

1 USB clock enabled.

USB Controller

ATA Controller

ATA DMA

16 kB RAM
Arbiter

Controller

In
te

rn
al

 B
us

USB, ATA DMA, and Clock Integration Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 22-5

The 16 kbyte SRAM is connected via an arbiter to 3 busses:

• It can be read and written directly by the USB. All transfers on the USB controller master bus are
done to the 16 kB cache memory via the arbiter. USB always has priority to this memory.

• It can be read and written directly by the ColdFire CF2 core and by the ColdFire DMA engine. Note
here the peripheral is connected to a slow bus, and the performance is somewhat limited.

• It can be read and written by the ATA DMA controller. This DMA controller can transfer data
between the cache RAM and the ATA interface.

The ATA controller has 2 busses, one connected to the internal bus, the second connected to the local ATA
DMA engine. The USB and ATA DMA controller are connected to the internal bus. For both, this
connection is used to access the module registers. All USB data transfers initiated by the USB will be to
and from the 16 kbytes cache memory. The USB does not see any other memory on the device.

22.3.1.1 Endianness Issues

The USB controller is little-endian, while the CPU is big-endian. The ATA controller endianness is
programmable; It can operate in both little-endian and big-endian modes. To resolve the issue, the cache
memory is visible from the CPU in straight-endianess and in swapped-endianness mode.

22.3.1.2 DMA Transfer between ATA and Cache RAM

The DMA of the ATA block can be used to transfer data between the ATA module and the cache RAM. In
order to transfer data between these two blocks, proceed as follows:

1. Make sure no unwanted transfer will start when configuring the DMA by clearing the
MISCCR[ATDA] bit.

2. Program bit MISCCR[DMAEND] to correctly reflect the endianness on the DMA you need.

3. Program ATA_DADDR[ATAADDR] to contain the address in the ATA module wherefrom or
whereto the data needs to be transferred. During the transfer, this address is kept constant. It will
not autoincrement or autodecrement.
The address is offset-0, so the value that needs to be programmed here is the result of the following
equation: [(ColdFire ATA register address) - (MBAR2 + 0x800)].

4. Program ATA_DADDR[RAMADDR] to contain the address in the cache RAM wherefrom or
whereto the data needs to be transferred. During the transfer, this address is autoincremented.
The address is offset-0, so the value that needs to be programmed here is the result of the following
equation: [(ColdFire cache RAM address) - (MBAR2 + 0x20000)].

Table 22-6. USB/ATA RAM Memory Map

MBAR2 Offset Endian

0x2_0000
...

0x2_3FFF

Straight, read/write what’s in RAM
read data[31:0] = ram[31:0]
write data[31:0] = in[31:0]

0x3_0000
...

0x3_3FFF

Swapped. Read and write data swapped:
read data[31:0] = {ram[7:0],ram[15:8], ram[23:16], ram[31:24]}
write data[31:0] = {in[7:0], in[15:8], in[23:16], in[31:24]}

USB, ATA DMA, and Clock Integration Module

MCF5251 Reference Manual, Rev. 1

22-6 Freescale Semiconductor

5. Program the number of 16-bit words that need be transferred in the ATA_DCOUNT register.

6. Program the direction of the transfer in dma_write_to_ram control bit. Set this bit for ATA to RAM
transfers, clear it for RAM to ATA transfers.

7. Enable the DMA interrupt if wanted.

8. Allow the transfer to start by setting the MISCCR[ATDA] bit.

9. Start the ATA transfer. ATA will now communicate with DMA, and the ATA data automatically
will end up in the memory, or data from memory is read for transfer to the ATA.

10. The DMA will end the transfer when the ATA_DCOUNT reaches zero. On DMA complete, a
DMA interrupt is requested.

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-1

Chapter 23
Advanced Technology Attachment Controller (ATA)

This chapter discusses the modes of operation, signal descriptions, memory map, register descriptions,
timing parameters, and functional description of the ATA interface.

The ATA interface of the MCF5251 is an AT attachment host interface. Its main use is to interface with
hard disc drives and optical disc drives. It interfaces with the ATA device over a number of ATA signals.

23.1 Features
The ATA interface includes the following features:

• Programmable timing on the ATA bus. Works with wide range of bus frequencies.

• Compliant with ATA-6 specification

— Supports PIO modes 0, 1, 2, 3, and 4

— Supports multiword DMA modes 0, 1, and 2

— Supports ultra DMA modes 0, 1, 2, and 3 with bus clock of at least 50 MHz

• 128-byte FIFO part of interface

• FIFO receive alarm, FIFO transmit alarm to DMA unit

• Zero-wait cycles transfer between DMA bus and FIFO allows fast FIFO reading/writing

23.2 Block Diagram
Figure 23-1 illustrates the block diagram of the ATA interface.

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-2 Freescale Semiconductor

Figure 23-1. ATA Interface Block Diagram

23.3 Overview
The ATA block is a AT attachment host interface. Its main use is to interface with IDE hard disc drives and
ATAPI optical disc drives. It interfaces with the ATA device over a number of ATA signals.

The ATA interface is compliant to the ATA-6 standard and supports the following protocols:

• PIO mode 0, 1, 2, 3, and 4

• multiword DMA mode 0, 1, and 2

• Ultra DMA modes 0, 1, 2, 3, and 4 with bus clock of 50 MHz or higher

The ATA interface has 2 busses connected:

• One CPU bus for communication with the host processor

• One DMA bus for communication with the host DMA unit

All internal registers are visible from both busses, allowing smart DMA access to program the interface.

Before accessing the ATA bus, the host must program the timing parameters to be used on the ATA bus.
The timing parameters control the timing on the ATA bus. Most timing parameters are programmable as a
number of clock cycles (1 to 255). Some are implied.

After programming the timing parameters, there are two protocols that can be active at the same time on
the ATA bus:

• First protocol. This protocol is a PIO mode access that can be performed at any time by the host
CPU or the host smart DMA to the ATA bus. During PIO mode access, the incoming IP bus cycle
is translated to an ATA bus cycle by the ATA protocol engine. The IP bus cycle is stalled until
completion of the ATA bus cycle on read, or until putting the write data on the ATA bus on write.

FIFO
128 bytes

ATA_RST
ATA_DIOR
ATA_DIOw
ATA_CS1
ATA_CS0
ATA_A2
ATA_A1
ATA_A0

ATA_DMARQ
ATA_DMACK

ATA_INTRQ

ATA_IORDY
ATA_D[15:0]

ATA
Protocol
Engine

Timing
Parameters

Control
Register

Interrupt
Interface

FIFO
control

Bus
Interface

CPU
Bus

DMA
Bus

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-3

The PIO mode is a slow protocol, mainly intended to program the ATA disc drive, but also possible
to use to transfer data to/from the disc drive. During PIO mode, the FIFO is not active.

• Second protocol. This protocol is the DMA mode access. DMA mode is started by the ATA
interface after receiving a DMA request from the drive, and only if the ATA interface has been
programmed to accept the DMA request. In DMA mode, either multiword DMA or ultra DMA
protocol is used on the ATA bus. Once started, data transfer is organized between the ATA bus and
the FIFO. Data transfer will pause to prevent FIFO overflow / FIFO underflow. Data transfer will
resume when there is again space in the FIFO, or when the FIFO has been refilled. During DMA
transfer, there is no direct interface between the ATA bus and the host IP or host DMA IP bus.
Instead, the transfer takes place between the ATA bus and the FIFO; the FIFO informs the host
DMA unit when it needs to be refilled or emptied. In this case, it sends an ALARM flag to the host
DMA. When the host DMA receives the fifo_tx_alarm, it should write some data to the FIFO.
(typically 32 bytes). When the host DMA receives the fifo_rcv_alarm, it should read some data
from the FIFO (typically 32 bytes). The FIFO filling level at which the alarms are produced, is
programmable. For completeness, there is a third alarm associated with the host DMA operation
fifo_txfer_end_alarm. This alarm signals the end of the transfer, and requests the smart DMA to
take steps to complete the transfer: transfer the bytes remaining in the FIFO to the host memory,
and inform the host CPU the transfer is completed.

All transfers between FIFO and host IP or DMA IP bus are zero wait states transfer, so high speed transfer
between FIFO and DMA/host bus is possible.

When a PIO access is performed during a running DMA transfer, the DMA transfer will be paused, the
PIO access done, and the DMA transfer will resume again.

23.3.1 Modes of Operation

The interface offers two operation modes that can be used together:

• PIO Mode

An access to the ATA bus in PIO mode occurs whenever a ATA PIO register is read or written by
the host CPU or the host (smart) DMA unit. During a PIO transfer the incoming IP bus cycle is
translated to an ATA PIO bus cycle by the ATA protocol engine. No buffering of data occurs, so the
host CPU or host DMA cycle is stalled until the ATA bus read data is available on read, or is stalled
until the IP bus data can we put on the ATA bus during write.

PIO accesses can be done to the bus at any time, even during a running ATA DMA transfer. In this
case, the DMA transfer is paused, the PIO cycle is completed, and the DMA transfer is resumed.

• DMA Mode

In DMA mode, data is transferred between the ATA bus and the FIFO. Two different DMA
protocols are supported on the ATA bus: ultra DMA mode and multiword DMA mode. Selection
is made using a control register bit.

A DMA transfer will be started when DMA mode transfer has been enabled by writing some
control bit, and when the drive connected to the ATA bus pulls its DMARQ line high.

During an ATA bus DMA transfer, data is transferred between the ATA bus and the FIFO. The
transfer will pause to avoid FIFO overflow and FIFO underflow.

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-4 Freescale Semiconductor

It is the task of the host CPU or the host smart DMA unit to read data or write data to the FIFO to
keep the transfer going. Normal set-up is that the host (smart) DMA unit takes on this task. For this
purpose, the fifo_rcv_alarm and fifo_tx_alarm signals are sent to the host DMA unit.
fifo_rcv_alarm informs the host DMA unit that there is at least 1 packet of data waiting in the FIFO
to be read by the host DMA. Whenever this signal is high, the host DMA should transfer one packet
of data from the FIFO to the main memory. Typical packet size is 32 bytes (8 long words), but other
packet sizes can be handled too. fifo_tx_alarm informs the host DMA unit that there is space for at
least 1 packet to be written by the host DMA. Whenever this signal is high, the host DMA should
transfer one packet of data from main memory to the FIFO. Typical packet size is 32 bytes (8 long
words), but other packet sizes can be handled too.

23.4 External Signal Description
See Table 23-1 for the list of signals entering and exiting this module to peripherals within the device.

23.4.1 Detailed Signal Descriptions

For a detailed description of the ATA bus signal, refer to the ATA-6 specification.

23.4.1.1 ATA_RST (Out)

This signal is the ATA reset signal. When low, the ATA bus is in reset state. When high, no reset. The ATA
bus is in reset whenever the appropriate bit in the control register is cleared. After system reset, the ATA
bus is in reset.

Table 23-1. Signal Properties

Name Function Reset State Direction

ATA_RST ATA bus reset signal. Active low. If active,
ata device is reset1

1This signal is a standard ATA bus signal. It conforms with the ATA specification.

0 O

ATA_DIOR ATA bus read strobe 1 O

ATA_DIOW ATA bus write strobe 1 O

ATA_CS1 ATA bus chip select 1 1 O

ATA_CS0 ATA bus chip select 0 1 O

ATA_A2 ATA bus address line 2 0 O

ATA_A1 ATA bus address line 1 0 O

ATA_A0 ATA bus address line 0 0 O

ATA_DMARQ ATA bus DMA request – I

ATA_DMACK ATA bus DMA acknowledge 1 O

ATA_INTRQ ATA bus interrupt request – I

ATA_IORDY ATA bus iordy – O

ATA_D[15:0] ATA data bus (little-endian) HI_Z Tri-state I/O

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-5

23.4.1.2 ATA_DIOR (Out)

This signal correspond to ATA signal DIOR. During PIO and multiword DMA transfer, function is read
strobe. During ultra DMA in burst, function is HDMARDY. During ultra DMA out burst, function is host
strobe.

23.4.1.3 ATA_DIOW (Out)

This signal corresponds to ATA signal DIOW. During PIO and multiword DMA transfer, function is write
strobe. During ultra DMA burst, function is STOP, signalling whenever host wants to terminate running
ultra DMA transfer.

23.4.1.4 ATA_CS0, ATA_CS1, ATA_A0, ATA_A1, ATA_A2 (Out)

These signals are the address group of the ATA bus. ATA_CS0 and ATA_CS1 are the chip selects;
ATA_A0, ATA_A1, and ATA_A2 are the 3 address lines. All five lines follow the same timing.

23.4.1.5 ATA_DMARQ (In)

This signal is the ATA bus device DMA request. It is pulled high by the device if it wants to transfer data
using multiword DMA or ultra DMA mode.

23.4.1.6 ATA_DMACK (Out)

This signal is the ATA bus host DMA acknowledge. It is pulled low by the host when it grants the DMA
request.

23.4.1.7 ATA_INTRQ (In)

This signal is the ATA bus interrupt request. It is pulled high by the device whenever it wants to interrupt
the host CPU.

23.4.1.8 ATA_IORDY (In)

This signal is the ATA bus IORDY line. It has three functions:

• IORDY⎯active low wait during PIO cycles

• DDMARDY⎯active low device ready during ultra DMA out transfers

• DSTROBE⎯device strobe during ultra DMA in transfers

23.4.1.9 ATA_D[15:0] (In/Out/Tri-state)

This is the ATA data bus.

23.4.2 Electrical Spec on the ATA Bus, Bus Buffers

To meet electrical spec on the ATA bus, several requirements must be met. For a detailed description, refer
to the ATA specification.

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-6 Freescale Semiconductor

This electrical spec must be met for the pads used on the ATA I/Os if no bus buffers and bus transceivers
are used.

Alternative is to use bus buffers. This is the only way to operate the ATA interface if 3.3 V or 5.0 V
compatibility on the ATA bus is wanted, and no 3.3 V or 5.0 V tolerant pads on the device are available.

The use of bus buffers introduces delay on the bus and introduces skew between signal lines. These factors
will make it difficult to operate the bus at the highest speed (UDMA-5) when bus buffers are used. If fast
UDMA mode operation is needed, this may not be compatible with bus buffers.

Another area of attention is the slew rate limit imposed by the ATA specification on the ATA bus.
According to this limit, any signal driven on the bus should have a slew rate between 0.4 and 1.2 V/ns with
a 40 pF load. Not many vendors of bus buffers specify slew rate of the outgoing signals.

23.4.3 Timing on ATA Bus

Timing on the ATA bus is explained in this section. It is also explained how to make sure the ATA interface
meets timing. Timing is explained with timing figures and also equations are provided that need to be
fulfilled for the host to meet timing.

23.4.3.1 Timing Parameters

In the timing equations, some timing parameters are used. These parameters depend on the implementation
of the ATA interface on silicon, the bus buffer used, the cable delay and cable skew. Refer to Table 23-2
for the list of parameters used to specify the ATA timing.

Table 23-2. Timing Parameters

Name Meaning Controlled by

T Bus clock period clock generator

ti_ds Set-up time ATA_Dx to ATA_IORDY edge (UDMA-in only) top level design

ti_dh hold time ATA_IORDY edge to ATA_Dx (UDMA-in only) top level design

tco Propagation delay bus clock L-to-H to the following signals:
ATA_CS0, ATA_CS1. ATA_CS2. ATA_A2. ATA_A1, ATA_A0, ATA_DIOR, ATA_DIOW,
ATA_DMACK, ATA_Dx

top level design

tsu Setup time ATA_Dx to bus clock L-to-H top level design

tsui Setup time ATA_IORDY to bus clock H-to-L top level design

thi Hold time ATA_IORDY to bus clock H to L top level design

tskew1 Max difference in propagation delay bus clock L-to-H to any of following signals:
ATA_CS0, ATA_CS1. ATA_CS2. ATA_A2. ATA_A1, ATA_A0, ATA_DIOR, ATA_DIOW,
ATA_DMACK, ATA_Dx (write)

top level design

tskew2 Max difference in buffer propagation delay for any of following signals:
ATA_CS0, ATA_CS1. ATA_CS2. ATA_A2. ATA_A1, ATA_A0, ATA_DIOR, ATA_DIOW,
ATA_DMACK, ATA_Dx (write)

transceiver

tskew3 Max difference in buffer propagation delay for any of following signals:
ATA_IORDY, ATA_Dx (read)

transceiver

tbuf Max buffer propagation delay transceiver

tcable1 Cable propagation delay for ATA_Dx cable

tcable2 Cable propagation delay for control signals:
ATA_DIOR, ATA_DIOW, ATA_IORDY, ATA_DMACK

cable

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-7

23.4.3.2 PIO Mode Timing

A timing diagram for PIO read mode is given in Figure 23-2.

Figure 23-2. PIO Read Mode Timing

To fulfill read mode timing, the different timing parameters given in Table 23-3 must be observed.

In PIO write mode, timing waveforms are somewhat different. A timing diagram is given in Figure 23-3.

tskew4 Max difference in cable propagation delay between ATA_IORDY and ATA_Dx (read) cable

tskew5 Max difference in cable propagation delay between (ATA_DIOR, ATA_DIOW, ATA_DMACK)
and (ATA_CS0, ATA_CS1. ATA_A2. ATA_A1, ATA_A0, ATA_Dx (write))

cable

tskew6 Max difference in cable propagation delay without accounting for ground bounce cable

Table 23-3. Timing Parameters PIO Read

ATA
Parameter

PIO Read
Mode Timing
Parameter1

1 See Figure 23-2.

Value How to Meet?

t1 t1 t1(min) = time_1 * T - (tskew1 + tskew2 + tskew5) time_1

t2 t2r t2(min) = time_2r * T - (tskew1 + tskew2 + tskew5) time_2r

t9 t9 t9(min) = time_9 * T - (tskew1 + tskew2 + tskew6) time_9

t5 t5 t5(min) = tco + tsu + tbuf + tbuf + tcable1 + tcable2 if not met, increase time_2

t6 t6 0

tA tA tA(min) = (1.5 + time_ax) * T - (tco + tsui + tcable2 + tcable2 + 2*tbuf) time_ax

trd trd1 trd1(max) = (-trd) + (tskew3 + tskew4)
trd1(min) = (time_pio_rdx - 0.5)*T - (tsu + thi)

(time_pio_rdx - 0.5) * T > tsu + thi + tskew3 + tskew4

time_pio_rdx

t0 – t0(min) = (time_1 + time_2 + time_9) * T time_1, time_2r, time_9

Table 23-2. Timing Parameters (continued)

Name Meaning Controlled by

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-8 Freescale Semiconductor

Figure 23-3. PIO Write Mode Timing

To fulfill this timing, several parameters need to be observed. See Table 23-4 for details on PIO write mode
timing.

23.4.3.3 Timing in Multiword DMA Mode

In multi-word DMA mode, see Figure 23-4 for read timing diagram and Figure 23-5 for write timing
diagram.

Table 23-4. Timing Parameters PIO Write

ATA
Parameter

 PIO Write
Mode Timing
Parameter1

1 See Figure 23-3.

Value How to meet?

t1 t1 t1(min) = time_1 * T - (tskew1 + tskew2 + tskew5) time_1

t2 t2w t2(min) = time_2w * T - (tskew1 + tskew2 + tskew5) time_2w

t9 t9 t9(min) = time_9 * T - (tskew1 + tskew2 + tskew6) time_9

t3 – t3(min) = (time_2w - time_on)* T - (tskew1 + tskew2 +tskew5) if not met, increase time_2w

t4 t4 t4(min) = time_4 * T - tskew1 time_4

tA tA tA = (1.5 + time_ax) * T - (tco + tsui + tcable2 + tcable2 + 2*tbuf) time_ax

t0 – t0(min) = (time_1 + time_2 + time_9) * T time_1, time_2r, time_9

– – Avoid bus contention when switching buffer on by making ton long
enough

–

– – Avoid bus contention when switching buffer off by making toff long
enough

–

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-9

Figure 23-4. MDMA Read Timing

Figure 23-5. MDMA Write Timing

To meet the timing requirement, a number of timing parameters must be controlled. See Table 23-5 for
details on timing parameters for MDMA read and write.

Table 23-5. Timing Parameters MDMA Read and Write

ATA
Parameter

MDMA Read
TIming1 and
MDMA Write

TIming2

Value How to Meet?

tm, ti tm tm(min) = ti(min) = time_m * T - (tskew1 + tskew2 + tskew5) time_m

td td, td1 td1(min) = td(min) = time_d * T - (tskew1 + tskew2 + tskew6) time_d

tk tk tk(min) = time_k * T - (tskew1 + tskew2 + tskew6) time_k

t0 – t0(min) = (time_d + time_k) * T time_d, time_k

tg(read) tgr tgr(min-read) = tco + tsu + tbuf + tbuf + tcable1 + tcable2
tgr(min-drive) = td - te(drive)

time_d

tf(read) tfr tfr(min-drive) =0k –

tg(write) – tg(min-write) = time_d * T -(tskew1 + tskew2 + tskew5) time_d

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-10 Freescale Semiconductor

23.4.3.4 UDMA In Timing Diagrams

UDMA mode timing is more complicated than PIO mode or MDMA mode. In this section, timing
diagrams for UDMA in are provided.

Figure 23-6 shows timing for UDMA in transfer start.

Figure 23-6. UDMA in Transfer Start Timing Diagram

Figure 23-7 shows timing for host terminating UDMA in transfer.

tf(write) – tf(min-write) = time_k * T - (tskew1 + tskew2 + tskew6) time_k

tL – tL(max) = (time_d + time_k-2)*T - (tsu + tco + 2*tbuf + 2*tcable2) time_d, time_k3

tn, tj tkjn tn= tj= tkjn = (max(time_k,. time_jn) * T - (tskew1 + tskew2 + tskew6) time_jn

– ton
toff

ton = time_on * T - tskew1
toff = time_off * T - tskew1

–

1 See Figure 23-4.
2 See Figure 23-5.
3 tk1 in the UDMA figures equals (tk -2*T)

Table 23-5. Timing Parameters MDMA Read and Write (continued)

ATA
Parameter

MDMA Read
TIming1 and
MDMA Write

TIming2

Value How to Meet?

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-11

Figure 23-7. UDMA in Host Terminates Transfer

Figure 23-8 shows timing for device terminating UDMA in transfer.

Figure 23-8. UDMA in Device Terminates Transfer

Timing parameters for UDMA in burst are listed in Table 23-6.

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-12 Freescale Semiconductor

23.4.3.5 UDMA Out Timing Diagrams

UDMA mode timing is more complicated than PIO mode or MDMA mode. In this section, timing
diagrams for UDMA out are provided.

Figure 23-9 shows timing for UDMA out transfer start.

Table 23-6. Timing Parameters for UDMA in Burst

ATA
Parameter

Spec
Parameter

Value Required Conditions

tack tack tack(min) = (time_ack * T) - (tskew1 + tskew2) time_ack

tenv tenv tenv(min) = (time_env * T) - (tskew1 + tskew2)
tenv(max) = (time_env * T) + (tskew1 + tskew2)

time_env

tds tds1 tds - (tskew3) - ti_ds > 0 tskew3, ti_ds, ti_dh
should be low enoughtdh tdh1 tdh - (tskew3) -ti_dh > 0

tcyc tc1 (tcyc - tskew + TBD) > T T big enough

trp trp trp(min) = time_rp * T - (tskew1 + tskew2 + tskew6) time_rp

– tx11

1 There is a special timing requirement in the ATA host that requires the internal DIOW to go only high three clocks after the last
active edge on the DSTROBE signal. The equation given on this line tries to capture this constraint.

2. Make ton and toff big enough to avoid bus contention.

(time_rp * T) - (tco + tsu + 3T + 2 *tbuf + 2*tcable2) > trfs (drive) time_rp

tmli tmli1 tmli1(min) = (time_mlix + 0.4) * T time_mlix

tzah tzah tzah(min) = (time_zah + 0.4) * T time_zah

tdzfs tdzfs tdzfs = (time_dzfs * T) - (tskew1 + tskew2) time_dzfs

tcvh tcvh tcvh = (time_cvh *T) - (tskew1 + tskew2) time_cvh

– ton
toff

ton = time_on * T - tskew1
toff = time_off * T - tskew1

–

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-13

Figure 23-9. UDMA Out Transfer Start Timing Diagram

Figure 23-10 shows timing for host terminating UDMA out transfer.

Figure 23-10. UDMA Out Host Terminates Transfer

Figure 23-11 shows timing for device terminating UDMA out transfer.

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-14 Freescale Semiconductor

Figure 23-11. UDMA Out Device Terminates Transfer

Timing parameters for UDMA out burst are listed in Table 23-7.

23.5 Memory Map and Register Definitions
Section 23.5.2, “Register Descriptions” on page 23-18 provides the detailed descriptions for all of the ATA
registers.

Table 23-7. Timing Parameters UDMA Out Burst

ATA
Parameter

Spec
Parameter

Value How to Meet?

tack tack tack(min) = (time_ack * T) - (tskew1 + tskew2) time_ack

tenv tenv tenv(min) = (time_env * T) - (tskew1 + tskew2)
tenv(max) = (time_env * T) + (tskew1 + tskew2)

time_env

tdvs tdvs tdvs = (time_dvs * T) - (tskew1 + tskew2) time_dvs

tdvh tdvh tdvs = (time_dvh * T) - (tskew1 + tskew2) time_dvh

tcyc tcyc tcyc = time_cyc * T - (tskew1 + tskew2) time_cyc

t2cyc – t2cyc = time_cyc * 2 * T time_cyc

trfs1 trfs trfs = 1.6 * T + tsui + tco + tbuf + tbuf –

– tdzfs tdzfs = time_dzfs * T - (tskew1) time_dzfs

tss tss tss = time_ss * T - (tskew1 + tskew2) time_ss

tmli tdzfs_mli tdzfs_mli =max(time_dzfs, time_mli) * T - (tskew1 + tskew2) –

tli tli1 tli1 > 0 –

tli tli2 tli2 > 0 –

tli tli3 tli3 > 0 –

tcvh tcvh tcvh = (time_cvh *T) - (tskew1 + tskew2) time_cvh

– ton
toff

ton = time_on * T - tskew1
toff = time_off * T - tskew1

–

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-15

23.5.1 Memory Map

Table 23-8 shows the ATA memory map.

Table 23-8. ATA Memory Map

Address Register Description Access Reset Value Section/Page

MBAR2 + 0x800
(TIME_OFF)

TIME_OFF Transceiver timing parameter.
Controls toff

R/W 0x01 23.5.2.2.1/23-19

MBAR2 + 0x801
(TIME_ON)

TIME_ON Transceiver timing parameter.
Controls ton

R/W 0x01 23.5.2.2.2/23-19

MBAR2 + 0x802 (TIME_1) TIME_1 PIO timing parameter.
Controls t1

R/W 0x01 23.5.2.2.3/23-20

MBAR2 + 0x803
(TIME_2W)

TIME_2W PIO timing parameter.
Controls t2 during write cycles

R/W 0x01 23.5.2.2.4/23-20

MBAR2 + 0x804
(TIME_2R)

TIME_2R PIO timing parameter.
Controls t2 during read cycles

R/W 0x01 23.5.2.2.5/23-20

MBAR2 + 0x805
(TIME_AX)

TIME_AX PIO timing parameter.
Controls tA

R/W 0x01 23.5.2.2.6/23-21

MBAR2 + 0x80F
(TIME_PIO_RDX)

TIME_PIO_RDX PIO timing parameter.
Controls trd

R/W 0x01 23.5.2.2.7/23-21

MBAR2 + 0x807 (TIME_4) TIME_4 PIO timing parameter.
Controls t4

R/W 0x01 23.5.2.2.8/23-21

MBAR2 + 0x808 (TIME_9) TIME_9 PIO timing parameter.
Controls t9

R/W 0x01 23.5.2.2.9/23-21

MBAR2 + 0x809 (TIME_M) TIME_M MDMA timing parameter.
Controls tm

R/W 0x01 23.5.2.2.10/23-22

Address TIME_JN MDMA timing parameter.
Controls tn and tj

R/W 0x01 23.5.2.2.11/23-22

Address TIME_D MDMA timing parameter.
Controls td

R/W 0x01 23.5.2.2.12/23-22

Address TIME_K MDMA timing parameter.
Controls tk

R/W 0x01 23.5.2.2.13/23-23

MBAR2 + 0x80D
(TIME_ACK)

TIME_ACK UDMA timing parameter.
Controls tack

R/W 0x01 23.5.2.2.14/23-23

Address TIME_ENV UDMA timing parameter.
Controls tenv

R/W 0x01 23.5.2.2.15/23-23

MBAR2 + 0x80F
(TIME_PIO_RDX)

TIME_RPX UDMA timing parameter.
Controls trp

R/W 0x01 23.5.2.2.16/23-23

Address TIME_ZAH UDMA timing parameter.
Controls tzah

R/W 0x01 23.5.2.2.17/23-24

MBAR2 + 0x811
(TIME_MLIX)

TIME_MLIX UDMA timing parameter.
Controls tmli

R/W 0x01 23.5.2.2.18/23-24

MBAR2 + 0x812
(TIME_DVH)

TIME_DVH UDMA timing parameter.
Controls tdvh

R/W 0x01 23.5.2.2.19/23-24

Address TIME_DZFS UDMA timing parameter.
Controls tdzfs

R/W 0x01 23.5.2.2.20/23-25

Address TIME_DVS UDMA timing parameter.
Controls tdvs

R/W 0x01 23.5.2.2.21/23-25

Address TIME_CVH UDMA timing parameter.
Controls tcvh

R/W 0x01 23.5.2.2.22/23-25

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-16 Freescale Semiconductor

Table 23-9 shows the ATA register summary.

Address TIME_SS UDMA timing parameter.
Controls tss

R/W 0x01 23.5.2.2.23/23-25

Address TIME_CYC UDMA timing parameter.
Controls tcyc and t2cyc

R/W 0x01 23.5.2.2.24/23-26

MBAR2 + 0x81C
(FIFO_DATA_16)

FIFO_DATA_16 16-bit wide or 32-bit wide
data port to/from FIFO

R/W 0x— — — — 23.5.2.3.1/23-26

MBAR2 + 0x818
(FIFO_DATA_32)

FIFO_DATA_32 R/W 0x— — — —
— — — —

23.5.2.3.2/23-26

Address FIFO_FILL FIFO filling in halfwords Read-only 0x00 23.5.2.3.3/23-27

Address ATA_CONTROL ATA interface control register R/W 0x00 23.5.2.5.1/23-29

Address INTERRUPT_PENDING Interrupt pending register Read-only 0x1 — 23.5.2.5.1/23-29

Address INTERRUPT_ENABLE Interrupt enable register R/W 0x0 — 23.5.2.5.2/23-30

Address INTERRUPT_CLEAR Interrupt clear register Write-only 0x— — 23.5.2.5.3/23-31

Address FIFO_ALARM FIFO alarm threshold R/W 0x00 23.5.2.7/23-32

MBAR2 + 0x8A0
(DRIVE_DATA)

DRIVE_DATA Drive data register 16-bit RW – 23.5.2.7/23-32

MBAR2 + 0x8A4
(DRIVE_FEATURES)

DRIVE_FEATURES Drive features register R/W – 23.5.2.7/23-32

MBAR2 + 0x8A8
(DRIVE_SECTOR_COUN
T)

DRIVE_SECTOR_
COUNT

Drive sector count register R/W – 23.5.2.7/23-32

MBAR2 + 0x8AC
(DRIVE_SECTOR_NUM)

DRIVE_SECTOR_NUM Drive sector number register R/W – 23.5.2.7/23-32

MBAR2 + 0x8B0
(DRIVE_CYL_LOW)

DRIVE_CYL_LOW Drive cylinder low register R/W – 23.5.2.7/23-32

MBAR2 + 0x8B4
(DRIVE_CYL_HIGH)

DRIVE_CYL_HIGH Drive cylinder high register R/W – 23.5.2.7/23-32

MBAR2 + 0x8B8
(DRIVE_DEV_HEAD)

DRIVE_DEV_HEAD Drive device head register R/W – 23.5.2.7/23-32

MBAR2 + 0x8BC
(DRIVE_COMMAND)

DRIVE_COMMAND Drive command register Write-only – 23.5.2.7/23-32

MBAR2 + 0x8C0
(DRIVE_STATUS)

DRIVE_STATUS Drive status register Read-only – 23.5.2.7/23-32

MBAR2 + 0x8C4
(DRIVE_ALT_STATUS)

DRIVE_ALT_STATUS Drive alternate status register Read-only 23.5.2.7/23-32

MBAR2 + 0x8C8
(DRIVE_CONTROL)

DRIVE_CONTROL Drive control register Write-only 23.5.2.7/23-32

Table 23-9. ATA Register Summary

Name 7 6 5 4 3 2 1 0

MBAR2 + 0x800 (TIME_OFF)
R TIME_OFF[7:0]

W

MBAR2 + 0x801 (TIME_ON)
R TIME_ON[7:0]

W

Table 23-8. ATA Memory Map (continued)

Address Register Description Access Reset Value Section/Page

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-17

MBAR2 + 0x802 (TIME_1)
R

TIME_1[7:0]
W

MBAR2 + 0x803 (TIME_2W)
R

TIME_2W[7:0]
W

MBAR2 + 0x804 (TIME_2R)
R

TIME_2R[7:0]
W

MBAR2 + 0x805 (TIME_AX)
R

TIME_AX[7:0]
W

MBAR2 + 0x80F (TIME_PIO_RDX)
R

TIME_RDX[7:0]
W

MBAR2 + 0x807 (TIME_4)
R

TIME_4[7:0]
W

MBAR2 + 0x808 (TIME_9)
R

TIME_9[7:0]
W

MBAR2 + 0x809 (TIME_M)
R

TIME_M[7:0]
W

Address
R

TIME_JN[7:0]
W

Address
R

TIME_D[7:0]
W

Address
R

TIME_K[7:0]
W

MBAR2 + 0x80D (TIME_ACK)
R

TIME_ACK[7:0]
W

Address
R

TIME_ENV[7:0]
W

Address
R

TIME_RPX[7:0]
W

Address
R

TIME_ZAH[7:0]
W

MBAR2 + 0x811 (TIME_MLIX)
R

TIME_MLIX[7:0]
W

MBAR2 + 0x812 (TIME_DVH) R
TIME_DVH[7:0]

W

Address R
TIME_DZFS[7:0]

W

Address R
TIME_DVS[7:0]

W

Address R
TIME_CVH[7:0]

W

Address
R

TIME_SS[7:0]
W

Table 23-9. ATA Register Summary (continued)

Name 7 6 5 4 3 2 1 0

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-18 Freescale Semiconductor

23.5.2 Register Descriptions

This section contains the detailed register descriptions for the ATA registers.

23.5.2.1 Endianness

The ATA interface works both in little endian or big endian mode. The addresses of all registers are
independent of endianess mode. (they remain same.) The few 16-bit and 32-bit registers represent strings
of 2 or 4 bytes. The byte order in the 16-bit or 32-bit register is dependent on endianess selection.

Address
R

TIME_CYC[7:0]fifo_data[15:0]
W

Name 7 6 5 4 3 2 1 0

Address R FIFO_FILL[7:0]

W

Address R
fifo_rst_

b
ata_rst_

b
fifo_tx_

en
fifo_rcv

_en
dma_

pending

dma_ult
ra_se-
lected

dma_
write

iordy_
enW

Address
R

ata_
intrq1

fifo_
under-
flow

fifo_
over-
flow

controll
er_
idle

ata_
irtrq2

W

Address R
ata_

intrq1

fifo_
under-
flow

fifo_
over-
flow

controll
er_
idle

ata_
irtrq2W

Address R

W
fifo_

underflo
w

fifo_
overflo

w

Address R FIFO_ALARM[7:0]

W

Table 23-9. ATA Register Summary (continued)

Name 7 6 5 4 3 2 1 0

Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MBAR2 + 0x81C
(FIFO_DATA_16)

R
fifo_data[15:0]

W

Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MBAR2 + 0x818
(FIFO_DATA_32)

R
fifo_data[23:16]

W

R
fifo_data[15:0]

W

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-19

• Little endian, 16-bit or 32-bit register:

— bits [7:0]: byte 0

— bits [15:8]: byte 1

— bits [23:8]: byte 2

— bits [31:24]: byte 3

• Big endian, 32-bit register:

— bits [31:24]: byte 0

— bits [23:16]: byte 1

— bits [15:8]: byte 2

— bits [7:0]: byte 3

• Big endian, 16-bit register:

— bits [15:8]: byte 0

— bits [7:0]: byte 1

23.5.2.2 Timing Registers

Registers (ata_base +$0) till (ata_base + $17) contain timing parameters. These timing parameters control
the timing on the ATA bus as shown in details in the following illustrations:

• Section 23.4.3.2, “PIO Mode Timing”

• Section 23.4.3.3, “Timing in Multiword DMA Mode”

• Section 23.4.3.4, “UDMA In Timing Diagrams”

• Section 23.4.3.5, “UDMA Out Timing Diagrams”

Every timing parameter is 8-bit wide and can assume valid values between 1 and 255. Reset value is always
1.

All figures in this section show timing registers.

23.5.2.2.1 TIME_OFF Register

See Figure 23-12 for illustration of valid bits in the TIME_OFF Register and Table 23-8 for description of
the bit fields.

23.5.2.2.2 TIME_ON Register

See Figure 23-13 for illustration of valid bits in the TIME_ON Register and Table 23-8 for description of
the bit fields.

Address MBAR2 + 0x800 (TIME_OFF) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_OFF[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-12. TIME_OFF Register

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-20 Freescale Semiconductor

23.5.2.2.3 TIME_1 Register

See Figure for illustration of valid bits in the TIME_1 Register and Table 23-8 for description of the bit
fields.

23.5.2.2.4 TIME_2W Register

See Figure 23-15 for illustration of valid bits in the TIME_2W Register and Table 23-8 for description of
the bit fields.

23.5.2.2.5 TIME_2R Register

See Figure 23-16 for illustration of valid bits in the TIME_2R Register and Table 23-8 for description of
the bit fields.

Address MBAR2 + 0x801 (TIME_ON) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_ON[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-13. TIME_ON Register

Address MBAR2 + 0x802 (TIME_1) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_1[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-14. TIME_1 Register

Address MBAR2 + 0x803 (TIME_2W) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_2W[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-15. TIME_2W Register

Address MBAR2 + 0x804 (TIME_2R) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_2R[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-16. TIME_2R Register

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-21

23.5.2.2.6 TIME_AX Register

See Figure 23-17 for illustration of valid bits in the TIME_AX Register and Table 23-8 for description of
the bit fields.

23.5.2.2.7 TIME_PIO_RDX Register

See Figure 23-18 for illustration of valid bits in the TIME_PIO_RDX Register and Table 23-8 for
description of the bit fields.

23.5.2.2.8 TIME_4 Register

See Figure 23-19 for illustration of valid bits in the TIME_4 Register and Table 23-8 for description of the
bit fields.

23.5.2.2.9 TIME_9 Register

See Figure 23-20 for illustration of valid bits in the TIME_9 Register and Table 23-8 for description of the
bit fields.

Address MBAR2 + 0x805 (TIME_AX) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_AX[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-17. TIME_AX Register

Address MBAR2 + 0x80F (TIME_PIO_RDX) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_RDX[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-18. TIME_PIO_RDX Register

Address MBAR2 + 0x807 (TIME_4) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_4[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-19. TIME_4 Register

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-22 Freescale Semiconductor

23.5.2.2.10 TIME_M Register

See Figure 23-21 for illustration of valid bits in the TIME_M Register and Table 23-8 for description of
the bit fields.

23.5.2.2.11 TIME_JN Register

See Figure 23-22 for illustration of valid bits in the TIME_JN Register and Table 23-8 for description of
the bit fields.

23.5.2.2.12 TIME_D Register

See Figure 23-23 for illustration of valid bits in the TIME_D Register and Table 23-8 for description of
the bit fields.

Address MBAR2 + 0x808 (TIME_9) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_9[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-20. TIME_9 Register

Address MBAR2 + 0x809 (TIME_M) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_M[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-21. TIME_M Register

Address MBAR2 + 0x80A (TIME_JN) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_JN[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-22. TIME_JN Register

Address MBAR2 + 0x80B (TIME_D) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_D[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-23. TIME_D Register

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-23

23.5.2.2.13 TIME_K Register

See Figure 23-24 for illustration of valid bits in the TIME_K Register and Table 23-8 for description of
the bit fields.

23.5.2.2.14 TIME_ACK Register

See Figure 23-25 for illustration of valid bits in the TIME_ACK Register and Table 23-8 for description
of the bit fields.

23.5.2.2.15 TIME_ENV Register

See Figure 23-26 for illustration of valid bits in the TIME_ENV Register and Table 23-8 for description
of the bit fields.

23.5.2.2.16 TIME_RPX Register

See Figure 23-27 for illustration of valid bits in the TIME_RPX Register and Table 23-8 for description of
the bit fields.

Address MBAR2 + 0x80C (TIME_K) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_K[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-24. TIME_K Register

Address MBAR2 + 0x80D (TIME_ACK) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_ACK[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-25. TIME_ACK Register

Address MBAR2 + 0x80E (TIME_ENV) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_ENV[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-26. TIME_ENV Register

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-24 Freescale Semiconductor

23.5.2.2.17 TIME_ZAH Register

See Figure 23-28 for illustration of valid bits in the TIME_ZAH Register and Table 23-8 for description
of the bit fields.

23.5.2.2.18 TIME_MLIX Register

See Figure 23-29 for illustration of valid bits in the TIME_MLIX Register and Table 23-8 for description
of the bit fields.

23.5.2.2.19 TIME_DVH Register

See Figure 23-30 for illustration of valid bits in the TIME_DVH Register and Table 23-8 for description
of the bit fields.

Address MBAR2 + 0x80F (TIME_RPX) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_RPX[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-27. TIME_RPX Register

Address MBAR2 + 0x810 (TIME_ZAH) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_ZAH[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-28. TIME_ZAH Register

Address MBAR2 + 0x811 (TIME_MLIX) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_MLIX[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-29. TIME_MLIX Register

Address MBAR2 + 0x812 (TIME_DVH) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_DVH[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-30. TIME_DVH Register

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-25

23.5.2.2.20 TIME_DZFS Register

See Figure 23-31 for illustration of valid bits in the TIME_DZFS Register and Table 23-8 for description
of the bit fields.

23.5.2.2.21 TIME_DVS Register

See Figure 23-32 for illustration of valid bits in the TIME_DVS Register and Table 23-8 for description of
the bit fields.

23.5.2.2.22 Time_CVH Register

See Figure 23-33 for illustration of valid bits in the TIME_CVH Register and Table 23-8 for description
of the bit fields.

23.5.2.2.23 TIME_SS Register

See Figure 23-34 for illustration of valid bits in the TIME_SS Register and Table 23-8 for description of
the bit fields.

Address MBAR2 + 0x813 (TIME_DZFS) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_DZFS[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-31. TIME_DZFS Register

Address MBAR2 + 0x814 (TIME_DVS) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_D[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-32. TIME_DVS Register

Address MBAR2 + 0x815 (TIME_CVH) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_CVH[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-33. TIME_CVH Register

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-26 Freescale Semiconductor

23.5.2.2.24 TIME_CYC Register

See Figure 23-35 for illustration of valid bits in the TIME_CYC Register and Table 23-8 for description
of the bit fields.

23.5.2.3 FIFO Data Registers

23.5.2.3.1 FIFO_Data Register in 16-Bit Mode

See Figure 23-36 for illustration of valid bits in the FIFO_Data Register in 16-bit Mode and Table 23-8 for
description of the bit fields.

23.5.2.3.2 FIFO_Data Register in 32-Bit Mode

See Figure 23-37 for illustration of valid bits in the FIFO_Data Register in 32-bit Mode and Table 23-8 for
description of the bit fields.

Address MBAR2 + 0x816 (TIME_SS) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_SS[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-34. TIME_SS Register

Address MBAR2 + 0x817 (TIME_CYC) Access: User read/write

7 6 5 4 3 2 1 0

R
TIME_CYC[7:0]

W

Reset 0 0 0 0 0 0 0 1

Figure 23-35. TIME_CYC Register

Address MBAR2 + 0x81C (FIFO_DATA_16) Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FIFO_DATA[15:0]

W

Reset – – – – – – – – – – – – – – – –

Figure 23-36. FIFO_Data Register In 16-bit Mode

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-27

The FiFO_DATA Register is used to read or write data to the internal FIFO. It can be accessed as a 16-bit
register or as a 32-bit register. Any long write to the register will put the four bytes written into the FIFO.
Any word write will put the two bytes written into the FIFO. Any long read will read four bytes from the
FIFO. Any word read will read two bytes from the FIFO.

23.5.2.3.3 FIFO_FILL Register

See Figure 23-38 for illustration of valid bits in the FIFO_FILL Register and Table 23-8 for description of
the bit fields.

FIFO_FILL is a read-only register. Any read to it returns the current number of halfwords present in the
FIFO.

23.5.2.4 ATA_CONTROL Register

See Figure 23-39 for illustration of valid bits in the ATA Control Register and Table 23-10 for description
of the bit fields.

Address MBAR2 + 0x818 (FIFO_DATA_32) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
FIFO_DATA[32:16]

W

Reset – – – – – – – – – – – – – – – –

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FIFO_DATA[15:0]

W

Reset – – – – – – – – – – – – – – – –

Figure 23-37. FIFO_Data Register in 32-Bit Mode

Address MBAR2 + 0x820 (FIFO_FILL) Access: User read-only

7 6 5 4 3 2 1 0

R FIFO_FILL[7:0]

W

Reset 0 0 0 0 0 0 0 0

Figure 23-38. FIFO_FILL Register

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-28 Freescale Semiconductor

23.5.2.5 Interrupt Registers

A group of three registers control the interrupt interface from the ATA module and going to the CPU and
DMA. There are two interrupts controlled by these registers:

Address MBAR2 + 0x824 (ATA_CONTROL) Access: User read/write

7 6 5 4 3 2 1 0

R
fifo_rst_b ata_rst_b fifo_tx_en fifo_rcv_en dma_pending dma_ultra_selected dma_write iordy_en

W

Reset 0 0 0 0 0 0 0 0

Figure 23-39. ATA_Control Register

Table 23-10. ATA Control Register Field Descriptions

Field Description

7
fifo_rst_b

This field controls if the internal FIFO is in reset or enabled.
0 FIFO reset
1 FIFO normal operation

6
ata_rst_b

This bit controls the level on the ata_reset_b pin, and controls the reset of the internal ata protocol engine.
0 ata_reset_b = 0, ata drive is reset, and internal protocol engine reset.
1 ata_reset_b = 1, ata drive is not reset and internal protocol engine normal operation.

5
fifo_tx_en

FIFO transmit enable. This bit controls if the FIFO will make transmit data requests to the DMA. If enabled,
the FIFO will request the DMA to refill it whenever FIFO filling drops below the alarm level.
0 FIFO refill by DMA disabled
1 FIFO refill by DMA enabled

4
fifo_rcv_en

FIFO receive enable. This bit controls if the FIFO will make receive data requests to the DMA. If enabled,
the FIFO will request the DMA to empty it whenever FIFO filling becomes greater or equal to the alarm
level.
0 FIFO empty by DMA disabled
1 FIFO empty by DMA enabled

3
dma_pending

DMA pending bit. This bit controls if the ATA interface will respond to a DMA request originating in the
drive. If this bit is asserted, the ATA interface will start a multiword DMA or ultra DMA burst whenever the
drive asserts ATA_DMARQ.
0 ATA interface will not start DMA burst
1 ATA interface will start multiword DMA or ultra DMA burst whenever drive asserts dmarq

2
dma_ultra_selected

This bit indicates if a DMA burst started, the UDMA or MDMA protocol will be used.
0 Multiword DMA protocol will be used
1 Ultra DMA protocol will be used

1
dma_write

This bit indicates the data direction on any DMA burst started.
0 DMA in burst, ATA interface reads from drive
1 DMA out burst, ATA interface writes to drive

0
iordy_en

This bit indicates if the ATA_IORDY handshake will be used during PIO mode.
0 IORDY will be disregarded
1 IORDY handshake will be used

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-29

• ipbus_int. This interrupt is controlled by bits 3, 4, 5 and 6 of the interrupt registers. It will be
asserted if one of the 4 bits is set in the interrupt_pending register, while the same bit is set in the
interrupt_enable register. This interrupt goes to the CPU.

• fifo_txfer_end_alarm. This interrupt is controlled by bit 7 of the interrupt registers. If ata_intrq1 is
set in both the interrupt enable and interrupt pending register, fifo_txfer_end_alarm will be
asserted. The goal of this interrupt is to inform the DMA that the running data transfer has ended.
This interrupt goes to the smart DMA.

These three registers have mostly the same bits. If a bit is set in the interrupt pending register, its interrupt
is pending, and will produce an interrupt if the same bit is set in the interrupt enable register. Some bits in
the interrupt pending register are sticky bits. Writing a ‘1’ to the corresponding bit in the interrupt clear
bit, will reset them.

23.5.2.5.1 Interrupt_Pending Register

See Figure 23-40 for illustration of valid bits in the Interrupt_Pending Register and Table 23-11 for
description of the bit fields.

Address MBAR2 + 0x828 (INTERRUPT_PENDING) Access: User read-only

7 6 5 4 3 2 1 0

R ata_intrq1 fifo_underflow fifo_overflow controller_idle ata_irtrq2

W

Reset 01 0 0 1 0 – – –

1. Interrupts ata_intrq1 and ata_intrq2 only reset to 0 if during reset the interrupt input is low.

Figure 23-40. Interrupt_Pending Register

Table 23-11. Interrupt Pending Register Field Description

Field Description

7
ata_intrq1

ATA interrupt request 1. This bit reflects the value of the ATA_INTRQ interrupt input. It is set in the interrupt
pending register when the drive interrupt is pending, cleared otherwise. When the bit is set in the interrupt
pending register, and the same bit is set in the interrupt enable register, fifo_txfer_end_alarm will be asserted,
signalling the DMA the end of the transfer. The interrupt clear register has no influence on this bit.

6
fifo_underflow

FIFO underfow. This bit reports FIFO underflow. Sticky bit. It is set in the interrupt pending register when there
is a FIFO underflow condition. It is cleared by writing a ‘1’ to this bit in the interrupt clear register. When the bit
is set in the interrupt pending register, and the same bit is set in the interrupt enable register, ipbus_int will be
active, signalling interrupt to the cpu.

5
fifo_overflow

FIFO overflow. This bit reports FIFO overflow. Sticky bit. It is set in the interrupt pending register when there is
a FIFO overflow condition. It is cleared by writing a ‘1’ to this bit in the interrupt clear register. When the bit is
set in the interrupt pending register, and the same bit is set in the interrupt enable register, ipbus_int will be
active, signalling interrupt to the cpu.

4
controller_idle

Controller Idle. This bit reports controller idle. It is set when the ATA protocol engine is idle, there is no activity
on the ATA bus. It is cleared when there is activity on the ATA bus. When the bit is set in the interrupt pending
register, and the same bit is set in the interrupt enable register, ipbus_int will be active, signalling interrupt to the
cpu. The interrupt clear register has no influence on this bit.

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-30 Freescale Semiconductor

23.5.2.5.2 Interrupt_Enable Register

See Figure 23-41 for illustration of valid bits in the Interrupt_Enable Register and Table 23-12 for
description of the bit fields.

3
ata_intrq2

ATA interrupt request 2. This bit reflects the value of the ATA_INTRQ interrupt input. It is set in the interrupt
pending register when the drive interrupt is pending, cleared otherwise. It has exactly same functioning as
ata_intrq1, but this bit affects ipbus_int, while the other affects interrupt to the DMA. When the bit is set in the
interrupt pending register, and the same bit is set in the interrupt enable register, ipbus_int will be asserted,
signalling the CPU the drive is requesting attention. The interrupt clear register has no influence on this bit.

2–0
Uncommitted

N/A

Address MBAR2 + 0x82C (INTERRUPT_ENABLE) Access: User read/write

7 6 5 4 3 2 1 0

R
ata_intrq1 fifo_underflow fifo_overflow controller_idle ata_irtrq2

W

Reset 0 0 0 0 0 – – –

Figure 23-41. Interrupt_Enable Register

Table 23-12. Interrupt Enable Register Field Description

Field Description

7
ata_intrq1

ATA interrupt request 1. This bit reflects the value of the ATA_INTRQ interrupt input. It is set in the interrupt
pending register when the drive interrupt is pending, cleared otherwise. When the bit is set in the interrupt
pending register, and the same bit is set in the interrupt enable register, fifo_txfer_end_alarm will be asserted,
signalling the DMA the end of the transfer. The interrupt clear register has no influence on this bit.

6
fifo_underflow

FIFO underfow. This bit reports FIFO underflow. Sticky bit. It is set in the interrupt pending register when there
is a FIFO underflow condition. It is cleared by writing a ‘1’ to this bit in the interrupt clear register. When the bit
is set in the interrupt pending register, and the same bit is set in the interrupt enable register, ipbus_int will be
active, signalling interrupt to the cpu.

5
fifo_overflow

FIFO overflow. This bit reports FIFO overflow. Sticky bit. It is set in the interrupt pending register when there is
a FIFO overflow condition. It is cleared by writing a ‘1’ to this bit in the interrupt clear register. When the bit is set
in the interrupt pending register, and the same bit is set in the interrupt enable register, ipbus_int will be active,
signalling interrupt to the cpu.

4
controller_idle

Controller Idle. This bit reports controller idle. It is set when the ATA protocol engine is idle, there is no activity
on the ATA bus. It is cleared when there is activity on the ATA bus. When the bit is set in the interrupt pending
register, and the same bit is set in the interrupt enable register, ipbus_int will be active, signalling interrupt to the
cpu. The interrupt clear register has no influence on this bit.

Table 23-11. Interrupt Pending Register Field Description (continued)

Field Description

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-31

23.5.2.5.3 Interrupt_Clear Register

See Figure 23-42 for illustration of valid bits in the Interrupt_Clear Register and Table 23-13 for
description of the bit fields.

23.5.2.6 FIFO Alarm Register

See Figure 23-43 for illustration of valid bits in the FIFO_Alarm Register.

3
ata_intrq2

ATA interrupt request 2. This bit reflects the value of the ATA_INTRQ interrupt input. It is set in the interrupt
pending register when the drive interrupt is pending, cleared otherwise. It has exactly same functioning as
ata_intrq1, but this bit affects ipbus_int, while the other affects interrupt to the DMA. When the bit is set in the
interrupt pending register, and the same bit is set in the interrupt enable register, ipbus_int will be asserted,
signalling the CPU the drive is requesting attention. The interrupt clear register has no influence on this bit.

2–0
Uncommitted

N/A

Address MBAR2 + 0x830 (INTERRUPT_CLEAR) Access: User write-only

7 6 5 4 3 2 1 0

R

W fifo_underflow fifo_overflow

Reset – – – – – – – –

Figure 23-42. Interrupt_Clear Register

Table 23-13. Interrupt Clear Register Field Description

Field Description

7
Uncommitted

N/A

6
fifo_underflow

FIFO underfow. This bit reports FIFO underflow. Sticky bit. It is set in the interrupt pending register when there
is a FIFO underflow condition. It is cleared by writing a ‘1’ to this bit in the interrupt clear register. When the bit
is set in the interrupt pending register, and the same bit is set in the interrupt enable register, ipbus_int will be
active, signalling interrupt to the cpu.

5
fifo_overflow

FIFO overflow. This bit reports FIFO overflow. Sticky bit. It is set in the interrupt pending register when there is
a FIFO overflow condition. It is cleared by writing a ‘1’ to this bit in the interrupt clear register. When the bit is set
in the interrupt pending register, and the same bit is set in the interrupt enable register, ipbus_int will be active,
signalling interrupt to the cpu.

4–0
Uncommitted

N/A

Table 23-12. Interrupt Enable Register Field Description (continued)

Field Description

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-32 Freescale Semiconductor

This register contains the threshold to generate fifo_rcv_alarm and fifo_tx_alarm to the DMA interface.

• If (fifo_tx_enable == 1 && fifo_fill < fifo_alarm): fifo_tx_alarm is set 1, request is made to DMA
to refill fifo.

• If (fifo_rcv_alarm == 1 && fifo_fill >= fifo_alarm): fifo_rcv_alarm is set 1, request is made to
DMA to empty fifo.

23.5.2.7 Drive Registers Connected to ATA Bus

Some registers are addressable, but are not present in the ATA interface module. A list is given in
Table 23-14. If a read or write access is made to one of these registers, the read or write is mapped to a PIO
read or write cycle on the ATA bus, and the corresponding register in the device attached to the ATA bus
is accessed.

If the drive_data register is accessed while the ATA interface operates in big endian mode, the bytes
to/from the ATA bus are swapped. No swaps occur in little endian mode, nor for any other register.

23.6 Functional Description
The ATA interface provides two ways to communicate with the ATA peripherals connected to the ATA bus.

Address MBAR2 + 0x834 (FIFO_ALARM) Access: User read/write

7 6 5 4 3 2 1 0

R
FIFO_ALARM[7:0]

W

Reset 0 0 0 0 0 0 0 0

Figure 23-43. FIFO_Alarm Register

Table 23-14. Drive Registers Connected to ATA Bus

Address Name Description Access

MBAR2 + 0x8A0 (DRIVE_DATA) drive_data Drive data register R/W

MBAR2 + 0x8A4 (DRIVE_FEATURES) drive_features Drive features register R/W

MBAR2 + 0x8A8 (DRIVE_SECTOR_COUNT) drive_sector_count Drive sector count register R/W

MBAR2 + 0x8AC (DRIVE_SECTOR_NUM) drive_sector_num Drive sector number register R/W

MBAR2 + 0x8B0 (DRIVE_CYL_LOW) drive_cyl_low Drive cylinder low register R/W

MBAR2 + 0x8B4 (DRIVE_CYL_HIGH) drive_cyl_high Drive cylinder high register R/W

MBAR2 + 0x8B8 (DRIVE_DEV_HEAD) drive_dev_head Drive device head register R/W

MBAR2 + 0x8BC (DRIVE_COMMAND) drive_command Drive command register Write-only

MBAR2 + 0x8BC (DRIVE_STATUS) drive_status Drive status register Read-only

MBAR2 + 0x8D8 (DRIVE_ALT_STATUS) drive_alt_status Drive alternate status register Read-only

MBAR2 + 0x8D8 (DRIVE_CONTROL) drive_control Drive control register Write-only

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-33

• PIO mode read/write operation to the ATA bus

• DMA transfers with the ATA bus

The operation of the peripheral is described in detail in the following sections.

23.6.1 Resetting ATA Bus

The ATA bus reset ATA_RST is asserted whenever bit 6 ata_rst_b of register ata_control is cleared to 0.
At the same time, the ATA protocol engine is reset. When this bit is set to 1, the reset is released.

23.6.2 Programming ATA Bus Timing and iordy_en

The timing the ATA interface will operate with on the ATA bus is programmable. The 24 timing registers
at MBAR2 + 0x80 to MBAR2 + 0x817 are used for this. How these registers affect the timing parameters
on the ATA bus, is detailed in Section 23.4, “External Signal Description.” It is allowed to reprogram these
registers at any time when the ATA bus is idle, so before reprogramming make sure that:

• bit dma_pending in ata_control register is cleared.

• bit controller_idle in interrupt_pending register is set.

These 2 conditions can be accomplished by first writing dma_pending to 0, then waiting until
controller_idle is set, then reprogram the timing parameters. If dma_pending was 1 before the
reprogramming started, it should be set again after new timing is in effect to allow the drive to finish the
current DMA transfer.

It only makes sense to reprogram the bus timing in the middle of an ongoing DMA transfer when this is
necessary because the operating system wants to change the bus clock period. (Dynamic voltage frequency
scaling).

It is necessary to wait for controller_idle because a PIO read or write to the ATA bus terminates after the
bus cycle with the CPU has been terminated. If the wait for controller_idle does not occur, the new timing
values may affect a bus cycle that is still running, and cause error.

The bit iordy_en in register ata_control influences whether the ATA interface will response to the iordy
signal coming from the drive. To reprogram it, same rules as for the timing registers apply: Only allowed
when dma_pending is cleared, while controller_idle is set.

23.6.3 Access to ATA Bus in PIO Mode

Access to the ATA bus in PIO mode is possible after:

• ata_rst_b bit in register ata_control is set.

• Timing parameters have been programmed.

To access the drive in PIO mode, simply read or write to the correct drive register. The bus cycle will be
translated to an ATA cycle, and the drive is accessed.

When drive registers are accessed while the ATA bus is in reset, the read or write is discarded, not done.

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-34 Freescale Semiconductor

23.6.4 Using DMA Mode to Receive Data from ATA Bus

Apart from PIO mode, the ATA interface supports also MDMA and UDMA mode to transfer data. DMA
mode can be used to receive data from the drive (DMA in transfer). In DMA receive mode, the protocol
engine will transfer data from the drive to the FIFO using multiword DMA or ultra DMA protocol. The
transfer will pause when one of following occurs:

• The FIFO is full.

• The drive deasserts its dma request signal ATA_DMARQ.

• The bit dma_pending in the ata_contol register is cleared.

When the cause of the transfer pausing is removed, the transfer restarts. The end of the transfer is signalled
by the drive to the host by asserting the ATA_INTRQ signal. Alternatively, the host can read the device
status register. In this register, the drive will also indicate if the transfer has ended.

The transfer of data from the FIFO into the memory is handled by the host system DMA. Whenever the
FIFO filling is above the alarm threshold, the DMA should read one packet of data from the FIFO, and
store this in main memory. In doing so, the DMA prevents the FIFO from getting full, and keeps the
transfer from drive to FIFO running.

The steps for setting up a DMA data transfer from device to host are:

1. Make sure the ATA bus is not in reset and all timing registers are programmed.

2. Make sure the FIFO is empty by reading it until empty or by resetting it.

3. Initialize the DMA channel connected to fifo_rcv_alarm. Every time fifo_rcv_alarm is high, the
DMA should read <packetsize> long ints from the FIFO, and store them to main memory. (typical
packetsize is 8 longs)

4. Write 2 * <packetsize> to fifo_alarm register. In this way, FIFO will request attention to DMA
when there is at least one packet ready for transfer.

5. To make the ATA ready for a DMA transfer from device to host, take the following steps:

a) Make sure the FIFO is out of reset by setting bit fifo_rst_b to 1 in the ata control register.

b) Program fifo_rcv_en=1 in decontrol register. This enables the FIFO to by emptied by the DMA.

c) Program dma_pending =1, dma_write=0, ultra_mode_selected=0/1 in ata_control register.
ultra_mode_selected should be 1 if you want to transfer data using UDMA mode, it should be
0 if you want to transfer data using MDMA mode.

6. Now, the host side of the DMA is ready. Send commands to the drive in PIO mode that cause it to
request DMA transfer on the ATA bus. The nature of these commands is beyond the scope of this
document. You should consult the ATA specification to know how to communicate with the drive.

7. When the drive now requests DMA transfer by pulling ATA_DMARQ high, the ATA interface will
acknowledge with ATA_DMACK, and the transfer will start. Data is transferred automatically to
the FIFO, and from there on to the host memory.

8. During the transfer, the host can monitor for end of transfer by reading some device ATA registers.
These reads will cause the running DMA to pause; after the read is completed, the DMA resumes.
The host can also wait unit the drive asserts ATA_INTRQ. This also indicates end of transfer.

9. On end of transfer, the host or host DMA should wait until controller_idle is set, and next read the
remaining halfwords from the FIFO, and transfer these to memory.

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 23-35

NOTE
There may be less than <packetsize> remaining bytes, so transfer will not
be automatic by the DMA.

23.6.5 Using DMA Mode to Transmit Data to ATA Bus

Apart from PIO mode, the ATA interface supports also MDMA and UDMA mode to transfer data. DMA
mode can be used to transmit data to the drive (DMA out transfer). In DMA transmit mode, the protocol
engine will transfer data from the FIFO to the drive using multiword DMA or ultra DMA protocol. The
transfer will pause when one of following occurs:

• The FIFO is empty.

• The drive deasserts its dma request signal ATA_DMARQ.

• The bit dma_pending in the ata_contol register is cleared.

When the cause of the transfer pausing is removed, the transfer restarts. The end of the transfer is signalled
by the drive to the host by asserting the ATA_INTRQ signal. Alternatively, the host can read the device
status register. In this register, the drive will also indicate if the transfer has ended.

The transfer of data from the memory to the FIFO is handled by the host system DMA. Whenever the FIFO
filling is below the alarm threshold, the DMA should read one packet of data from the main memory, and
store this in the FIFO. In doing so, the DMA prevents the FIFO from getting empty, and keeps the transfer
from FIFO to drive running.

The steps for setting up a DMA data transfer from device to host are:

1. Make sure the ATA bus is not in reset and all timing registers are programmed.

2. Make sure the FIFO is empty by reading it until empty, or by resetting it.

3. Initialize the DMA channel connected to fifo_tx_alarm. Every time fifo_tx_alarm is high, the
DMA should read <packetsize> long ints from the main memory, and write them to the FIFO.
(typical packetsize is 8 longs). Program the DMA such that it will not transfer more than
<sectorsize> longwords in total.

4. Write FIFO_SIZE - 2 * <packetsize> to fifo_alarm register. In this way, FIFO will request attention
to DMA when there is room for at least one extra packet. FIFO_SIZE should be given in halfwords.
(typical 64 halfwords)

5. To make the ATA ready for a DMA transfer from host to device, perform the following steps:

a) Make sure the FIFO is out of reset by setting bit fifo_rst_b to 1 in the ata control register.

b) Program fifo_tx_en=1 in ata_control register. This enables the FIFO to be filled by DMA.

c) Program dma_pending=1, dma_write=1, ultra_mode_selected=0/1 in ata_control register.
ultra_mode_selected should be 1 if you want to transfer data using UDMA mode, it should be
0 if you want to transfer data using MDMA mode.

6. Now, the host side of the DMA is ready. Send commands to the drive in PIO mode that cause it to
request DMA transfer on the ATA bus. The nature of these commands is beyond the scope of this
document. You should consult the ATA specification to know how to communicate with the drive.

Advanced Technology Attachment Controller (ATA)

MCF5251 Reference Manual, Rev. 1

23-36 Freescale Semiconductor

7. When the drive now requests DMA transfer by pulling ATA_DMARQ high, the ATA interface will
acknowledge with ATA_DMACK, and the transfer will start. Data is transferred automatically
from the FIFO, and also from host memory to FIFO.

8. During the transfer, the host can monitor for end of transfer by reading some device ATA registers.
These reads will cause the running DMA to pause; after the read is completed, the DMA resumes.
The host can also wait unit the drive asserts ATA_INTRQ. This also indicates end of transfer.

On end of transfer, no extra FIFO manipulations are needed.

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-1

Chapter 24
Universal Serial Bus Interface
This chapter describes the universal serial bus (USB) interface of the MCF5251. The content includes the
operation, signal descriptions, host data structures, and host operations. Also provided is the device
operational model and deviations from the host mode of operation.

NOTE
Portions of this chapter, “Universal Serial Bus Interface,” that relate to the EHCI specification are
Copyright © Intel Corporation 1999–2001. The EHCI specification is provided “As Is” with no
warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for
any particular purpose, or any warranty otherwise arising out of any proposal, specification or
sample. Intel disclaims all liability, including liability for infringement of any proprietary rights,
relating to use of information in the EHCI specification. Intel may make changes to the EHCI
specifications at any time, without notice.

The USB interface implements many industry standards. However, it is beyond the scope of this document
to document the intricacies of these standards. Instead, it is left to the reader to refer to the governing
specifications.

The following documents are available from the USB Implementers Forum web page at
http://www.usb.org/developers/docs/

• Universal Serial Bus Specification, Revision 2.0

• On-The-Go Supplement to the USB 2.0 Specification, Revision 1.0a

The following documents are available from the Intel USB Specifications web page at
http://www.intel.com/technology/usb/spec.htm

• Enhanced Host Controller Interface Specification for Universal Serial Bus, Revision 1.0

• USB 2.0 Transceiver Macrocell Interface (UTMI) Specification, Version 1.05

24.1 Features
The USB OTG module includes the following features:

• Complies with USB specification rev 2.0

• Supports operation as a standalone USB host controller

— Supports enhanced host controller interface (EHCI)

• USB device mode

• USB On-The-Go mode including host capability

• Supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed host (1.5 Mbit/s) operations

• Supports internal PHY (with UTMI+ interface)

http://www.usb.org/developers/docs/
http://www.intel.com/technology/usb/spec.htm

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-2 Freescale Semiconductor

• Supports operation as a standalone USB device

— Supports one upstream facing port

— Supports four programmable, bidirectional USB endpoints

• Host mode supports direct connect of FS/LS devices

24.2 Block Diagram
The MCF5251 implements a USB OTG module. This module may be connected to one of two external
ports. Collectively the module and external ports are called the USB interface. The USB interface is shown
in Figure 24-1.

Figure 24-1. USB Interface Block Diagram

24.3 Overview
The module is a USB 2.0-compliant serial interface engine for implementing a USB interface. The
registers and data structures are based on the Enhanced Host Controller Interface Specification for
Universal Serial Bus (EHCI) from Intel Corporation. The module can act as a host, as a device, or as an
On-The-Go (OTG) negotiable host/device on the USB bus.

vbus
Valid

24 MHz
OSC

UTMI+
Bus

USB
On-The-Go
Controller

16 kbytes
SRAM

Memory

ATA
Controller

1-Channel
DMA

USB_CRIN

USB_CROUT

24 MHz
XTAL

USBVBUS

USBID

USBVDD

USBDM

USBDP

USBGND

USBRES

USBGND

USBVDDP

USB
PHY

Power-Down
Wakeup
Circuit

Pin
Interfaces

Processor Bus

lrck4 Clock
(From Audio)

Slave
Port

Master
Port

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-3

The module contains a chaining direct memory access (DMA) engine that reduces the interrupt load on
the application processor, and reduces the total system bus bandwidth that must be dedicated to servicing
the USB interface requirements.

To reduce bus utilization by the USB even more, the module’s DMA does not have access to the CPU bus,
but instead accesses a dedicated memory that can be read/written by the CPU.

24.4 Modes of Operation
The module has three basic operating modes: Host, Peripheral (device), and OTG.

The mode of operation is selectable by software. In Host mode, the module supports Low, Full and High
speed USB. In Peripheral mode, only Full and High speed are supported.

24.5 External Signals
This section contains detailed descriptions of the USB interface signals.

Table 24-1 describes the external signals functionality of the USB interface.

24.5.1 On-Chip Transceiver

The On-Chip transceiver is a UTMI+ specification compliant transceiver. It supports High, Full, and Low
speed data transmission, in both Host and Device mode. In addition, it contains all necessary circuitry for
OTG specific functionality.

Note that the USB Controller does not support Low speed operation in device mode as per USB 2.0
specification.

24.5.2 PHY Clocks

The built-in PHY has its own on-chip oscillator and PLL to generate the USB serial clocks. The oscillator
needs an external 24 MHz crystal.

Table 24-1. USB External Signals

Signal I/O Description

USBVBUS AI Internal UTMI+ transceiver—VBUS sensing input

USBID I Internal UTMI+ transceiver—ID pin

USBDN I/O Internal UTMI+ transceiver—DN

USBDP I/O Internal UTMI+ transceiver—DP

USB_CRIN I UTMI Internal transceiver oscillator input

USB_CROUT O Internal UTMI transceiver oscillator output

USBRES AI Internal UTMI transceiver—Bias current programming resistor

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-4 Freescale Semiconductor

24.5.3 System Clock

The core logic of the USB controller is clocked with a gated copy of the system clock (CPU clock / 2).
This clock can be disabled when the USB module is not in use or suspended. Note however that this clock
must be enabled prior to accessing any register in the USB controller. Failing to do so will result in an
unterminated bus cycle which will lock the bus.

The suspend/resume circuit that detects wake-up events on the bus remains active, even when the USB
clock is turned off.

24.6 Memory Map and Register Definitions
This section provides the memory map and detailed descriptions of all USB interface registers. The
memory map of the USB interface is shown in Table 24-2.

Table 24-2. USB Interface Memory Map

Offset Register Access Reset Section/Page

MBAR2 + 0x600 ID—Identification register R 0x0040_FA05 24.6.1.1/24-5

MBAR2 + 0x604 HWGENERAL—General hardware parameters R 0x000_0115 24.6.1.2/24-7

MBAR2 + 0x608 HWHOST—Host hardware parameters R 0x1002_0001 24.6.1.3/24-8

MBAR2 + 0x60c HWDEVICE—Device hardware parameters R 0x0000_0009 24.6.1.4/24-8

MBAR2 + 0x610 HWTXBUF—TX buffer hardware parameters R 0x8004_0604 24.6.1.5/24-9

MBAR2 + 0x614 HWRXBUF—RX buffer hardware parameters R 0x0000_0504 24.6.1.6/24-10

MBAR2 + 0x703 CAPLENGTH—Capability Length Register R 0x40 24.6.2.1/24-11

MBAR2 + 0x700 HCIVERSION—Host Interface Version Number R 0x0100 24.6.2.2/24-11

MBAR2 + 0x704 HCSPARAMS—Host Control Structural parameters R 0x0001_0011 24.6.2.3/24-12

MBAR2 + 0x708 HCCPARAMS—Host Control Capability parameters R 0x0000_0006 24.6.2.4/24-12

MBAR2 + 0x722 DCIVERSION—Dev. Interface Version Number R 0x0001 24.6.2.5/24-14

MBAR2 + 0x724 DCCPARAMS—Dev. Control Capability parameters R 0x0000_0184 24.6.2.6/24-14

MBAR2 + 0x740 USBCMD—USB Command R/W 0x0008_0000 24.6.3.1/24-15

MBAR2 + 0x744 USBSTS—USB Status R/W 0x0000_0080 24.6.3.2/24-18

MBAR2 + 0x748 USBINTR—USB Interrupt Enable R/W 0x0000_0000 24.6.3.3/24-20

MBAR2 + 0x74c FRINDEX—USB Frame Index R/W 0x0000_0000 24.6.3.4/24-21

MBAR2 + 0x754 PERIODICLISTBASE—Frame List Base Address R/W 0x0000_0000 24.6.3.6/24-23

MBAR2 + 0x758 ASYNCLISTADDR—Next Asynchronous List Address R/W 0x0000_0000 24.6.3.8/24-24

MBAR2 + 0x75c TTCTRL—TT status and control R/W 0x0000_0000 –

MBAR2 + 0x760 BURSTSIZE—Programmable DMA Burst Size R/W 0x0000_0404 24.6.3.10/24-26

MBAR2 + 0x764 TXFILLTUNING—Host TT Xmit Pre-buffer Packet Tuning R/W 0x0000_0000 24.6.3.11/24-27

MBAR2 + 0x780 CONFIGFLAG—Configured Flag Register R 0x0000_0001 24.6.3.12/24-29

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-5

The following sections provide details about the registers in the USB memory map.

NOTE
By convention, USB registers use little-endian byte ordering. In the USB
module, these are the registers from offsets 0x600 to 0x7FF.

Register addresses in this manual reflect the big-endian address.

24.6.1 Module Identification Registers

The identification registers are used to declare the slave interface presence and include a table of the
hardware configuration parameters. These registers are not defined by the EHCI specification.

24.6.1.1 Identification (ID) Register

The ID register provides a simple way to determine if the module is provided in the system. The ID register
identifies the module and its revision.

Figure 24-2 shows the ID register.

MBAR2 + 0x784 PORTSC—Port Status and Control register R/W 0x1c00_0004 24.6.3.13/24-29

MBAR2 + 0x7a4 OTGSC—On-The-Go Status and Control R/W 0x0000_0020 24.6.3.14/24-34

MBAR2 + 0x7a8 USBMODE—USB Device Mode R/W 0x0000_0000 24.6.3.15/24-37

MBAR2 + 0x7ac ENDPOINTSETUPSTAT—Endpoint Setup Status R/W 0x0000_0000 24.6.3.16/24-38

MBAR2 + 0x7b0 ENDPTPRIME—Endpoint Initialization R/W 0x0000_0000 24.6.3.17/24-39

MBAR2 + 0x7b4 ENDPTFLUSH—Endpoint De-Initialize R/W 0x0000_0000 24.6.3.18/24-40

MBAR2 + 0x7b8 ENDPTSTATUS—Endpoint Status R 0x0000_0000 24.6.3.19/24-41

MBAR2 + 0x7bc ENDPTCOMPLETE—Endpoint Complete R/W 0x0000_0000 24.6.3.20/24-42

MBAR2 + 0x7c0 ENDPTCTRL0—Endpoint Control 0 R/W 0x0080_0080 24.6.3.21/24-42

MBAR2 + 0x7c4 ENDPTCTRL1—Endpoint Control 1 R/W 0x0000_0000 24.6.3.22/24-44

MBAR2 + 0x7c8 ENDPTCTRL2—Endpoint Control 2 R/W 0x0000_0000 24.6.3.22/24-44

MBAR2 + 0x7cc ENDPTCTRL3—Endpoint Control 3 R/W 0x0000_0000 24.6.3.22/24-44

Table 24-2. USB Interface Memory Map (continued)

Offset Register Access Reset Section/Page

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-6 Freescale Semiconductor

Table 24-3 provides bit descriptions for the ID register.

Address MBAR2 + 0x600 Access: User read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R REVISION

W

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R NID ID

W

Reset 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1

Figure 24-2. ID Register

Table 24-3. ID Register Field Descriptions

Field Description

31–24 Reserved.

23–16
REVISION

Revision number of the module.

15–14 Reserved.

13–8
NID

Ones complement version of ID[5:0].

7–6 Reserved.

5–0
ID

Configuration number. This number is set to 0x05.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-7

24.6.1.2 General Hardware Parameters (HWGENERAL) Register

The HWGENERAL register contains parameters that define the particular implementation of the module.
Figure 24-3 shows the HWGENERAL register.

Table 24-4 provides bit descriptions for the HWGENERAL register.

Address MBAR2 + 0x604 Access: User read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SM PHYM PHYW BWT CLKC RT

W

Reset 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1

Figure 24-3. HWGENERAL Register

Table 24-4. HWGENERAL Register Field Descriptions

Field Description

31–11 Reserved.

10–9
SM

SERIAL_MODE. Always 00 indicating that the Serial Interface Engine is not present.

8–6
PHYM

PHY_MODE. Always reads 100 indicating that the USB transceiver interface mode is under
software control and resets to UTMI (on-chip PHY).

5–4
PHYW

PHY Width. This field is always reads 01 indicating that the UTMI interface width is 16-bits wide.

3 Reserved. Reads as 0.

2–1 Reserved. Reads as 0b10.

0 Reserved. Always 1.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-8 Freescale Semiconductor

24.6.1.3 Host Hardware Parameters (HWHOST) Register

The HWHOST register provides the host hardware parameters for this implementation of the module.
Figure 24-4 shows the HWHOST register.

Table 24-5 provides bit descriptions for the HWHOST register.

24.6.1.4 Device Hardware Parameters (HWDEVICE) Register—Non-EHCI

This register is not defined in the EHCI specification. The HWDEVICE register provides the device
hardware parameters for this implementation.

Address MBAR2 + 0x608 Access: User read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R TTPER TTASY

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R NPORT HC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 24-4. HWHOST Register

Table 24-5. HWHOST Register Field Descriptions

Field Description

31–24
TTPER

Transaction translator periodic contexts. The number of supported transaction translator periodic contexts. The only
legal values are 0x04 (d’4)and 0x10 (d’16).

23–16
TTASY

Transaction translator contexts. The number of transaction translator contexts.

15–4 Reserved.

3–1
NPORT

Indicates the number of ports in host mode minus 1. Always 0 for the USB OTG module.

0
HC

Always 1 indicating the module is host capable.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-9

Table 24-6 provides bit descriptions for the HWDEVICE register.

24.6.1.5 Transmit Buffer Hardware Parameters (HWTXBUF) Register

The HWTXBUF register provides the transmit buffer parameters for this implementation of the module.
Figure 24-6 shows the HWTXBUF register.

Table 24-7 provides bit descriptions for the HWTXBUF register.

Address MBAR2 + 0x60C Access: User read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DEVEP DC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

Figure 24-5. HWDEVICE Register

Table 24-6. HWDEVICE Register Field Descriptions

Field Description

31–6 Reserved.

5–1
DEVEP

Device endpoints. The number of supported bidirectional endpoints; always 0x4.

0
DC

Always 1 indicating the USB OTG module is device capable.

Address MBAR2 + 0x610 Access: User read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R TXLC TXCHANADD

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R TXADD TXBURST

W

Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

Figure 24-6. TX Buffer Hardware Parameters (HWTXBUF) Register

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-10 Freescale Semiconductor

24.6.1.6 Receive Buffer Hardware Parameters (HWRXBUF) Register

The HWRXBUF register provide the receive buffer parameters for this implementation of the module.
Figure 24-7 shows the HWRXBUF register.

Table 24-8 provides bit descriptions for the HWRXBUF register.

Table 24-7. TX Buffer Hardware Parameters (HWTXBUF) Register Field Descriptions

Field Description

31
TXLC

Reserved. Always 1 on USB OTG.

30–24 Reserved.

23–16
TXCHANADD

Transmit channel address. The number of address bits required to address one channel’s worth of TX data.
Always 0x4.

15–8
TXADD

Transmit address. The number of address bits for the entire TX buffer. Always 0x6.

7–0
TXBURST

Transmit burst. Indicates the number of data beats in a burst for transmit DMA data transfers. Always 0x4.

Address MBAR2 + 0x614 Access: User read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RXADD RXBURST

W

Reset 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0

Figure 24-7. RX Buffer Hardware Parameters (HWRXBUF) Register

Table 24-8. RX Buffer Hardware Parameters (HWRXBUF) Register Field Descriptions

Field Description

31–16 Reserved.

15–8
RXADD

Receive address. The number of address bits for the entire RX buffer. Always 0x5 (5).

7–0
RXBURST

Receive burst. Indicates the number of data beats in a burst for receive DMA data transfers. Always 0x4 (4).

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-11

24.6.2 Capability Registers

The capability registers specify the software limits, restrictions, and capabilities of the host/device
controller implementation. Most of these registers are defined by the EHCI specification. Registers that are
not defined by the EHCI specification are noted in their descriptions.

24.6.2.1 Capability Registers Length (CAPLENGTH)

This register is used as an offset to add to the register base address to find the beginning of the operational
register space, that is, the location of the USBCMD register. Figure 24-8 shows the CAPLENGTH register.

Table 24-9 provides bit descriptions for the CAPLENGTH register.

24.6.2.2 Host Controller Interface Version (HCIVERSION)

This is a two-byte register containing a BCD encoding of the EHCI revision number supported by this host
controller. The most-significant byte of the register represents a major revision and the least-significant
byte is the minor revision. Figure 24-9 shows the HCIVERSION register.

Table 24-10 provides bit descriptions for the HCIVERSION register.

Address MBAR2 + 0x703 Access: User read

7 6 5 4 3 2 1 0

R CAPLENGTH

W

Reset 0 1 0 0 0 0 0 0

Figure 24-8. Capability Registers Length (CAPLENGTH)

Table 24-9. Capability Registers Length (CAPLENGTH) Register Field Descriptions

Field Description

7–0
CAPLENGTH

Capability registers length. Value is 0x40.

Address MBAR2 + 0x700 Access: User read

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R HCIVERSION

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure 24-9. Host Controller Interface Version (HCIVERSION) Register

Table 24-10. Host Controller Interface Version (HCIVERSION) Register Field Descriptions

Field Name Description

15–0 – EHCI revision number. Value is 0x0100 indicating version 1.0.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-12 Freescale Semiconductor

24.6.2.3 Host Controller Structural Parameters (HCSPARAMS)

This register contains structural parameters such as the number of downstream ports. Figure 24-10 shows
the HCSPARAMS register.

Table 24-11 provides bit descriptions for the HCSPARAMS register.

24.6.2.4 Host Controller Capability Parameters (HCCPARAMS)

This register identifies multiple mode control (time-base bit functionality) addressing capability.
Figure 24-11 shows the HCCPARAMS register.

Address MBAR2 + 0x704 Access: User read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R N_TT N_PTT PI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R N_CC N_PCC PPC N_PORTS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Figure 24-10. Host Controller Structural Parameters (HCSPARAMS) Register

Table 24-11. Host Controller Structural Parameters (HCSPARAMS) Register Field Descriptions

Field Description

31–28 Reserved.

27–24
N_TT

Number of transaction translators. This is a non-EHCI field. This field indicates the number of embedded transaction
translators associated the module. This field is always 1.

23–20
N_PTT

Ports per transaction translator. This is a non-EHCI field. (EHCI defines this field as optional debug port number.
DMcQ) The number of ports assigned to each transaction translator. This will always be equal to 1.

19–17 Reserved.

16
PI

Port indicators. This bit indicates whether the ports support port indicator control. Always 1.
1 The port status and control registers include a r/w field for controlling the state of the port indicator.

15–12
N_CC

Number of Companion Controllers. This field indicates the number of companion controllers associated with the
controller. This field is always 0.

11–8
N_PCC

Number Ports per CC. This field indicates the number of ports supported per internal companion controller. This
field is always 0.

7–5 Reserved.

4
PPC

Power Port Control. This bit indicates whether the host controller supports port power control. It is always 1.
1 Ports have power port switches.

3–0
N_PORTS

Number of Ports. This field indicates the number of physical downstream ports implemented for host applications.
The value of this field determines how many port registers are addressable in the operational register. Always 0x1.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-13

Table 24-12 provides bit descriptions for the HCCPARAMS register.

Address MBAR2 + 0x708 Access: User read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R EECP IST ASP PFL ADC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Figure 24-11. Host Control Capability Parameters (HCCPARAMS) Register

Table 24-12. Host Control Capability Parameters (HCCPARAMS) Register Field Descriptions

Field Description

31–16 Reserved.

15–8
EECP

EHCI Extended Capabilities Pointer. This optional field indicates the existence of a capabilities list. A value of 0x00
indicates no extended capabilities are implemented. A non-zero value in this register indicates the offset in PCI
configuration space of the first EHCI extended capability. The pointer value must be 0x40 or greater if implemented to
maintain the consistency of the PCI header defined for this class of device.
This field is always 0.

7–4
IST

Isochronous Scheduling Threshold. This field indicates, relative to the current position of the executing host controller,
where the software can reliably update the isochronous schedule. When bit [7] is zero, the value of the least significant
3 bits indicates the number of microframes a host controller can hold a set of isochronous data structures (one or more)
before flushing the state. When bit [7] is a one, then the host software assumes the host controller may cache an
isochronous data structure for an entire frame.
This field is always 0.

3 Reserved.

2
ASP

Asynchronous Schedule Park Capability. This bit indicates if the host controller supports the park feature for high-speed
queue heads in the Asynchronous Schedule. The feature can be disabled or enabled and set to a specific level by using
the Asynchronous Schedule Park Mode Enable and Asynchronous Schedule Park Mode Count fields in the USBCMD
register.
This field is always 1(park feature supported).

1
PFL

Programmable Frame List Flag. This bit indicates that the system software can specify and use a frame list length less
that 1024 elements. Frame list size is configured via the USBCMD register Frame List Size field. The frame list must
always be aligned on a 4K page boundary. This requirement ensures that the frame list is always physically contiguous.
This field is always 1.

0
ADC

64-bit Addressing Capability. This field is always 0; 64-bit addressing is not supported.
0 Data structures use 32-bit address memory pointers

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-14 Freescale Semiconductor

24.6.2.5 Device Controller Interface Version (DCIVERSION)

This register is not defined in the EHCI specification. DCIVERSION is a two-byte register containing a
BCD encoding of the device controller interface. The most-significant byte of the register represents a
major revision and the least-significant byte is the minor revision. Figure 24-12 shows the DCIVERSION
register.

Table 24-13 provides bit descriptions for the DCIVERSION register.

24.6.2.6 Device Controller Capability Parameters (DCCPARAMS) Non-EHCI

This register is not defined in the EHCI specification. This register describes the overall host/device
capability of the USB OTG module. Figure 24-13 shows the DCCPARAMS register.

\

Table 24-14 provides bit descriptions for the DCCPARAMS register.

Address MBAR2 0x722 Access: User read

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DCIVERSION

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 24-12. Device Interface Version (DCIVERSION) Register

Table 24-13. Device Interface Version (DCIVERSION) Register Field Descriptions

Field Description

15–0
DCIVERSION

Device interface revision number.

Address MBAR2 0x724 Access: User read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R HC DC DEN

W

Reset 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0

Figure 24-13. Device Control Capability Parameters (DCCPARAMS) Register

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-15

24.6.3 Operational Registers

The operational registers are comprised of dynamic control or status registers that may be read-only,
read/write, or read/write-1-to-clear. The following sections define the operational registers.

24.6.3.1 USB Command Register (USBCMD)

The module executes the command indicated in this register.

Table 24-14. Device Control Capability Parameters (DCCPARAMS) Register Field Descriptions

Field Description

31–9 Reserved.

8
HC

Host Capable. Always 1 indicating the controller can operate as an EHCI compatible USB 2.0 host

7
DC

Device Capable. Always 1, indicating the controller can operate as an USB 2.0 device.
0 No device capability (host only).
1 Device capability.

6–5 Reserved.

4–0
DEN

Device Endpoint Number. This field indicates the number of endpoints built into the device controller. Always 0x4.

Address MBAR2 0x740 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ITC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FS2 ATDTW SUTW ASPE ASP

LR
IAA ASE PSE FS1 FS0 RST RS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-14. USB Command Register (USBCMD) Register

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-16 Freescale Semiconductor

Table 24-15. USB Command Register (USBCMD) Register Field Descriptions

Field Description

31–24 Reserved.

23–16
ITC

Interrupt Threshold Control. The system software uses this field to set the maximum rate at which the module will
issue interrupts. ITC contains the maximum interrupt interval measured in microframes. Valid values are shown
below.
0x00 Immediate (no threshold)
0x01 1 microframe
0x02 2 microframes
0x04 4 microframes
0x08 8 microframes
0x10 16 microframes
0x20 32 microframes
0x40 40 microframes

15
FS2

See bit 3:2 below. This is a non-EHCI bit.

14
ATDTW

Add dTD TripWire. This is a non-EHCI bit,. This bit is used as a semaphore when a dTD is added to an active (primed)
endpoint. This bit is set and cleared by the software. This bit shall also be cleared by the hardware when is state
machine is hazard region where adding a dTD to a primed endpoint may go unrecognized. More information on the
use of this bit is described in Section 24.12.2, “Device Operation,” of this manual.

13
SUTW

Setup TripWire. This is a non-EHCI bit, that is present on the USB OTG module only. This bit is used as a semaphore
when the 8 bytes of setup data read extracted from a QH by the DCD. If the setup lockout mode is off (See
USBMODE) then there exists a hazard when new setup data arrives and the DCD is copying setup from the QH for
a previous setup packet. This bit is set and cleared by the software and will be cleared by the hardware when a hazard
exists. More information on the use of this bit is described in Section 24.12.2, “Device Operation,” of this manual.

12 Reserved.

11
ASPE

Asynchronous Schedule Park Mode Enable. This bit defaults to a 0 and is R/W. The software uses this bit to enable
or disable Park mode.
1 Enabled.
0 Disabled.

10 Reserved.

9–8
ASP

Asynchronous Schedule Park Mode Count. This field defaults to 00 and is R/W. It contains a count of the number of
successive transactions the host controller is allowed to execute from a high-speed queue head on the Asynchronous
schedule before continuing traversal of the Asynchronous schedule. Valid values are 0x1 to 0x3. The software must
not write a zero to this field when Park Mode Enable is a one as this will result in undefined behavior.

7
LR

Light Host/Device Controller Reset (OPTIONAL). Not Implemented. Always 0.

6
IAA

Interrupt on Async Advance Doorbell. This bit is used as a doorbell by the software to tell the controller to issue an
interrupt the next time it advances asynchronous schedule. The software must write a 1 to this bit to ring the doorbell.
When the controller has evicted all appropriate cached schedule states, it sets the Interrupt on Async Advance status
bit in the USBSTS register. If the Interrupt on Sync Advance Enable bit in the USBINTR register is one, then the host
controller will assert an interrupt at the next interrupt threshold.
The controller sets this bit to zero after it has set the Interrupt on Sync Advance status bit in the USBSTS register to
one. The software should not write a one to this bit when the asynchronous schedule is inactive. Doing so will yield
undefined results.
This bit is used only in host mode. Writing a one to this bit when the USB OTG module is in device mode is selected
will have undefined results.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-17

5
ASE

Asynchronous Schedule Enable. This bit controls whether the controller skips processing the Asynchronous
Schedule. Used only in host mode.
1 Use the ASYNCLISTADDR register to access the Asynchronous Schedule.
0 Do not process the Asynchronous Schedule.

4
PSE

Periodic Schedule Enable. This bit controls whether the controller skips processing the Periodic Schedule. Used only
in host mode.
1 Use the PERIODICLISTBASE register to access the Periodic Schedule.
0 Do not process the Periodic Schedule.

3–2
FS

Frame List Size. Together with bit 15 these bits make the FS[2:0] field. This field is Read/Write only if Programmable
Frame List Flag in the HCCPARAMS registers is set to 1. This field specifies the size of the frame list that controls
which bits in the Frame Index Register should be used for the Frame List Current index. Used only in host mode.
Note: Values below 256 elements are not defined in the EHCI specification.
000 1024 elements (4096 bytes)
001 512 elements (2048 bytes)
010 256 elements (1024 bytes)
011 128 elements (512 bytes)
100 64 elements (256 bytes)
101 32 elements (128 bytes)
110 16 elements (64 bytes)
111 8 elements (32 bytes)

1
RST

Controller Reset. The software uses this bit to reset the controller. This bit is cleared by the controller when the reset
process is complete. The software cannot terminate the reset process early by writing a zero to this register.
Host Mode:
When the software writes a one to this bit, the Host Controller resets its internal pipelines, timers, counters, state
machines etc. to their initial value. Any transaction currently in progress on USB is immediately terminated. A USB
reset is not driven on downstream ports. The software should not set this bit to a one when the HCHalted bit in the
USBSTS register is a zero. Attempting to reset an actively running host controller will result in undefined behavior.
Device Mode:
When the software writes a one to this bit, the controller resets its internal pipelines, timers, counters, state machines
etc. to their initial value. Any transaction currently in progress on USB is immediately terminated. Writing a one to this
bit in device mode is not recommended.

0
RS

Run/Stop.
Host Mode:
When set to a 1, the controller proceeds with the execution of the schedule. The controller continues execution as
long as this bit is set. When this bit is set to 0, the Host Controller completes the current transaction on the USB and
then halts. The HC Halted bit in the status register indicates when the Host Controller has finished the transaction
and has entered the stopped state. The software should not write a one to this field unless the controller is in the
Halted state (that is, HCHalted in the USBSTS register is a one).
Device Mode:
Writing a one to this bit will cause the controller to enable a pull-up on D+ and initiate an attach event. This control bit
is not directly connected to the pull-up enable, as the pull-up will become disabled upon transitioning into high-speed
mode. The software should use this bit to prevent an attach event before the controller has been properly initialized.
Writing a 0 to this will cause a detach event.
1 Run.
0 Stop.

Table 24-15. USB Command Register (USBCMD) Register Field Descriptions (continued)

Field Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-18 Freescale Semiconductor

24.6.3.2 USB Status Register (USBSTS)

The USB status register indicates various states of each module and any pending interrupts. This register
does not indicate status resulting from a transaction on the serial bus. The software clears certain bits in
this register by writing a 1 to them (indicated by a W1C in the bit’s W cell in the figure).

Address MBAR2 0x744 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AS PS RCL HCH SLI SRI URI AAI SEI FRI PCI UEI UI

W W1C W1C W1C W1C W1C W1C W1C W1C W1C

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Figure 24-15. USB Status Register (USBSTS) Register

Table 24-16. USB Status Register (USBSTS) Register Field Descriptions

Field Description

31–16 Reserved.

15
AS

Asynchronous Schedule Status. This bit reports the current real status of the Asynchronous Schedule. The
controller is not required to immediately disable or enable the Asynchronous Schedule when the software
transitions the Asynchronous Schedule Enable bit in the USBCMD register. When this bit and the
Asynchronous Schedule Enable bit are the same value, the Asynchronous Schedule is either enabled (1) or
disabled (0). Used only in host mode.
1 Enabled.
0 Disabled.

14
PS

Periodic Schedule Status. This bit reports the current real status of the Periodic Schedule. The controller is not
required to immediately disable or enable the Periodic Schedule when the software transitions the Periodic
Schedule Enable bit in the USBCMD register. When this bit and the Periodic Schedule Enable bit are the same
value, the Periodic Schedule
is either enabled (1) or disabled (0). Used only in host mode.
1 Enabled.
0 Disabled.

13
RCL

Reclamation. This is a status bit used to detect an empty asynchronous schedule. Used only in host mode.
1 Empty asynchronous schedule.
0 Non-empty asynchronous schedule.

12
HCH

HCHaIted. This bit is a zero whenever the Run/Stop bit is a one. The controller sets this bit to one after it has
stopped executing because of the Run/Stop bit being set to 0, either by the software or by the Host Controller
hardware (for example, internal error). Used only in host mode.
1 Halted.
0 Running.

11–9 Reserved.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-19

8
SLI

DCSuspend. This is a non-EHCI bit that is present on the USB OTG module only. When a device controller
enters a suspend state from an active state, this bit is set. The device controller clears the bit upon exiting from
a suspend state. Used only by the device controller.
1 Suspended.
0 Active.

7
SRI

Host mode:
This is a non-EHCI status bit. In host mode, this bit will be set every 125us, provided the PHY clock is present
and running (for example, the port is NOT suspended), and can be used by the host controller driver as a time
base.
Device mode:
SOF Received. When the controller detects a Start Of (micro) Frame, this bit will be set. When a SOF is
extremely late, the controller will automatically set this bit to indicate that an SOF was expected. Therefore, this
bit will be set roughly every 1 msec in device FS mode and every 125 msec in HS mode and will be
synchronized to the actual SOF that is received. Since the controller is initialized to FS before connect, this bit
will be set at an interval of 1 msec during the prelude to the connect and chirp.
The software writes a 1 to this bit to clear it.

6
URI

USB Reset Received. This is a non-EHCI bit that is present on the USB OTG module only. When the controller
detects a USB Reset and enters the default state, this bit will be set. The software can write a 1 to this bit to
clear the USB Reset Received status bit. Used only in device mode.
1 Reset received.
0 No reset received.

5
AAI

Interrupt on Async Advance. The system software can force the controller to issue an interrupt the next time
the controller advances the asynchronous schedule by writing a one to the Interrupt on Async Advance Doorbell
bit in the USBCMD register. This status bit indicates the assertion of that interrupt source. Used only in host
mode.
1 Async advance interrupt.
0 No async advance interrupt.

4
SEI

System Error. This bit is set whenever an error is detected on the system bus. If the System Error Enable (SEE)
bit in the USBINTR is set, an interrupt will be generated. The interrupt and status bits will remain asserted until
cleared by writing a 1 to this bit. Additionally, when in host mode, the RUN/STOP (RS) bit of the USBCMD
register is cleared, effectively disabling the controller. For the controller in device mode, an interrupt is
generated, but no other action is taken.
1 Error.
0 Normal operation.

3
FRI

Frame List Rollover. The controller sets this bit to a one when the Frame List Index rolls over from its maximum
value to zero. The exact value at which the rollover occurs depends on the frame list size. For example. If the
frame list size (as programmed in the Frame List Size field of the USBCMD register) is 1024, the Frame Index
Register rolls over every time FRINDEX [1 3] toggles. Similarly, if the size is 512, the controller sets this bit to
a one every time FHINDEX [12] toggles. Used only in host mode.

2
PCI

Host mode:
Port Change Detect. The controller sets this bit to a one when on any port a Connect Status occurs, a Port
Enable/Disable Change occurs, an Over Current Change occurs, or the Force Port Resume bit is set as the
result of a J-K transition on the suspended port.
Device mode:
The controller sets this bit to a one when it enters the full or high-speed operational state. When the it exits the
full or high-speed operation states due to Reset or Suspend events, the notification mechanisms are the USB
Reset Received bit and the DCSuspend bits respectively.
This bit is not EHCI compatible.

Table 24-16. USB Status Register (USBSTS) Register Field Descriptions (continued)

Field Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-20 Freescale Semiconductor

24.6.3.3 USB Interrupt Enable Register (USBINTR)

The interrupts to the software are enabled with this register. An interrupt is generated when a bit is set and
the corresponding interrupt is active. The USB Status register (USBSTS) still shows interrupt sources even
if they are disabled by the USBINTR register, allowing polling of interrupt events by the software.

1
UEI

(USBERRINT)

USB Error Interrupt (USBERRINT). When completion of a USB transaction results in an error condition, this bit
is set by the controller. This bit is set along with the USBINT bit, if the TD on which the error interrupt occurred
also had its interrupt on complete (IOC) bit set. See Section 4.15.1 in EHCI for a complete list of host error
interrupt conditions. Also see Table 24-88 in this chapter for more information on device error matrix. For the
controller in device mode, only resume signaling is detected, all others are ignored.
1 Error detected.
0 No error.

0
UI

(USBINT)

USB Interrupt (USBINT). This bit is set by the controller when the cause of an interrupt is a completion of a USB
transaction where the Transfer Descriptor (TD) has an interrupt on complete (IOC) bit set. This bit is also set by
the controller when a short packet is detected. A short packet is when the actual number of bytes received was
less than the expected number of bytes.

Address MBAR2 0x748 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SLE SRE URE AAE SEE FRE PCE UEE UE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-16. USB Interrupt Enable (USBINTR) Register

Table 24-17. USB Interrupt Enable (USBINTR) Register Field Descriptions

Field Description

31–9 Reserved.

8
SLE

Sleep Enable. This is a non-EHCI bit. When this bit is a one, and the DCSuspend bit in the USBSTS register transitions,
the controller will issue an interrupt. The interrupt is acknowledged by the software writing a one to the DCSuspend bit.
Used only in device mode.
1 Enable.
0 Disable.

Table 24-16. USB Status Register (USBSTS) Register Field Descriptions (continued)

Field Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-21

24.6.3.4 Frame Index Register (FRINDEX)

In host mode, this register is used by the controller to index the periodic frame list. The register updates
every 125 microseconds (once each microframe). Bits [N–3] are used to select a particular entry in the
Periodic Frame List during periodic schedule execution. The number of bits used for the index depends on
the size of the frame list as set by the system software in the Frame List Size field in the USBCMD register.

7
SRE

SOF Received Enable. This is a non-EHCI bit that is present on the USB OTG module. When this bit is a one, and the
SOF Received bit in the USBSTS register is a one, the controller will issue an interrupt. The interrupt is acknowledged
by the software clearing the SOF Received bit.
1 Enable.
0 Disable.

6
URE

USB Reset Enable. This is a non-EHCI bit that is present on the USB OTG module only. When this bit is a one, and the
USB Reset Received bit in the USBSTS register is a one, the device controller will issue an interrupt. The interrupt is
acknowledged by the software clearing the USB Reset Received bit. Used only in device mode.
1 Enable.
0 Disable.

5
AAE

Interrupt on Async Advance Enable. When this bit is a one, and the Interrupt on Async Advance bit in the USBSTS
register is a one, the controller will issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by
the software clearing the Interrupt on Async Advance bit. Only used in host mode.
1 Enable.
0 Disable.

4
SEE

System Error Enable. When this bit is a one, and the System Error bit in the USBSTS register is a one, the controller
will issue an interrupt. The interrupt is acknowledged by the software clearing the System Error bit.
1 Enable.
0 Disable.

3
FRE

Frame List Rollover Enable. When this bit is a one, and the Frame List Rollover bit in the USBSTS register is a one, the
controller will issue an interrupt. The interrupt is acknowledged by the software clearing the Frame List Rollover bit.
Used only in host mode.
1 Enable.
0 Disable.

2
PCE

Port Change Detect Enable. When this bit is a one, and the Port Change Detect bit in the USBSTS register is a one,
the controller will issue an interrupt. The interrupt is acknowledged by the software clearing the Port Change Detect bit.
1 Enable.
0 Disable.

1
UEE

USB Error Interrupt Enable. When this bit is a one, and the USBERRINT bit in the USBSTS register is a one, the
controller will issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by the software clearing
the USBERRINT bit in the USBSTS register.
1 Enable.
0 Disable.

0
UE

USB Interrupt Enable. When this bit is a one, and the USBINT bit in the USBSTS register is a one, the controller will
issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by the software clearing the USBINT bit.
1 Enable.
0 Disable.

Table 24-17. USB Interrupt Enable (USBINTR) Register Field Descriptions (continued)

Field Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-22 Freescale Semiconductor

This register must be written as a DWord. Byte writes produce-undefined results. This register cannot be
written unless the controller is in the Halted state as indicated by the HCHalted bit. A write to this register
while the Run/Stop hit is set produces undefined results. Writes to this register also affect the SOF value.

In device mode (), this register is read-only and, the controller updates the FRINDEX[13–3] register from
the frame number indicated by the SOF marker. Whenever a SOF is received by the USB bus,
FRINDEX[13–3] is checked against the SOF marker. If FRINDEX[13–3] is different from the SOF
marker, FRINDEX[13–3] is set to the SOF value and FRINDEX[2–0] is cleared (that is, SOF for 1 msec
frame). If FRINDEX[13–3] is equal to the SOF value, FRINDEX[2–0] is incremented (that is, SOF for
125 µsec microframe.)

Table 24-19 illustrates values of N based on the value of the Frame List Size in the USBCMD register,
when used in host mode.

Address MBAR2 0x74C Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FRINDEX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-17. USB Frame Index (FRINDEX) Register

Table 24-18. USB Frame Index (FRINDEX) Register Field Descriptions

Field Description

31–14 Reserved.

13–0
FRINDEX

Frame index. The value in this register increments at the end of each time frame (for example, microframe).
Bits [N– 3] are used for the Frame List current index. This means that each location of the frame list is accessed 8
times (frames or microframes) before moving to the next index.
For the USB OTG module in device mode, the value is the current frame number of the last frame transmitted. It is
not used as an index.
In either mode, bits 2–0 indicate the current microframe.

Table 24-19. FRINDEX N Values

USBCMD[FS] Frame List Size FRINDEX N value

000 1024 elements (4096 bytes) 12

001 512 elements (2048 bytes) 11

010 256 elements (1024 bytes) 10

011 128 elements (512 bytes) 9

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-23

24.6.3.5 Control Data Structure Segment Register (CTRLDSSEGMENT)

The CTRLDSSEGMENT register is not implemented on the MCF5251.

24.6.3.6 Periodic Frame List Base Address Register (PERIODICLISTBASE)

This register contains the beginning address of the Periodic Frame List in the system memory. The host
controller driver loads this register prior to starting the schedule execution by the controller. The memory
structure referenced by this physical memory pointer is assumed to be 4-Kbyte aligned. The contents of
this register are combined with the Frame Index Register (FRINDEX) to enable the controller to step
through the Periodic Frame List in sequence.

Note that this register is shared between the host and device mode functions. In host mode, it is the
PERIODICLISTBASE register; in device mode, it is the DEVICEADDR register. See Section 24.6.3.7,
“Device Address Register (DEVICEADDR), Non-EHCI,” for more information.

100 64 elements (256 bytes) 8

101 32 elements (128 bytes) 7

110 16 elements (64 bytes) 6

111 8 elements (32 bytes) 5

Address MBAR2 0x754 (Host Mode) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PERBASE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PERBASE (continued)

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-18. Periodic Frame List Base Address (PERIODICLISTBASE) Register

Table 24-20. Periodic Frame List Base Address (PERIODICLISTBASE) Register Field Descriptions

Field Description

31–12
PERBASE

Base Address. These bits correspond to memory address signal [31:12]. Used only in host mode.

11–0 Reserved.

Table 24-19. FRINDEX N Values (continued)

USBCMD[FS] Frame List Size FRINDEX N value

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-24 Freescale Semiconductor

24.6.3.7 Device Address Register (DEVICEADDR), Non-EHCI

This register is not defined in the EHCI specification. The upper seven bits of this register represent the
device address. After any controller reset or a USB reset, the device address is set to the default address
(0). The default address will match all incoming addresses. The software shall reprogram the address after
receiving a SET_ADDRESS descriptor.

This register is shared between the host and device mode functions. In device mode, it is the
DEVICEADDR register; in host mode, it is the PERIODICLISTBASE register. See Section 24.6.3.6,
“Periodic Frame List Base Address Register (PERIODICLISTBASE),” for more information.

24.6.3.8 Current Asynchronous List Address Register (ASYNCLISTADDR)

This 32-bit register contains the address of the next asynchronous queue head to be executed by the host.
Bits [4–0] of this register cannot be modified by the system software and always return zeros when read.

Note that on the USB OTG module, this register is shared between the host and device mode functions. In
host mode, it is the ASYNCLISTADDR register; in device mode, it is the ENDPOINTLISTADDR register.
See Section 24.6.3.9, “Endpoint List Address Register (ENDPOINTLISTADDR), Non-EHCI,” for more
information.

Address MBAR2 0x754 (Device Mode) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
USBADR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-19. Device Address (DEVICEADDR) Register

Table 24-21. Device Address (DEVICEADDR) Register Field Descriptions

Field Description

31–25
USBADR

Device Address. This field corresponds to the USB device address.

24–0 Reserved.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-25

24.6.3.9 Endpoint List Address Register (ENDPOINTLISTADDR), Non-EHCI

This register is not defined in the EHCI specification. For the module in device mode, this register contains
the address of the top of the endpoint list in system memory. Bits [10–0] of this register cannot be modified
by the system software and always return zeros when read. The memory structure referenced by this
physical memory pointer is assumed to be 64-bytes. The queue head is actually a 48-byte structure, but
must be aligned on 64-byte boundary. However, the ENDPOINTLISTADDR[EPBASE] has a granularity
of 2 Kbytes, so in practice the queue head should be 2-Kbyte aligned.

This register is shared between the host and device mode functions. In device mode, it is the
ENDPOINTLISTADDR register; in host mode, it is the ASYNCLISTADDR register. See
Section 24.6.3.8, “Current Asynchronous List Address Register (ASYNCLISTADDR),” for more
information.

Address MBAR2 0x758 (Host Mode) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ASYBASE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ASYBASE(con’t)

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-20. Current Asynchronous List Address (ASYNCLISTADDR) Register

Table 24-22. Current Asynchronous List Address (ASYNCLISTADDR) Register Field Descriptions

Field Description

31–5
ASYBASE

Link Pointer Low (LPL). These bits correspond to memory address signal [31:5]. This field may reference only a
Queue Head (QH). Used only by the host controller.

4–0 Reserved.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-26 Freescale Semiconductor

24.6.3.10 Master Interface Data Burst Size Register (BURSTSIZE)—Non-EHCI

This register is not defined in the EHCI specification. This register is used to control and dynamically
change the burst size used during data movement on the initiator (master) interface.

Address MBAR2 0x758 (Device Mode) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EPBASE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EPBASE(con’t)

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-21. Endpoint List Address (ENDPOINTLISTADDR) Register

Table 24-23. Endpoint List Address (ENDPOINTLISTADDR) Register Field Descriptions

Field Description

31–11
EPBASE

Endpoint List Address. Address of the top of the endpoint list.

10–0 Reserved.

Address MBAR2 0x760 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TXPBURST RXPBURST

W

Reset 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

Figure 24-22. Master Interface Data Burst Size (BURSTSIZE) Register

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-27

24.6.3.11 Transmit FIFO Tuning Controls Register (TXFILLTUNING)—Non-EHCI

This register is not defined in the EHCI specification. This register is used to control and dynamically
change the burst size used during data movement on DMA transfers. It is used only in host mode.

The fields in this register control performance tuning associated with how the module posts data to the TX
latency FIFO before moving the data onto the USB bus. The specific areas of performance include the how
much data to post into the FIFO and an estimate for how long that operation should take in the target
system.

Definitions:

T0 = Standard packet overhead

T1 = Time to send data payload

Ts = Total Packet Flight Time (send-only) packet (Ts = T0 + T1)

Tff = Time to fetch packet into TX FIFO up to specified level.

Tp = Total Packet Time (fetch and send) packet (Tp = Tff + Ts)

Upon discovery of a transmit (OUT/SETUP) packet in the data structures, host controller checks to ensure
Tp remains before the end of the [micro]frame. If so it proceeds to pre-fill the TX FIFO. If at anytime
during the pre-fill operation the time remaining the [micro]frame is < Ts then the packet attempt ceases and
the packet is tried at a later time. Although this is not an error condition and the module eventually
recovers, a mark is made in the scheduler health counter to note the occurrence of a back-off event. When
a back-off event is detected, the partial packet fetched may need to be discarded from the latency buffer to
make room for periodic traffic that will begin after the next SOF. Too many back-off events can waste
bandwidth and power on the system bus and thus should be minimized (not necessarily eliminated).
Back-offs can be minimized with use of the TSCHHEALTH (Tff) parameter described below.

Table 24-24. Master Interface Data Burst Size (BURSTSIZE) Register Field Descriptions

Field Description

31–16 Reserved.

15–8
TXPBURST

Programable TX Burst Length. This register represents the maximum length of a burst in 32-bit words while
moving data from system memory to the USB bus. Must not be set to greater that 4.

7–0
RXPBURST

Programable RX Burst Length. This register represents the maximum length of a burst in 32-bit words while
moving data from the USB bus to system memory. Must not be set to greater than 4.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-28 Freescale Semiconductor

Address MBAR2 0x764 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
TXFIFOTHRES

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TXSCHHEALTH TXSCHOH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-23. Transmit FIFO Tuning Controls (TXFILLTUNING) Register

Table 24-25. Transmit FIFO Tuning Controls (TXFILLTUNING) Register Field Descriptions

Field Description

31–22 Reserved.

21–16
TXFIFOTHRES

FIFO Burst Threshold. These bits control the number of data bursts that are posted to the TX latency FIFO in
host mode before the packet begins on to the bus. The minimum value is 2 and this value should be a low as
possible to maximize USB performance. A higher value can be used in systems with unpredictable latency
and/or insufficient bandwidth where the FIFO may underrun because the data transferred from the latency
FIFO to USB occurs before it can be replenished from system memory. This value is ignored if the Stream
Disable bit in USBMODE register is set. When the SDIS bit is set, the host controller behaves as if
TXFIFOTHRES is set to the maximum value.

15–13 Reserved.

12–8
TXSCHHEALTH

Scheduler Health Counter. These bits increment when the host controller fails to fill the TX latency FIFO to the
level programmed by TXFIFOTHRES before running out of time to send the packet before the next
Start-Of-Frame.
This health counter measures the number of times this occurs to provide feedback to selecting a proper
TXSCHOH. Writing to this register clears the counter and this counter stops counting after reaching the
maximum of 31.

7–0
TXSCHOH

Scheduler Overhead. These bits add an additional fixed offset to the schedule time estimator described above
as Tff. As an approximation, the value chosen for this register should limit the number of back-off events
captured in the TXSCHHEALTH to less than 10 per second in a highly utilized bus. Choosing a value that is
too high for this register is not desired as it can needlessly reduce USB utilization.
The time unit represented in this register is 1.267μs when a device is connected in High-Speed Mode.
The time unit represented in this register is 6.333μs when a device is connected in Low/Full-speed Mode.
For most applications, TXSCHOH can be set to 4 or less. A good value to begin with is: TXFIFOTHRES *
(BURSTSIZE * 4 bytes-per-word) / (40 * TimeUnit), always rounded to the next higher integer. TimeUnit is
either 1.267 or 6.333 as noted earlier in this description. For example, if TXFIFOTHRES is 5 and BURSTSIZE
is 8, then set TXSCHOH to 5*(8*4)/(40*1.267) = 4 for a high-speed link. If this value of TXSCHOH results in a
TXSCHHEALTH count of 0 per second, try lowering the value by 1 if optimizing performance is desired. If
TXSCHHEALTH exceeds 10 per second, try raising the value by 1.
If streaming mode is disabled via the USBMODE register, treat TXFIFOTHRES as the maximum value for
purposes of the TXSCHOH calculation.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-29

24.6.3.12 Configure Flag Register (CONFIGFLAG)

This EHCI register is not used in this implementation. A read from this register returns a constant of a
0x0000_0001 to indicate that all port routings default to this host controller.

24.6.3.13 Port Status and Control Registers (PORTSC)

This register is reset only when power is initially applied or in response to a controller reset. The initial
conditions of a port are:

• No device connected

• Port disabled

If the port has port power control, this state remains until the software applies power to the port by setting
port power to one.

For the module in device mode, the controller does not support power control. Port control in device mode
is used only for status port reset, suspend, and current connect status. It is also used to initiate test mode
or force signaling and allows the software to put the PHY into low power suspend mode and disable the
PHY clock.

Address MBAR2 + 0x780 Access: User read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 24-24. Configure Flag (CONFIGFLAG) Register

Table 24-26. Configure Flag (CONFIGFLAG) Register Field Descriptions

Field Name Description

31–0 – Reserved. (0x0000_0001, all port routings default to this host)

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-30 Freescale Semiconductor

Address MBAR2 + 0x784 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PTS

PTW PSPD
PFSC PHCD WKOC WKDS WLCN PTC

W

Reset 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PO PP

LS
PR SUSP FPR

OCC OCA PEC
PE

CSC CCS

W Clear Clear Clear

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Figure 24-25. Port Status and Control (PORTSC) Register

Table 24-27. Port Status and Control (PORTSC) Register Field Descriptions

Field Description

31–30
PTS

Port Transceiver Select. This register bit is used to control which parallel transceiver interface is selected.
00 On-Chip transceiver (UTMI+)
01 Reserved.
10 Reserved.
11 Reserved.
This bit is not defined in the EHCI specification.

29 Reserved.

28
PTW

Parallel Transceiver Width. This register bit is used to control the data bus width of the parallel transceiver interface.
This bit defaults to 1 after reset and is read only.
0 8-bit interface—[60 MHz] UTMI+ interface.
1 16-bit interface—[30 MHz] UTMI+ interface.
PTW is valid only for UTMI mode (PTS = 00).
This bit is not defined in the EHCI specification.

27–26
PSPD

Port Speed. This read-only register field indicates the speed at which the port is operating.
This bit is not defined in the EHCI specification.
00 Full-speed
01 Low-speed
10 High-speed
11 Undefined

25 Reserved.

24
PFSC

Port Force Full-speed Connect. This bit is used to disable the chirp sequence that allows the port to identify itself as a
HS port.
0 Allow the port to identify itself as High Speed.
1 Force the port to connect only at Full-speed.
This bit is not defined in the EHCI specification.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-31

23
PHCD

PHY Low Power Suspend. This bit is not defined in the EHCI specification.
In host mode, the PHY can be put into Low Power Suspend – when the downstream device has been put into suspend
mode or when no downstream device is connected. Low power suspend is completely under the control of the software.
For device mode, the PHY can be put into Low Power Suspend – when the device is not running (USBCMD
Run/Stop=0b) or suspend signaling is detected on the USB. Low power suspend will be cleared automatically when the
resume signaling has been detected or when forcing port resume.
0 Normal PHY operation.
1 Signal the PHY to enter low power suspend mode
Reading this bit indicates the status of the PHY.
Note: If there is no clock connected to the CLK signals, then PHCD must be set.

22
WKOC

Wake on Over-current Enable. Writing this bit to a one enables the port to be sensitive to over-current conditions as
wake-up events.
This field is zero if Port Power (PP) is zero.
This bit is (OTG/host mode only) for use by an external power control circuit.

21
WKDS

Wake on Disconnect Enable. Writing this bit to a one enables the port to be sensitive to device disconnects as wake-up
events.
This field is zero if Port Power(PP) is zero or in device mode.
This bit is (OTG/host mode only) for use by an external power control circuit.

20
WLCN

Wake on Connect Enable. Writing this bit to a one enables the port to be sensitive to device connects as wake-up
events.
This field is zero if Port Power(PP) is zero or in device mode.
This bit is (OTG/host mode only) for use by an external power control circuit.

19–16
PTC

Port Test Control. Any other value than zero indicates that the port is operating in test mode.
0000 Normal operation
0001 J_STATE
0010 K_STATE
0011 SEQ_NAK
0100 Test packet
0101 FORCE_ENABLE
0110–1111 Reserved.
Refer to Chapter 7 of the USB Specification Revision 2.0 [3] for details on each test mode.

15–14 Reserved

13
PO

Port Owner. This bit unconditionally goes to a 0 when the configured bit in the CONFIGFLAG register makes a 0 to 1
transition. This bit unconditionally goes to 1 whenever the Configured bit is zero. The system software uses this field to
release ownership of the port to a selected the module (in the event that the attached device is not a high-speed device).
The software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that
an internal companion controller owns and controls the port.
Port owner hand-off is not implemented in this design, therefore this bit is always 0.

12
PP

Port Power. This bit represents the current setting of the switch (0=off, 1=on). When power is not available on a port(that
is, PP equals a 0), the port is non-functional and will not report attaches, detaches, etc.
When an over-current condition is detected on a powered port, the PP bit in each affected port is transitioned by the
host controller driver from a one to a zero (removing power from the port).
This feature is implemented in the host/OTG controller (PPC = 1).
For the USB OTG module in a device-only implementation port power control is not necessary, thus PPC and PP = 0.

Table 24-27. Port Status and Control (PORTSC) Register Field Descriptions (continued)

Field Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-32 Freescale Semiconductor

11–10
LS

Line Status. These bits reflect the current logical levels of the USB D+ (bit 11) and D– (bit 10) signal lines. The use of
line status by the host controller driver is not necessary (unlike EHCI), because the connection of FS and LS is
managed by the hardware.
00 SE0
01 J-state
10 K-state
11 Undefined

9 Reserved.

8
PR

Port Reset.
In host mode, when the software writes a one to this bit the bus-reset sequence as defined in the USB Specification
Revision 2.0 is started. This bit will automatically change to zero after the reset sequence is complete. This behavior is
different from EHCI where the host controller driver is required to set this bit to a zero after the reset duration is timed
in the driver.
For the USB OTG module in device mode, this bit is a read only status bit. Device reset from the USB bus is also
indicated in the USBSTS register.
1 Port is in Reset.
0 Port is not in Reset.
This field is zero if Port Power(PP) is zero.

7
SUSP

Suspend
In host mode:
The Port Enabled bit (PE) and Suspend (SUSP) bit define the port states as follows:
0x Disable
10 Enable
11 Suspend
When in suspend state, downstream propagation of data is blocked on this port, except for port reset. The blocking
occurs at the end of the current transaction if a transaction was in progress when this bit was written to 1. In the suspend
state, the port is sensitive to resume detection.
Note: The bit status does not change until the port is suspended and that there may be a delay in suspending a port if

there is a transaction currently in progress on the USB.

The module unconditionally sets this bit to zero when the software sets the Force Port Resume bit to zero. A write of
zero to this bit is ignored by the host controller. If the host software sets this bit to a one when the port is not enabled
(that is, Port enabled bit is a zero) the results are undefined.
This field is zero if Port Power(PP) is zero in host mode.
For device mode:
1 Port in suspend state.
0 Port not in suspend state. Default.
In device mode this bit is a read only status bit.

Table 24-27. Port Status and Control (PORTSC) Register Field Descriptions (continued)

Field Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-33

6
FPR

Force Port Resume. This bit is not-EHCI compatible.
1 Resume detected/driven on port.
0 No resume (K-state) detected/driven on port
In host mode:
The software sets this bit to one to drive resume signaling. The controller sets this bit to one if a J-to-K transition is
detected while the port is in the Suspend state. When this bit transitions to a one a J-to-K transition is detected, the Port
Change Detect bit in the USBSTS register is also set. This bit will automatically change to zero after the resume
sequence is complete. This behavior is different from EHCI where the host controller driver is required to set this bit to
a zero after the resume duration is timed in the driver.
Note: When the controller owns the port, the resume sequence follows the defined sequence documented in the USB

Specification Revision 2.0. The resume signaling (Full-speed ‘K’) is driven on the port as long as this bit remains
a one. This bit will remain a one until the port has switched to the high-speed idle. Writing a zero has no affect
because the port controller will time the resume operation clear the bit the port control state switches to HS or
FS idle.

This field is zero if Port Power(PP) is zero in host mode.
In Device mode:
After the device has been in Suspend State for 5 msec or more, the software must set this bit to one to drive resume
signaling before clearing. the controller will set this bit to one if a J-to-K transition is detected while the port is in the
Suspend state. The bit will be cleared when the device returns to normal operation. Also, when this bit transitions to a
one because a J-to-K transition detected, the Port Change Detect bit in the USBSTS register is also set.

5
OCC

Over-current Change. The overcurrent detect function is not implemented. This bit will always read 0.

4
OCA

Over-current Active. The overcurrent detect function is not implemented. This bit will always read 0.

3
PEC

Port Enable/Disable Change.
For the root hub, this bit gets set only when a port is disabled due to disconnect on the port or due to the appropriate
conditions existing at the EOF2 point (See Chapter 11 of the USB Specification). The software clears this by writing a
one to it.
In Device mode, the device port is always enabled. (This bit will be zero.)
1 Port disabled
0 No change
This field is zero if Port Power(PP) is zero.

2
PE

Port Enabled/Disabled.
In host mode ports can be enabled only by the controller as a part of the reset and enable. The software cannot enable
a port by writing a one to this field. Ports can be disabled by either a fault condition (disconnect event or other fault
condition) or by the host software.
Note: The bit status does not change until the port state actually changes. There may be a delay in disabling or enabling

a port due to other host and bus events.

When the port is disabled, (0) downstream propagation of data is blocked except for reset.
This field is zero if Port Power(PP) is zero in host mode.
In Device Mode, the device port is always enabled. (This bit will be one).

Table 24-27. Port Status and Control (PORTSC) Register Field Descriptions (continued)

Field Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-34 Freescale Semiconductor

24.6.3.14 On-The-Go Status and Control (OTGSC), Non-EHCI

This register is not defined in the EHCI specification. The USB OTG module implements one On-The-Go
(OTG) Status and Control register corresponding to Port 0.

The OTGSC register has four sections:

• OTG Interrupt enables (Read/Write)

• OTG Interrupt status (Read/Write to Clear)

• OTG Status inputs (Read Only)

• OTG Controls (Read/Write)

The status inputs are de-bounced using a 1 msec time constant. Values on the status inputs that do not
persist for more than 1 msec will not cause an update of the Status inputs, or cause and OTG interrupt.

1
CSC

Connect Change Status.
In host mode, this bit indicates a change has occurred in the port’s Current Connect Status. the controller sets this bit
for all changes to the port device connect status, even if the system software has not cleared an existing connect status
change. For example, the insertion status changes twice before the system software has cleared the changed condition,
hub hardware will be ‘setting’ an already-set bit (that is—the bit will remain set). The software clears this bit by writing
a one to it.
1 Connect Status has changed.
0 No change
This field is zero if Port Power(PP) is zero.
In device mode, this bit is undefined.

0
CCS

Current Connect Status.
In host mode:
1 Device is present.
0 No device present.
This field is zero if Port Power(PP) is zero in host mode.
In device mode:
1 Attached
0 Not attached
A one indicates that the device successfully attached and is operating in either high-speed or full-speed as indicated
by the High Speed Port bit in this register. A zero indicates that the device did not attach successfully or was forcibly
disconnected by the software writing a zero to the Run bit in the USBCMD register. It does not state the device being
disconnected or suspended.

Table 24-27. Port Status and Control (PORTSC) Register Field Descriptions (continued)

Field Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-35

Address 0x7A4 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DPIE 1msE BSEIE BSVIE ASVIE AVVIE IDIE

DPIS 1msS BSEIS BSVIS ASVIS AVVIS IDIS

W Clear Clear Clear Clear Clear Clear Clear

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DPS 1msT BSE BSV ASV AVV ID
HABA HADP IDPU DP OT HAAR VC VD

W

Reset 0 0 0 0 0 0 0 ID 0 0 1 0 0 0 0 0

Figure 24-26. OTG Status Control (OTGSC) Register

Table 24-28. OTG Status Control (OTGSC) Register Field Descriptions

Field Description

31 Reserved.

30
DPIE

Data Pulse Interrupt Enable.
1 Enable
0 Disable

29
1msE

1 millisecond timer Interrupt Enable.
1 Enable
0 Disable

28
BSEIE

B Session End Interrupt Enable.
1 Enable
0 Disable

27
BSVIE

B Session Valid Interrupt Enable.
1 Enable
0 Disable

26
ASVIE

A Session Valid Interrupt Enable.
1 Enable
0 Disable

25
AVVIE

A VBus Valid Interrupt Enable.
1 Enable
0 Disable

24
IDIE

USB ID Interrupt Enable.
1 Enable
0 Disable

23 Reserved.

22
DPIS

Data Pulse Interrupt Status. This bit is set when data bus pulsing occurs on DP or DN. Data bus pulsing is detected
only when USBMODE.CM = Host (11) and PORTSC(0).PortPower = Off (0).
The software must write a one to clear this bit.

21
1msS

1 millisecond timer Interrupt Status. This bit is set once every millisecond.
The software must write a one to clear this bit.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-36 Freescale Semiconductor

20
BSEIS

B Session End Interrupt Status. This bit is set when VBus has fallen below the B session end threshold.
The software must write a one to clear this bit.

19
BSVIS

B Session Valid Interrupt Status. This bit is set when VBus has either risen above or fallen below the B session valid
threshold (0.8 VDC).
The software must write a one to clear this bit.

18
ASVIS

A Session Valid Interrupt Status. This bit is set when VBus has either risen above or fallen below the A session valid
threshold (0.8 VDC).
The software must write a one to clear this bit.

17
AVVIS

A VBus Valid Interrupt Status. This bit is set when VBus has either risen above or fallen below the VBus valid threshold
(4.4 VDC) on an A device.
The software must write a one to clear this bit.

16
IDIS

USB ID Interrupt Status. This bit is set when a change on the ID input has been detected.
The software must write a one to clear this bit.

15 Reserved.

14
DPS

Data Bus Pulsing Status.
1 Pulsing detected on port
0 No pulsing on port

13
1msT

1 millisecond timer toggle. This bit toggles once per millisecond.

12
BSE

B Session End.
1 VBus is below the B session end threshold.
0 VBus is above the B session end threshold.

11
BSV

B Session Valid.
1 VBus is above the B session valid threshold.
0 VBus is below the B session valid threshold.

10
ASV

A Session Valid.
1 VBus is above the A session valid threshold.
0 VBus is below the A session valid threshold.

9
AVV

A VBus Valid.
1 VBus is above the A VBus valid threshold.
0 VBus is below the A VBus valid threshold.

8
ID

USB ID
1 B device
0 A device

7
HABA

Hardware assist B-disconnect to A-connect
0 Disabled
1 Enable automatic B-disconnect to A-connect sequence

6
HADP

Hardware assist data pulse
0 No pulse sequence started
1 Start data pulse sequence

5 Reserved.

Table 24-28. OTG Status Control (OTGSC) Register Field Descriptions (continued)

Field Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-37

24.6.3.15 USB Mode Register (USBMODE)—Non-EHCI

This register is not defined in the EHCI specification. This register controls the operating mode of the
module.

4
DP

Data Pulsing.
1 The pullup on DP is asserted for data pulsing during SRP.
0 The pullup on DP is not asserted.

3
OT

OTG Termination. This bit must be set when the OTG device is in device mode.
1 Enable pulldown on DN.
0 Disable pulldown on DN.

2
HAAR

Hardware assist auto-reset.
0 Disabled
1 Enable automatic reset after connect on host port

1
VC

VBUS Charge. Setting this bit causes the VBus line to be charged. This is used for VBus pulsing during SRP.

0
VD

VBUS Discharge. Setting this bit causes VBus to discharge through a resistor.

Address MBAR2 + 0x7A8 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SDIS SLOM ES CM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-27. USB Mode (USBMODE) Register

Table 24-28. OTG Status Control (OTGSC) Register Field Descriptions (continued)

Field Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-38 Freescale Semiconductor

24.6.3.16 Endpoint Setup Status Register (ENDPTSETUPSTAT)—Non-EHCI

This register is not defined in the EHCI specification. This register contains the endpoint setup status. It is
used only in device mode.

Table 24-29. USB Mode (USBMODE) Register Field Descriptions

Field Description

31–5 Reserved.

4
SDIS

Stream Disable.
In host mode, setting this bit to a 1 ensures that overruns/underruns of the latency FIFO are eliminated for low
bandwidth systems where the RX and TX buffers are sufficient to contain the entire packet. Enabling stream disable
also has the effect of ensuring the TX latency is filled to capacity before the packet is launched onto the USB.
Note: Time duration to pre-fill the FIFO becomes significant when stream disable is active. See TXFILLTUNING to

characterize the adjustments needed for the scheduler when using this feature.
Also note that in systems with high system bus utilization, setting this bit will ensure no overruns or underruns during
operation, at the expense of link utilization. For those who desire optimal link performance, SDIS can be left clear, and
the rules used under the description of the TXFILLTUNING register to limit underruns/overruns.
1 Active
0 Inactive
In device mode (), setting this bit to a 1 disables double priming on both RX and TX for low bandwidth systems. This
mode ensures that when the RX and TX buffers are sufficient to contain an entire packet that the standard double
buffering scheme is disabled to prevent overruns/underruns in bandwidth limited systems.
Note: In High Speed Mode, all packets received will be responded to with a NYET handshake when stream disable is

active.

3
SLOM

Setup Lockout Mode (). For the USB OTG module in device mode, this bit controls behavior of the setup lock
mechanism. See Section 24.11.3.5, “Control Endpoint Operation Model.”
1 Setup Lockouts Off(DCD requires use of Setup Data Buffer Tripwire in USBCMD).
0 Setup Lockouts On.

2
ES

Endian select. Controls the byte ordering of the transfer buffers to match the host microprocessor bus architecture. The
bit fields in the register interface and the DMA data structures (including the setup buffer within the device QH) are
unaffected by the value of this bit, because they are based upon 32-bit words.
0 Little endian. First byte referenced in least significant byte of 32-bit word.
1 Big endian. First byte referenced in most significant byte of 32-bit word.
Note: For proper operation, this bit must be set for this ColdFire device.

1–0
CM

Controller Mode.
This register can be written only once after reset. If it is necessary to switch modes, the software must reset the
controller by writing to the RESET bit in the USBCMD register before reprogramming this register.
00 Idle (Default for combination host/device).
01 Reserved.
10 Device Controller (Default for device only controller).
11 Host Controller (Default for host only controller).
The USB OTG module defaults to the idle state and needs to be initialized to the desired operating mode after reset.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-39

24.6.3.17 Endpoint Initialization Register (ENDPTPRIME)—Non-EHCI

This register is not defined in the EHCI specification. This register is used to initialize endpoints. It is used
by the USB OTG module only in device mode.

Address MBAR2 0x7AC Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ENDPTSETUPSTAT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-28. Endpoint Setup Status (ENDPTSETUPSTAT) Register

Table 24-30. Endpoint Setup Status (ENDPTSETUPSTAT) Register Field Descriptions

Field Description

31–4 Reserved.

3–0
ENDPTSETUPSTAT

Setup Endpoint Status. For every setup transaction that is received, a corresponding bit in this register
is set. The software must clear or acknowledge the setup transfer by writing a one to a respective bit after
it has read the setup data from Queue head. The response to a setup packet as in the order of operations
and total response time is crucial to limit bus time outs while the setup lockout mechanism is engaged.
This register is used only in device mode.

Address MBAR2 + 0x7B0 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PETB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PERB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-29. Endpoint Initialization (ENDPTPRIME) Register

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-40 Freescale Semiconductor

24.6.3.18 Endpoint Flush Register (ENDPTFLUSH), Non-EHCI

This register is not defined in the EHCI specification. This register is used by the USB OTG module only
in device mode.

Table 24-31. Endpoint Initialization (ENDPTPRIME) Register Field Descriptions

Field Description

31–20 Reserved.

19–16
PETB

Prime endpoint transmit buffer. For each endpoint, a corresponding bit is used to request that a buffer prepared for a
transmit operation in order to respond to a USB IN/INTERRUPT transaction. The software should write a one to the
corresponding bit when posting a new transfer descriptor to an endpoint. The hardware will automatically use this bit
to begin parsing for a new transfer descriptor from the queue head and prepare a transmit buffer. The hardware will
clear this bit when the associated endpoint(s) is (are) successfully primed. PETB[3] (bit 19 of the register) corresponds
to endpoint 3.
Note: These bits will be momentarily set by the hardware during hardware re-priming operations when a dTD is

retired, and the dQH is updated.

15–4 Reserved.

3–0
PERB

Prime endpoint receive buffer. For each endpoint, a corresponding bit is used to request a buffer prepare for a receive
operation in order to respond to a USB OUT transaction. The software should write a one to the corresponding bit
whenever posting a new transfer descriptor to an endpoint. The hardware will automatically use this bit to begin
parsing for a new transfer descriptor from the queue head and prepare a receive buffer. The hardware will clear this
bit when the associated endpoint(s) is (are) successfully primed.
Note: These bits will be momentarily set by the hardware during hardware re-priming operations when a dTD is

retired, and the dQH is updated.

Address MBAR2 + 0x7B4 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
FETB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FERB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-30. Endpoint Flush (ENDPTFLUSH) Register

Table 24-32. Endpoint Flush (ENDPTFLUSH) Register Field Descriptions

Field Description

31–20 Reserved.

19–16
FETB

Flush endpoint transmit buffer. Writing a one to a bit(s) in this register will cause the associated endpoint(s) to clear any
primed buffers. If a packet is in progress for one of the associated endpoints, then that transfer will continue until
completion. The hardware will clear this register after the endpoint flush operation is successful.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-41

24.6.3.19 Endpoint Status Register (ENDPTSTATUS), Non-EHCI

This register is not defined in the EHCI specification. This register is used by the USB OTG module only
in device mode.

15–4 Reserved.

3–0
FERB

Flush endpoint receive buffer. Writing a one to a bit(s) will cause the associated endpoint(s) to clear any primed buffers.
If a packet is in progress for one of the associated endpoints, then that transfer will continue until completion. The
hardware will clear this register after the endpoint flush operation is successful.

Address MBAR2 + 0x7B8 Access: User read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ETBR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ERBR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-31. Endpoint Status (ENDPTSTATUS) Register

Table 24-33. Endpoint Status (ENDPTSTATUS) Register Field Descriptions

Field Description

31–20 Reserved.

19–16
ETBR

Endpoint transmit buffer ready. One bit for each endpoint indicates status of the respective endpoint buffer. This bit is
set by the hardware as a response to receiving a command from a corresponding bit in the ENDPTPRIME register.
There will always be a delay between setting a bit in the ENDPTPRIME register and endpoint indicating ready. This
delay time varies based upon the current USB traffic and the number of bits set in the ENDPTPRIME register. Buffer
ready is cleared by USB reset, by the USB DMA system, or through the ENDPTFLUSH register. ETBR[3] (bit 19 of the
register) corresponds to endpoint 3.
Note: These bits will be momentarily cleared by the hardware during hardware endpoint re-priming operations when

a dTD is retired, and the dQH is updated.

15–4 Reserved.

3–0
ERBR

Endpoint receive buffer ready. One bit for each endpoint indicates status of the respective endpoint buffer. This bit is
set by the hardware as a response to receiving a command from a corresponding bit in the ENDPTPRIME register.
There will always be a delay between setting a bit in the ENDPTPRIME register and endpoint indicating ready. This
delay time varies based upon the current USB traffic and the number of bits set in the ENDPTPRIME register. Buffer
ready is cleared by USB reset, by the USB DMA system, or through the ENDPTFLUSH register. ERBR[3] (bit 3 of the
register) corresponds to endpoint 3.
Note: These bits will be momentarily cleared by the hardware during hardware endpoint re-priming operations when

a dTD is retired, and the dQH is updated.

Table 24-32. Endpoint Flush (ENDPTFLUSH) Register Field Descriptions (continued)

Field Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-42 Freescale Semiconductor

24.6.3.20 Endpoint Complete Register (ENDPTCOMPLETE), Non-EHCI

This register is not defined in the EHCI specification. This register is used by the USB OTG module only
in device mode.

24.6.3.21 Endpoint Control Register 0 (ENDPTCTRL0), Non-EHCI

This register is not defined in the EHCI specification. Every device will implement endpoint 0 as a control
endpoint.

Address MBAR2 + 0x7BC Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ETCE

W Clear

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ERCE

W Clear

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-32. Endpoint Complete (ENDPTCOMPLETE) Register

Table 24-34. Endpoint Complete (ENDPTCOMPLETE) Register Field Descriptions

Field Description

31–20 Reserved.

19–16
ETCE

Endpoint transmit complete event. Each bit indicates a transmit event (IN/INTERRUPT) occurred and the software
should read the corresponding endpoint queue to determine the endpoint status. If the corresponding IOC bit is set
in the Transfer Descriptor, then this bit will be set simultaneously with the USBINT. Writing a one will clear the
corresponding bit in this register. ETCE[3] (bit 19 of the register) corresponds to endpoint 3.

15–4 Reserved.

3–0
ERCE

Endpoint receive complete event. Each bit indicates a received event (OUT/SETUP) occurred and the software should
read the corresponding endpoint queue to determine the transfer status. If the corresponding IOC bit is set in the
Transfer Descriptor, then this bit will be set simultaneously with the USBINT. Writing a one will clear the corresponding
bit in this register. ERCE[3] (bit 3 of the register) corresponds to endpoint 3.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-43

Address MBAR2 + 0x7C0 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R TXE TXT
TXS

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RXE RXT
RXS

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Figure 24-33. Endpoint Control 0 (ENDPTCTRL0) Register

Table 24-35. Endpoint Control 0 (ENDPTCTRL0) Register Field Descriptions

Field Description

31–24 Reserved.

23
TXE

TX Endpoint Enable. Endpoint zero is always enabled.
1 Enable

22–20 Reserved.

19–18
TXT

TX Endpoint type. Endpoint zero is always a control endpoint (00).

17 Reserved.

16
TXS

TX Endpoint Stall.
The software can write a one to this bit to force the endpoint to return a STALL handshake to the Host. It will continue
returning STALL until the bit is cleared by the software or it will automatically be cleared upon receipt of a new SETUP
request.
1 Endpoint Stalled
0 Endpoint OK

15–8 Reserved.

7
RXE

RX Endpoint Enable. Endpoint zero is always enabled.
1 Enabled.

6–4 Reserved.

3–2
RXT

RX Endpoint type. Endpoint zero is always a control endpoint (00).

1 Reserved.

0
RXS

RX Endpoint Stall.
The software can write a one to this bit to force the endpoint to return a STALL handshake to the Host. It will continue
returning STALL until the bit is cleared by the software or it will automatically be cleared upon receipt of a new SETUP
request.
1 Endpoint Stalled
0 Endpoint OK

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-44 Freescale Semiconductor

24.6.3.22 Endpoint Control Register n (ENDPTCTRLn), Non-EHCI

These registers are not defined in the EHCI specification. There is an ENDPTCTRLn register of each
endpoint in a device.

Address MBAR2 + 0x7C4 (ENDPTCTRL1)
MBAR2 + 0x7C8 (ENDPTCTRL2)
MBAR2 + 0x7CC (ENDPTCTRL3)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
TXE TXR TXI TXT TXD TXS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RXE RXR RXI RXT RXD RXS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-34. Endpoint Control 1 to 3(ENDPTCTRLn) Register

Table 24-36. Endpoint Control 1 to 3 (ENDPTCTRLn) Register Field Descriptions

Field Description

31–24 Reserved.

23
TXE

TX endpoint enable.
1 Enabled
0 Disabled

22
TXR

TX data toggle reset. Whenever a configuration event is received for this Endpoint, the software must write a one to
this bit in order to synchronize the data PID’s between the Host and device.

21
TXI

TX data toggle inhibit. This bit is used for test only and should always be written as zero. Writing a one to this bit will
cause this endpoint to ignore the data toggle sequence and always transmit DATA0 for a data packet.
1 PID Sequencing Disabled
0 PID Sequencing Enabled

20 Reserved.

19–18
TXT

TX endpoint type.
00 Control
01 Isochronous
10 Bulk
11 Interrupt
Note: When only one endpoint (RX or TX, but not both) of an endpoint pair is used, the unused endpoint should be
configured as a bulk type endpoint.

17
TXD

TX endpoint data source. This bit should always be written as 0, which selects the Dual Port Memory/DMA Engine
as the source.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-45

24.7 Functional Description
The USB module can be broken down into functional sub-blocks described below.

24.7.1 DMA Engine

The DMA Engine interfaces internally to dedicated DMA cache memory and has no access to main
memory. It is responsible for moving all of the data to be transferred over the USB between the module
and buffers in DMA cache memory. Like the system interface block the DMA engine block uses a simple
synchronous bus signaling protocol.

16
TXS

TX endpoint stall. This bit will be set automatically upon receipt of a SETUP request if this Endpoint is not configured
as a Control Endpoint. It will be cleared automatically upon receipt of a SETUP request if this Endpoint is configured
as a Control Endpoint.
The software can write a one to this bit to force the endpoint to return a STALL handshake to the Host. It will continue
to returning STALL until this bit is either cleared by the software or automatically cleared as above.
1 Endpoint Stalled
0 Endpoint OK

15–8 Reserved.

7
RXE

RX endpoint enable.
1 Enabled
0 Disabled

6
RXR

RX data toggle reset. Whenever a configuration event is received for this Endpoint, the software must write a one to
this bit in order to synchronize the data PID’s between the Host and device.

5
RXI

RX data toggle inhibit. This bit is used for test only and should always be written as zero. Writing a one to this bit will
cause this endpoint to ignore the data toggle sequence and always accept data packets regardless of their data PID.
1 PID Sequencing Enabled
0 PID Sequencing Disabled

4 Reserved.

3–2
RXT

RX endpoint type.
00 Control
01 Isochronous
10 Bulk
11 Interrupt
Note: When only one endpoint (RX or TX, but not both) of an endpoint pair is used, the unused endpoint should be
configured as a bulk type endpoint.

1
RXD

RX endpoint data sink. This bit should always be written as 0, which selects the Dual Port Memory/DMA Engine as
the sink.

0
RXS

RX endpoint stall. This bit will be set automatically upon receipt of a SETUP request if this Endpoint is not configured
as a Control Endpoint. It will be cleared automatically upon receipt a SETUP request if this Endpoint is configured as
a Control Endpoint,
The software can write a one to this bit to force the endpoint to return a STALL handshake to the Host. It will continue
to returning STALL until this bit is either cleared by the software or automatically cleared as above,
1 Endpoint Stalled
0 Endpoint OK

Table 24-36. Endpoint Control 1 to 3 (ENDPTCTRLn) Register Field Descriptions (continued)

Field Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-46 Freescale Semiconductor

The DMA controllers must access both control information and packet data from DMA cache memory.
The control information is contained in link list based queue structures. The DMA controllers have state
machines that are able to parse data structures defined in the EHCI specification. In host mode, the data
structures are EHCI compliant and represent queues of transfers to be performed by the host controller,
including the split-transaction requests that allow an EHCI controller to direct packets to FS and LS speed
devices. In device mode, the data structures designed to be similar to those in the EHCI specification and
are used to allow device responses to be queued for each of the active pipes in the device.

The DMA controller can access only the DMA_CACHE memory. Therefore, all data and data structures
that are read/written by the DMA engine must be reside in this memory. The USB module has priority on
this memory and will get access 1 clock cycle after the request.

24.7.2 FIFO RAM Controller

The FIFO RAM controller is used for context information and to control FIFOs between the protocol
engine and the DMA controller. These FIFOs decouple the system processor/memory bus requests from
the extremely tight timing required by USB.

The use of the FIFO buffers differs between host and device mode operation. In host mode, a single data
channel is maintained in each direction through the buffer memory. In device mode, multiple FIFO
channels are maintained for each of the active endpoints in the system.

In host mode, the module uses a 256-byte TX buffer and a 128-byte RX buffer. Device operation uses a
single 128-byte RX buffer and a 64-byte TX buffer for each endpoint.

24.7.3 PHY Interface

The module interfaces to the internal PHY. The primary function of the port controller block is to isolate
the rest of the module from the transceiver, and to move all of the transceiver signaling into the primary
clock domain of the module. This allows the module to run synchronously with the system processor and
it's associated resources.

24.8 Host Data Structures
This section defines the interface data structures used to communicate control, status, and data between
HCD (software) and the Enhanced Host Controller (hardware). The data structure definitions in this
section support a 32-bit memory buffer address space. The interface consists of a Periodic Schedule,
Periodic Frame List, Asynchronous Schedule, Isochronous Transaction Descriptors, Split-transaction
Isochronous Transfer Descriptors, Queue Heads, and Queue Element Transfer Descriptors.

The periodic frame list is the root of all periodic (isochronous and interrupt transfer type) support for the
host controller interface. The asynchronous list is the root for all the bulk and control transfer type support.
Isochronous data streams are managed using Isochronous Transaction Descriptors. Isochronous
split-transaction data streams are managed with Split-transaction Isochronous Transfer Descriptors. All
Interrupt, Control, and Bulk data streams are managed via queue heads and Queue Element Transfer
Descriptors. These data structures are optimized to reduce the total memory footprint of the schedule and
to reduce (on average) the number of memory accesses needed to execute a USB transaction.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-47

Note that the software must ensure that no interface data structure reachable by the EHCI host controller
spans a 4K-page boundary.

The data structures defined in this section are (from the host controller’s perspective) a mix of read-only
and read/writable fields. The host controller must preserve the read-only fields on all data structure writes.

24.8.1 Periodic Frame List

Figure 24-35 shows the organization of the periodic schedule. This schedule is for all periodic transfers
(isochronous and interrupt). The periodic schedule is referenced from the operational registers space using
the PERIODICLISTBASE address register and the FRINDEX register. The periodic schedule is based on
an array of pointers called the Periodic Frame List. The PERIODICLISTBASE address register is
combined with the FRINDEX register to produce a memory pointer into the frame list. The Periodic Frame
List implements a sliding window of work over time.

Figure 24-35. Periodic Schedule Organization

Split transaction Interrupt, Bulk and Control are also managed using queue heads and queue element
transfer descriptors.

The periodic frame list is a 4K-page aligned array of Frame List Link pointers. The length of the frame list
may be programmable. The programmability of the periodic frame list is exported to the system software
via the HCCPARAMS register. If non-programmable, the length is 1024 elements. If programmable, the
length can be selected by the system software as one of 256, 512, or 1024 elements. An implementation
must support all three sizes. Programming the size (that is, the number of elements) is accomplished by
the system software writing the appropriate value into Frame List Size field in the USBCMD register.

Frame List Link pointers direct the host controller to the first work item in the frame’s periodic schedule
for the current micro-frame. The link pointers are aligned on DWord boundaries within the Frame List.
Figure 24-36 shows the format for the Frame List Link Pointer.

Last
Periodic has
End of
List Mark

FRINDEX

PeriodicListBase

Operational
Registers

Periodic Frame
List Element

Address

•
•
•

8

A

A

A

A

A

A

4

1

1024, 512, or 256
Elements

Interrupt Queue
Heads

Poll Rate: N ––> 1

Isochronous Transfer
Descriptor(s)

Periodic Frame List

•
•
•

• • •
A

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-48 Freescale Semiconductor

Frame List Link pointers always reference memory objects that are 32-byte aligned. The referenced object
may be an isochronous transfer descriptor for high-speed devices, a split-transaction isochronous transfer
descriptor (for full-speed isochronous endpoints), or a queue head (used to support high-, full- and
low-speed interrupt). The system software should not place non-periodic schedule items into the periodic
schedule. The least significant bits in a frame list pointer are used to key the host controller as to the type
of object the pointer is referencing.

The least significant bit is the T-Bit (bit 0). When this bit is set, the host controller will never use the value
of the frame list pointer as a physical memory pointer. The Typ field is used to indicate the exact type of
data structure being referenced by this pointer. The value encodings for the Typ field are given in
Table 24-37.

24.8.2 Asynchronous List Queue Head Pointer

The Asynchronous Transfer List (based at the ASYNCLISTADDR register) is where all the control and
bulk transfers are managed. Host controllers use this list only when it reaches the end of the periodic list,
the periodic list is disabled, or the periodic list is empty.

Figure 24-37. Asynchronous Schedule Organization

The Asynchronous list is a simple circular list of queue heads. The ASYNCLISTADDR register is simply
pointer to the next queue head. This implements a pure round-robin service for all queue heads linked into
the asynchronous list.

31 5 4 3 2 1 0

Frame List Link Pointer 00 Typ T

Figure 24-36. Frame List Link Pointer Format

Table 24-37. Typ Field Encodings

Typ Description

00 Isochronous Transfer Descriptor

01 Queue Head

10 Split Transaction Isochronous Transfer Descriptor

11 Frame Span Traversal Node.

AsyncListAddr

Operational
Registers Bulk/Control Queue Heads

H

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-49

24.8.3 Isochronous (High-Speed) Transfer Descriptor (iTD)

The format of an isochronous transfer descriptor is illustrated in Figure 24-38. This structure is used only
for high-speed isochronous endpoints. All other transfer types should use queue structures. Isochronous
TDs must be aligned on a 32-byte boundary.

24.8.3.1 Next Link Pointer

The first DWord of an iTD is a pointer to the next schedule data structure.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Offset

Next Link Pointer 00 Typ T 0x00

Status1

1 Host controller read/write; all others read-only.

Transaction 0 Length1 ioc PG2

2 These fields may be modified by the host controller if the I/O field indicates an OUT.

Transaction 0 Offset2 0x04

Status1 Transaction 1 Length1 ioc PG2 Transaction 1 Offset2 0x08

Status1 Transaction 2 Length1 ioc PG2 Transaction 2 Offset2 0x0C

Status1 Transaction 3 Length1 ioc PG2 Transaction 3 Offset2 0x10

Status1 Transaction 4 Length1 ioc PG2 Transaction 4 Offset2 0x14

Status1 Transaction 5 Length1 ioc PG2 Transaction 5 Offset2 0x18

Status1 Transaction 6 Length1 ioc PG2 Transaction 6 Offset2 0x1C

Status1 Transaction 7 Length1 ioc PG2 Transaction 7 Offset2 0x20

Buffer Pointer (Page 0) EndPt R Device Address 0x24

Buffer Pointer (Page 1) I/O Maximum Packet Size 0x28

Buffer Pointer (Page 2) Reserved Mult 0x2C

Buffer Pointer (Page 3) Reserved 0x30

Buffer Pointer (Page 4) Reserved 0x34

Buffer Pointer (Page 5) Reserved 0x38

Buffer Pointer (Page 6) Reserved 0x3C

Figure 24-38. Isochronous Transaction Descriptor (iTD)

Table 24-38. Next Schedule Element Pointer

Bit Name Description

31–5 Link Pointer These bits correspond to memory address signals [31–5], respectively. This field points to another
Isochronous Transaction Descriptor (iTD/siTD) or Queue Head (QH).

4–3 – Reserved. These bits are reserved and their value has no effect on operation. The software should initialize
this field to zero.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-50 Freescale Semiconductor

24.8.3.2 iTD Transaction Status and Control List

DWords 1 through 8 are eight slots of transaction control and status. Each transaction description includes:

• Status results field

• Transaction length (bytes to send for OUT transactions and bytes received for IN transactions).

• Buffer offset. The PG and Transaction n Offset fields are used with the buffer pointer list to
construct the starting buffer address for the transaction.

The host controller uses the information in each transaction description plus the endpoint information
contained in the first three DWords of the Buffer Page Pointer list, to execute a transaction on the USB.

2–1 Typ This field indicates to the Host Controller whether the item referenced is an iTD, siTD or a QH. This allows
the Host Controller to perform the proper type of processing on the item after it is fetched. Value encodings
are:
00 iTD (isochronous transfer descriptor)
01 QH (queue head)
10 siTD (split transaction isochronous transfer descriptor
11 FSTN (frame span traversal node)

0 T Terminate
1 Link Pointer field is not valid
0 Link Pointer field is valid

Table 24-39. iTD Transaction Status and Control

Bit Name Description

31–28 Status This field records the status of the transaction executed by the host controller for this slot. This field is
a bit vector with the following encoding:
31 Active. Set by the software to enable the execution of an isochronous transaction by the Host

Controller. When the transaction associated with this descriptor is completed, the Host Controller
sets this bit to zero indicating that a transaction for this element should not be executed when it is
next encountered in the schedule.

30 Data Buffer Error. Set by the Host Controller during status update to indicate that the Host Controller
is unable to keep up with the reception of incoming data (overrun) or is unable to supply data fast
enough during transmission (underrun). If an overrun condition occurs, no action is necessary.

29 Babble Detected. Set by the Host Controller during status update when” babble” is detected during
the transaction generated by this descriptor.

28 Transaction Error (XactErr). Set by the Host Controller during status update in the case where the
host did not receive a valid response from the device (Time-out, CRC, Bad PID, etc.). This bit may
only be set for isochronous IN transactions.

27–16 Transaction n
Length

For an OUT, this field is the number of data bytes the host controller will send during the transaction.
The host controller is not required to update this field to reflect the actual number of bytes transferred
during the transfer. For an IN, the initial value of the endpoint to deliver. During the status update, the
host controller writes back the field is the number of bytes the host expects the number of bytes
successfully received. The value in this register is the actual byte count (for example, 0 zero length
data, 1 one byte, 2 two bytes, etc.). The maximum value this field may contain is 0xC00 (3072).

15 ioc Interrupt on complete. If this bit is set, it specifies that when this transaction completes, the Host
Controller should issue an interrupt at the next interrupt threshold.

Table 24-38. Next Schedule Element Pointer (continued)

Bit Name Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-51

24.8.3.3 iTD Buffer Page Pointer List (Plus)

DWords 9–15 of an isochronous transaction descriptor are nominally page pointers (4K aligned) to the data
buffer for this transfer descriptor. This data structure requires the associated data buffer to be contiguous
(relative to virtual memory), but allows the physical memory pages to be non-contiguous. Seven page
pointers are provided to support the expression of eight isochronous transfers. The seven pointers allow for
3 (transactions) × 1024 (maximum packet size) × 8 (transaction records) = 24576 bytes to be moved with
this data structure, regardless of the alignment offset of the first page.

Since each pointer is a 4K aligned page pointer, the least significant 12 bits in several of the page pointers
are used for other purposes.

14–12 PG These bits are set by the software to indicate which of the buffer page pointers the offset field in this
slot should be concatenated to produce the starting memory address for this transaction. The valid
range of values for this field is 0 to 6.

11–0 Transaction n
Offset

This field is a value that is an offset, expressed in bytes, from the beginning of a buffer. This field is
concatenated onto the buffer page pointer indicated in the adjacent PG field to produce the starting
buffer address for this transaction.

Table 24-40. Buffer Pointer Page 0 (Plus)

Bit Name Description

 31–12 Buffer Pointer
(Page 0)

This is a 4K aligned pointer to physical memory. Corresponds to memory address bits [31–12].

 11–8 EndPt This 4-bit field selects the particular endpoint number on the device serving as the data source or
sink.

 7 – Reserved. Reserved for future use and should be initialized by he software to zero.

 6–0 Device Address This field selects the specific device serving as the data source or sink.

Table 24-41. iTD Buffer Pointer Page 1 (Plus)

Bit Name Description

31–12 Buffer Pointer
(Page 1)

This is a 4K aligned pointer to physical memory. Corresponds to memory address bits [31–12].

11 I/O Direction (I/O). This field encodes whether the high-speed transaction should use an IN or OUT PID.
0 Out
1 In

10–0 Maximum
Packet Size

This directly corresponds to the maximum packet size of the associated endpoint (wMaxPacketSize).
This field is used for high-bandwidth endpoints where more than one transaction is issued per
transaction description (.for example, per micro-frame). This field is used with the Multi field to support
high-bandwidth pipes. This field is also used for all IN transfers to detect packet babble. The software
should not set a value larger than 1024 (400h). Any value larger yields undefined results.

Table 24-39. iTD Transaction Status and Control (continued)

Bit Name Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-52 Freescale Semiconductor

24.8.4 Split Transaction Isochronous Transfer Descriptor (siTD)

All Full-speed isochronous transfers through the internal transaction translator are managed using the siTD
data structure. This data structure satisfies the operational requirements for managing the split transaction
protocol.

Hi Boss.

24.8.4.1 Next Link Pointer

DWord0 of a siTD is a pointer to the next schedule data structure.

Table 24-42. Buffer Pointer Page 2 (Plus)

Bit Name Description

31–12 Buffer Pointer
(Page 2)

This is a 4K aligned pointer to physical memory. Corresponds to memory address bits [31–12].

11–2 – Reserved. This bit reserved for future use and should be cleared.

1–0 Mult This field is used to indicate to the host controller the number of transactions that should be executed
per transaction description (for example, per micro-frame). The valid values are:
00 Reserved. A zero in this field yields undefined results.
01 One transaction to be issued for this endpoint per micro-frame
10 Two transactions to be issued for this endpoint per micro-frame
11 Three transactions to be issued for this endpoint per micro-frame

Table 24-43. Buffer Pointer Page 3–6

Bit Name Description

31–12 Buffer Pointer This is a 4K aligned pointer to physical memory. Corresponds to memory address bits [31–12].

11–2 – Reserved. These bits reserved for future use and should be cleared.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Offset

Next Link Pointer 00 Typ T 0x00

I/O Port Number 0 Hub Address 0000 EndPt 0 Device Address 0x04

0000_0000_0000_00000 µFrame C-mask µFrame S-mask 0x08

ioc P1

1 Host controller read/write; all others read-only.

0000 Total Bytes to Transfer1 µFrame C-prog-mask1 Status1 0x0C

Buffer Pointer (Page 0) Current Offset1 0x10

Buffer Pointer (Page 1) 000_0000 TP1 T-count1 0x14

Back Pointer 0000 T 0x18

Figure 24-39. Split-Transaction Isochronous Transaction Descriptor (siTD)

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-53

24.8.4.2 siTD Endpoint Capabilities/Characteristics

DWords 1 and 2 specify static information about the full-speed endpoint, the addressing of the parent
Companion Controller, and micro-frame scheduling control.

Table 24-44. Next Link Pointer

Bit Name Description

31–5 Next Link
Pointer

This field contains the address of the next data object to be processed in the periodic list and
corresponds to memory address signals [31–5], respectively.

4–3 – Reserved. These bits must be written as zeros.

2–1 Typ This field indicates to the Host Controller whether the item referenced is an iTD/siTD or a QH. This
allows the Host Controller to perform the proper type of processing on the item after it is fetched.
Value encodings are:
00 iTD (isochronous transfer descriptor)
01 QH (queue head)
10 siTD (split transaction isochronous transfer descriptor
11 FSTN (frame span traversal node)

0 T Terminate.
0 Link Pointer is valid
1 Link Pointer field is not valid

Table 24-45. Endpoint and Transaction Translator Characteristics

Bit Name Description

31 I/O Direction (I/O). This field encodes whether the full-speed transaction should be an IN or OUT.
0 Out
1 In

30–24 Port Number This field is the port number of the recipient Transaction Translator.

23 – Reserved. Bit reserved and should be cleared.

22–16 Hub Address This field holds the device address of the Companion Controllers’ hub.

15–12 – Reserved. Field reserved and should be cleared.

11–8 EndPt Endpoint Number. This 4-bit field selects the particular endpoint number on the device serving as
the data source or sink.

7 – Reserved. Bit is reserved for future use. It should be cleared.

6–0 Device Address This field selects the specific device serving as the data source or sink.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-54 Freescale Semiconductor

24.8.4.3 siTD Transfer State

DWords 3–6 are used to manage the state of the transfer.

Table 24-46. Micro-frame Schedule Control

Bit Name Description

31–16 – Reserved. This field reserved for future use. It should be cleared.

15–8 µFrame C-mask Split Completion Mask. This field (along with the Active and SplitX- state fields in the Status byte) is
used to determine during which micro-frames the host controller should execute complete-split
transactions. When the criteria for using this field is met, an all zeros value has undefined behavior.
The host controller uses the value of the three low-order bits of the FRINDEX register to index into
this bit field. If the FRINDEX register value indexes to a position where the µFrame C-Mask field is a
one, then this siTD is a candidate for transaction execution. There may be more than one bit in this
mask set.

7–0 µFrame S-mask Split Start Mask. This field (along with the Active and SplitX-state fields in the Status byte) is used to
determine during which micro-frames the host controller should execute start-split transactions. The
host controller uses the value of the three low-order bits of the FRINDEX register to index into this bit
field. If the FRINDEX register value indexes to a position where the µFrame S-mask field is a one, then
this siTD is a candidate for transaction execution. An all zeros value in this field, in combination with
existing periodic frame list has undefined results.

Table 24-47. siTD Transfer Status and Control

Bit Name Description

31 ioc Interrupt On Complete
0 Do not interrupt when transaction is complete.
1 Do interrupt when transaction is complete. When the host controller determines that the split

transaction has completed, it will assert a hardware interrupt at the next interrupt threshold.

30 P Page Select. Used to indicate which data page pointer should be concatenated with the
CurrentOffset field to construct a data buffer pointer.
0 Selects Page 0 pointer
1 Selects Page 1 pointer
The host controller is not required to write this field back when the siTD is retired (Active bit
transitioned from a one to a zero).

29–26 – Reserved. This field reserved for future use and should be cleared.

25–16 Total Bytes to
Transfer

This field is initialized by the software to the total number of bytes expected in this transfer. Maximum
value is 1023 (3FFh)

15–8 µFrame
C-prog-mask

Split complete progress mask. This field is used by the host controller to record which
split-completes have been executed.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-55

24.8.4.4 siTD Buffer Pointer List (Plus)

DWords 4 and 5 are the data buffer page pointers for the transfer. This structure supports one physical page
cross. The most significant 20 bits of each DWord in this section are the 4K (page) aligned buffer pointers.
The least significant 12 bits of each DWord are used as additional transfer state.

7–0 Status This field records the status of the transaction executed by the host controller for this slot. This field
is a bit vector with the following encoding:

Status Bit Definition

7 Active. Set by the software to enable the execution of an isochronous split
transaction by the Host Controller.

6 ERR. Set by the Host Controller when an ERR response is received from the
Companion Controller.

5 Data Buffer Error. Set by the Host Controller during status update to indicate that the
Host Controller is unable to keep up with the reception of incoming data (overrun) or
is unable to supply data fast enough during transmission (under run). In the case of
an under run, the Host Controller will transmit an incorrect CRC (thus invalidating the
data at the endpoint). If an overrun condition occurs, no action is necessary.

4 Babble Detected. Set by the Host Controller during status update when” babble” is
detected during the transaction generated by this descriptor.

3 Transaction Error (XactErr). Set by the Host Controller during status update in the
case where the host did not receive a valid response from the device (Time-out,
CRC, Bad PID, etc.). This bit will only be set for IN transactions.

2 Missed Micro-Frame. The host controller detected that a host-induced hold- off
caused the host controller to miss a required complete-split transaction.

1 Split Transaction State (SplitXstate). The bit encodings are:
0 Do Start Split. This value directs the host controller to issue a Start split

transaction to the endpoint when a match is encountered in the S-mask.
1 Do Complete Split. This value directs the host controller to issue a Complete split

transaction to the endpoint when a match is encountered in the C-mask.

0 Reserved. Bit reserved for future use and should be cleared.

Table 24-48. siTD Buffer Pointer Page 0 (Plus)

Bit Name Description

31–12 Buffer Pointer
(Page 0)

Bits [31–12] is a 4K page-aligned, physical memory addresses. These bits correspond to physical
address bits [31–12] respectively. The field P specifies the current active pointer

11–0 Current Offset The 12 least significant bits of the Page 0 pointer is the current byte offset for the current page
pointer (as selected with the page indicator bit (P field)). The host controller is not required to write
this field back when the siTD is retired (Active bit transitioned from a one to a zero).

Table 24-47. siTD Transfer Status and Control (continued)

Bit Name Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-56 Freescale Semiconductor

24.8.4.5 siTD Back Link Pointer

DWord 6 of a siTD is simply another schedule link pointer. This pointer is always zero, or references a
siTD. This pointer cannot reference any other schedule data structure.

24.8.5 Queue Element Transfer Descriptor (qTD)

This data structure is only used with a queue head. This data structure is used for one or more USB
transactions. This data structure is used to transfer up to 20480 (5 × 4096) bytes. The structure contains
two structure pointers used for queue advancement, a DWord of transfer state, and a five-element array of
data buffer pointers. This structure is 32 bytes (or one 32-byte cache line). This data structure must be
physically contiguous.

The buffer associated with this transfer must be virtually contiguous. The buffer may start on any byte
boundary. A separate buffer pointer list element must be used for each physical page in the buffer,
regardless of whether the buffer is physically contiguous.

Host controller updates (host controller writes) to stand-alone qTDs only occur during transfer retirement.
References in the following bit field definitions of updates to the qTD are to the qTD portion of a queue
head.

Table 24-49. siTD Buffer Pointer Page 1 (Plus)

Bit Name Description

31–12 Buffer Pointer
(Page 1)

Bits [31–12] is a 4K page-aligned, physical memory addresses. These bits correspond to physical
address bits [31–12] respectively. The field P specifies the current active pointer

11–5 – Reserved.

4–3 TP Transaction position. This field is used with T-count to determine whether to send all, first, middle, or
last with each outbound transaction payload. The system software must initialize this field with the
appropriate starting value. The host controller must correctly manage this state during the lifetime of
the transfer. The bit encodings are:
00 All. The entire full-speed transaction data payload is in this transaction (that is, less than or equal

to 188 bytes).
01 Begin. This is the first data payload for a full-speed transaction that is greater than 188 bytes.
10 Mid. This is the middle payload for a full-speed OUT transaction that is larger than 188 bytes.
11 End. This is the last payload for a full-speed OUT transaction that was larger than 188 bytes.

2–0 T-Count Transaction count. The software initializes this field with the number of OUT start-splits this transfer
requires. Any value larger than 6 is undefined.

Table 24-50. siTD Back Link Pointer

Bit Name Description

31–5 Back Pointer This field is a physical memory pointer to a siTD.

4–1 – Reserved. This field is reserved for future use. It should be cleared.

0 T Terminate
0 siTD Back Pointer field is valid
1 siTD Back Pointer field is not valid

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-57

Queue Element Transfer Descriptors must be aligned on 32-byte boundaries.

24.8.5.1 Next qTD Pointer

The first DWord of an element transfer descriptor is a pointer to another transfer element descriptor.

24.8.5.2 Alternate Next qTD Pointer

The second DWord of a queue element transfer descriptor is used to support hardware-only advance of the
data stream to the next client buffer on short packet. To be more explicit the host controller will always use
this pointer when the current qTD is retired due to short packet.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Offset

Next qTD Pointer 0000 T 0x00

Alternate Next qTD Pointer 0000 T 0x04

dt1

1 Host controller read/write; all others read-only.

Total Bytes to Transfer1 ioc C_Page1 Cerr1
PID

Code
Status1 0x08

Buffer Pointer (Page 0) Current Offset1 0x0C

Buffer Pointer (Page 1) 0000_0000_0000 0x10

Buffer Pointer (Page 2) 0000_0000_0000 0x14

Buffer Pointer (Page 3) 0000_0000_0000 0x18

Buffer Pointer (Page 4) 0000_0000_0000 0x1C

Figure 24-40. Queue Element Transfer Descriptor (qTD)

Table 24-51. qTD Next Element Transfer Pointer (DWord 0)

Bit Name Description

31–5 Next qTD
Pointer

This field contains the physical memory address of the next qTD to be processed. The field corresponds to
memory address signals[31–5], respectively.

4–1 – Reserved. These bits are reserved and their value has no effect on operation.

0 T Terminate. This bit indicates to the Host Controller that there are no more valid entries in the queue.
0 Pointer is valid (points to a valid Transfer Element Descriptor).
1 Pointer is invalid.

Table 24-52. qTD Alternate Next Element Transfer Pointer (DWord 1)

Bit Name Description

31–5 Alternate Next
qTD Pointer

This field contains the physical memory address of the next qTD to be processed in the event that the
current qTD execution encounters a short packet (for an IN transaction). The field corresponds to
memory address signals [31–5], respectively.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-58 Freescale Semiconductor

24.8.5.3 qTD Token

The third DWord of a queue element transfer descriptor contains most of the information the host
controller requires to execute a USB transaction (the remaining endpoint-addressing information is
specified in the queue head). Note that some of the field descriptions in Table 24-53 reference fields
defined in the queue head. See Section 24.8.6, “Queue Head,” for more information on these fields.

4–1 – Reserved. These bits are reserved and their value has no effect on operation.

0 T Terminate. This bit indicates to the Host Controller that there are no more valid entries in the queue.
0 Pointer is valid (points to a valid Transfer Element Descriptor).
1 Pointer is invalid.

Table 24-53. qTD Token (DWord 2)

Bit Name Description

31 dt Data Toggle. This is the data toggle sequence bit. The use of this bit depends on the setting of the Data
Toggle Control bit in the queue head.

30–16 Total Bytes
to Transfer

Total Bytes to Transfer. This field specifies the total number of bytes to be moved with this transfer
descriptor. This field is decremented by the number of bytes actually moved during the transaction, only
on the successful completion of the transaction. The maximum value the software may store in this field is
5 × 4K (0x5000). This is the maximum number of bytes 5 page pointers can access. If the value of this
field is zero when the host controller fetches this transfer descriptor (and the active bit is set), the host
controller executes a zero-length transaction and retires the transfer descriptor. It is not a requirement for
OUT transfers that Total Bytes To Transfer be an even multiple of QH[Maximum Packet Length]. If the
software builds such a transfer descriptor for an OUT transfer, the last transaction will always be less than
QH[Maximum Packet Length]. Although it is possible to create a transfer up to 20K this assumes the page
is 0. When the offset cannot be predetermined, crossing past the 5th page can be guaranteed by limiting
the total bytes to 16K. Therefore, the maximum recommended transfer is 16K(0x4000).

15 ioc Interrupt On Complete. If this bit is set, it specifies that when this qTD is completed, the Host Controller
should issue an interrupt at the next interrupt threshold.

14–12 C_Page Current Page. This field is used as an index into the qTD buffer pointer list. Valid values are in the range
0x0 to 0x4. The host controller is not required to write this field back when the qTD is retired.

Table 24-52. qTD Alternate Next Element Transfer Pointer (DWord 1) (continued)

Bit Name Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-59

11–10 Cerr Error Counter. This field is a 2-bit down counter that keeps track of the number of consecutive errors
detected while executing this qTD. If this field is programmed with a non-zero value during set-up, the host
controller decrements the count and writes it back to the qTD if the transaction fails. If the counter counts
from one to zero, the host controller marks the qTD inactive, sets the Halted bit to a one, and error status
bit for the error that caused Cerr to decrement to zero. An interrupt will be generated if the USB Error
Interrupt Enable bit in the USBINTR register is set. If the host controller driver (HCD) software programs
this field to zero during set-up, the host controller will not count errors for this qTD and there will be no limit
on the retries of this qTD.
Note: Write-backs of intermediate execution state are to the queue head overlay area, not the qTD.

Error Decrement Counter

Transaction
Error

Yes

Data Buffer
Error

No. Data buffer errors are host problems. They don't count against the device's retries.
Note: The software must not program Cerr to a value of zero when the EPS field is

programmed with a value indicating a Full- or Low-speed device. This combination
could result in undefined behavior.

Stalled No. Detection of Babble or Stall automatically halts the queue head. Thus, count is not
decremented

Babble
Detected

No. Detection of Babble or Stall automatically halts the queue head. Thus, count is not
decremented

No Error No. If the EPS field indicates a HS device or the queue head is in the Asynchronous
Schedule (and PIDCode indicates an IN or OUT) and a bus transaction completes and the
host controller does not detect a transaction error, then the host controller should reset Cerr
to extend the total number of errors for this transaction. For example, Cerr should be reset
with maximum value (0b11) on each successful completion of a transaction. The host
controller must never reset this field if the value at the start of the transaction is 0b00.

9–8 PID Code This field is an encoding of the token, which should be used for transactions associated with this transfer
descriptor. Encodings are:
00 OUT Token generates token (E1H)
01 IN Token generates token (69H)
10 SETUP Token generates token (2DH) (undefined if endpoint is an Interrupt transfer type, for example.

µFrame S-mask field in the queue head is non-zero.)
11 Reserved.

Table 24-53. qTD Token (DWord 2) (continued)

Bit Name Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-60 Freescale Semiconductor

7–0 Status This field is used by the host controller to communicate individual command execution states back to the
host controller driver (HCD) software. This field contains the status of the last transaction performed on
this qTD. The bit encodings are:

Bit Status Field Description

7 Active. Set by the software to enable the execution of transactions by the host controller.

6 Halted. Set by the host controller during status updates to indicate that a serious error has
occurred at the device/endpoint addressed by this qTD. This can be caused by babble, the
error counter counting down to zero, or reception of the STALL handshake from the device
during a transaction. Any time that a transaction results in the Halted bit being set, the Active
bit is also cleared.

5 Data Buffer Error. Set by the host controller during status update to indicate that the host
controller is unable to keep up with the reception of incoming data (overrun) or is unable to
supply data fast enough during transmission (under run). If an overrun condition occurs, the
host controller will force a time-out condition on the USB, invalidating the transaction at the
source. If the host controller sets this bit to a one, then it remains a one for the duration of
the transfer.

4 Babble Detected. Set by the host controller during status update when babble is detected
during the transaction. In addition to setting this bit, the host controller also sets the Halted
bit to a one. Since babble is considered a fatal error for the transfer, setting the Halted bit to
a one insures that no more transactions occur because of this descriptor.

3 Transaction Error (XactErr). Set by the host controller during status update in the case
where the host did not receive a valid response from the device (time-out, CRC, bad PID).
If the host controller sets this bit to a one, then it remains a one for the duration of the
transfer.

2 Missed Micro-Frame. This bit is ignored unless the QH[EPS] field indicates a full- or
low-speed endpoint and the queue head is in the periodic list. This bit is set when the host
controller detected that a host-induced hold-off caused the host controller to miss a required
complete-split transaction. If the host controller sets this bit to a one, then it remains a one
for the duration of the transfer.

1 Split Transaction State (SplitXstate). This bit is ignored by the host controller unless the
QH[EPS] field indicates a full- or low-speed endpoint. When a full- or low-speed device, the
host controller uses this bit to track the state of the split- transaction. The functional
requirements of the host controller for managing this state bit and the split transaction
protocol depends on whether the endpoint is in the periodic or asynchronous schedule. The
bit encodings are:
0 Do Start Split. This value directs the host controller to issue a Start split transaction to

the endpoint.
1 Do Complete Split. This value directs the host controller to issue a Complete split

transaction to the endpoint.

0 Ping State (P)/ERR. If the QH[EPS] field indicates a high-speed device and the PID Code
indicates an OUT endpoint, then this is the state bit for the Ping protocol. The bit encodings
are:
0 Do OUT. This value directs the host controller to issue an OUT PID to the endpoint.
1 Do Ping. This value directs the host controller to issue a PING PID to the endpoint.
If the QH[EPS] field does not indicate a high-speed device, then this field is used as an error
indicator bit. It is set by the host controller whenever a periodic split-transaction receives an
ERR handshake.

Table 24-53. qTD Token (DWord 2) (continued)

Bit Name Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-61

24.8.5.4 qTD Buffer Page Pointer List

The last five DWords of a queue element transfer descriptor is an array of physical memory address
pointers. These pointers reference the individual pages of a data buffer.

The system software initializes Current Offset field to the starting offset into the current page, where
current page is selected via the value in the C_Page field.

24.8.6 Queue Head

Figure 24-41 shows the queue head structure.

Table 24-54. qTD Buffer Pointer

Bit Name Description

31–12 Buffer Pointer
(page n)

Each element in the list is a 4K page aligned physical memory address. The lower 12 bits in each pointer
are reserved (except for the first one), as each memory pointer must reference the start of a 4K page.
The field C_Page specifies the current active pointer. When the transfer element descriptor is fetched,
the starting buffer address is selected using C_Page (similar to an array index to select an array
element). If a transaction spans a 4K buffer boundary, the host controller must detect the page-span
boundary in the data stream, increment C_Page and advance to the next buffer pointer in the list, and
conclude the transaction via the new buffer pointer.

11–0 Current Offset
(Page 0)/

–
(Pages 1-4)

This field is reserved in all pointers except the first one (that is, Page 0). The host controller should ignore
all reserved bits. For the page 0 current offset interpretation, this field is the byte offset into the current
page (as selected by C_Page). The host controller is not required to write this field back when the qTD
is retired. The software should ensure the reserved fields are initialized to zeros.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Offset

Queue Head Horizontal Link Pointer 00 Typ T 0x00

RL C Maximum Packet Length H dtc EPS EndPt I Device Address 0x041

1 Offsets 0x04 through 0x0B contain the static endpoint state.

Mult Port Number Hub Addr µFrame C-mask µFrame S-mask 0x081

Current qTD Pointer2

2 Host controller read/write; all others read-only.

00000 0x0C

Next qTD Pointer2 0000 T2 0x103

3 Offsets 0x10 through 0x2F contain the transfer overlay.

Alternate Next qTD Pointer2 NakCnt2 T2 0x143,4

4 Offsets 0x14 through 0x27 contain the transfer results.

dt1 Total Bytes to Transfer2 ioc2 C_Page2 Cerr2
PID

Code2 Status2 0x183,4

Buffer Pointer (Page 0)2 Current Offset2 0x1C3,4

Buffer Pointer (Page 1)2 0000 C-prog-mask2 0x203,4

Buffer Pointer (Page 2)2 S-bytes2 FrameTag2 0x243,4

Buffer Pointer (Page 3)2 0000_0000_0000 0x283

Buffer Pointer (Page 4)2 0000_0000_0000 0x2C3

Figure 24-41. Queue Head Layout

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-62 Freescale Semiconductor

24.8.6.1 Queue Head Horizontal Link Pointer

The first DWord of a Queue Head contains a link pointer to the next data object to be processed after any
required processing in this queue has been completed, as well as the control bits defined below.

This pointer may reference a queue head or one of the isochronous transfer descriptors. It must not
reference a queue element transfer descriptor.

24.8.6.2 Endpoint Capabilities/Characteristics

The second and third DWords of a Queue Head specifies static information about the endpoint. This
information does not change over the lifetime of the endpoint. There are three types of information in this
region:

• Endpoint Characteristics. These are the USB endpoint characteristics including addressing,
maximum packet size, and endpoint speed.

• Endpoint Capabilities. These are adjustable parameters of the endpoint. They effect how the
endpoint data stream is managed by the host controller.

• Split Transaction Characteristics. This data structure is used to manage full- and low-speed data
streams for bulk, control, and interrupt via split transactions to USB2.0 Hub Transaction Translator.
There are additional fields used for addressing the hub and scheduling the protocol transactions (for
periodic).

The host controller must not modify the bits in this region.

Table 24-55. Queue Head DWord 0

Bit Name Description

31–5 QHLP Queue Head Horizontal Link Pointer. This field contains the address of the next data object to be processed in
the horizontal list and corresponds to memory address signals [31–5], respectively.

4–3 – Reserved. These bits must be written as zeros.

2–1 Typ This field indicates to the hardware whether the item referenced by the link pointer is an iTD, siTD or a QH. This
allows the host controller to perform the proper type of processing on the item after it is fetched.
00 iTD (isochronous transfer descriptor)
01 QH (queue head)
10 siTD (split transaction isochronous transfer descriptor)
11 FSTN (frame span traversal node)

0 T Terminate.
1 Last QH (pointer is invalid).
0 Pointer is valid.
If the queue head is in the context of the periodic list, a one bit in this field indicates to the host controller that this
is the end of the periodic list. This bit is ignored by the host controller when the queue head is in the
Asynchronous schedule. The software must ensure that queue heads reachable by the host controller always
have valid horizontal link pointers.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-63

Table 24-56. Endpoint Characteristics: Queue Head DWord 1

Bit Name Description

31–28 RL Nak count reload. This field contains a value, which is used by the host controller to reload the Nak
Counter field.

27 C Control endpoint flag. If the QH[EPS] field indicates the endpoint is not a high-speed device, and the
endpoint is a control endpoint, then the software must set this bit to a one. Otherwise, it should
always set this bit to a zero.

26–16 Maximum
Packet Length

This directly corresponds to the maximum packet size of the associated endpoint (wMaxPacketSize).
The maximum value this field may contain is 0x400 (1024).

15 H Head of reclamation list flag. This bit is set by the system software to mark a queue head as being
the head of the reclamation list.

14 dtc Data Toggle Control (DTC). This bit specifies where the host controller should get the initial data
toggle on an overlay transition.
0 Ignore DT bit from incoming qTD. Host controller preserves DT bit in the queue head.
1 Initial data toggle comes from incoming qTD DT bit. Host controller replaces DT bit in the queue

head from the DT bit in the qTD.

13–12 EPS Endpoint Speed. This is the speed of the associated endpoint.
00 Full-Speed (12Mbs)
01 Low-Speed (1.5Mbs)
10 High-Speed (480 Mb/s)
11 Reserved. This field must not be modified by the host controller.

11–8 EndPt Endpoint Number. This 4-bit field selects the particular endpoint number on the device serving as
the data source or sink.

7 I Inactivate on next transaction. This bit is used by the system software to request that the host
controller set the Active bit to zero. This field is only valid when the queue head is in the Periodic
Schedule and the EPS field indicates a Full or Low-speed endpoint. Setting this bit to a one when
the queue head is in the Asynchronous Schedule or the EPS field indicates a high-speed device
yields undefined results.

6–0 Device Address This field selects the specific device serving as the data source or sink.

Table 24-57. Endpoint Capabilities: Queue Head DWord 2

Bit Name Description

31–30 Mult High-Bandwidth Pipe Multiplier. This field is a multiplier used to key the host controller as the number
of successive packets the host controller may submit to the endpoint in the current execution. The
host controller makes the simplifying assumption that the software properly initializes this field
(regardless of location of queue head in the schedules or other run time parameters).
00 Reserved. A zero in this field yields undefined results.
01 One transaction to be issued for this endpoint per micro-frame
10 Two transactions to be issued for this endpoint per micro-frame
11 Three transactions to be issued for this endpoint per micro-frame

29–23 Port Number This field is ignored by the host controller unless the EPS field indicates a full- or low-speed device.
The value is the port number identifier on the USB 2.0 hub (for hub at device address Hub Addr
below), below which the full- or low-speed device associated with this endpoint is attached. This
information is used in the split-transaction protocol.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-64 Freescale Semiconductor

24.8.6.3 Transfer Overlay

The nine DWords in this area represent a transaction working space for the host controller. The general
operational model is that the host controller can detect whether the overlay area contains a description of
an active transfer. If it does not contain an active transfer, then it follows the Queue Head Horizontal Link
Pointer to the next queue head. The host controller will never follow the Next Transfer Queue Element or
Alternate Queue Element pointers unless it is actively attempting to advance the queue. For the duration
of the transfer, the host controller keeps the incremental status of the transfer in the overlay area. When the
transfer is complete, the results are written back to the original queue element.

The DWord3 of a Queue Head contains a pointer to the source qTD currently associated with the overlay.
The host controller uses this pointer to write back the overlay area into the source qTD after the transfer is
complete.

22–16 Hub Addr This field is ignored by the host controller unless the EPS field indicates a full-or low-speed device.
The value is the USB device address of the USB 2.0 hub below which the full- or low-speed device
associated with this endpoint is attached. This field is used in the split-transaction protocol.

15–8 µFrame C-mask This field is ignored by the host controller unless the EPS field indicates this device is a low- or
full-speed device and this queue head is in the periodic list. This field (along with the Active and
SplitX-state fields) is used to determine during which micro-frames the host controller should execute
a complete-split transaction. When the criteria for using this field are met, a zero value in this field has
undefined behavior. This field is used by the host controller to match against the three low-order bits
of the FRINDEX register. If the FRINDEX register bits decode to a position where the µFrame C- mask
field is a one, then this queue head is a candidate for transaction execution. There may be more than
one bit in this mask set.

7–0 µFrame S-mask Interrupt Schedule Mask. This field is used for all endpoint speeds. The software should set this field
to a zero when the queue head is on the asynchronous schedule. A non-zero value in this field
indicates an interrupt endpoint. The host controller uses the value of the three low-order bits of the
FRINDEX register as an index into a bit position in this bit vector. If the µFrame S-mask field has a
one at the indexed bit position then this queue head is a candidate for transaction execution. If the
EPS field indicates the endpoint is a high-speed endpoint, then the transaction executed is
determined by the PID_Code field contained in the execution area. This field is also used to support
split transaction types: Interrupt (IN/OUT). This condition is true when this field is non-zero and the
EPS field indicates this is either a full- or low-speed device. A zero value in this field, in combination
with existing in the periodic frame list has undefined results.

Table 24-58. Current qTD Link Pointer

Bit Name Description

31–5 Current qTD
Pointer

Current Element Transaction Descriptor Link Pointer. This field contains the address Of the current
transaction being processed in this queue and corresponds to memory address signals [31–5],
respectively.

4–0 – Reserved. These bits are ignored by the host controller when using the value as an address to write data.
The actual value may vary depending on the usage.

Table 24-57. Endpoint Capabilities: Queue Head DWord 2 (continued)

Bit Name Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-65

The DWords 4–11 of a queue head are the transaction overlay area. This area has the same base structure
as a Queue Element Transfer Descriptor. The queue head utilizes the reserved fields of the page pointers
to implement tracking the state of split transactions.

This area is characterized as an overlay because when the queue is advanced to the next queue element,
the source queue element is merged onto this area. This area serves an execution cache for the transfer.

24.8.7 Periodic Frame Span Traversal Node (FSTN)

This data structure is to be used only for managing Full- and Low-speed transactions that span a
Host-frame boundary. The software must not use an FSTN in the Asynchronous Schedule. An FSTN in
the Asynchronous schedule results in undefined behavior. The software must not use the FSTN feature
with a host controller whose HCIVERSION register indicates a revision implementation below 0x0096.
Note that FSTNs were not defined for EHCI implementations before Revision 0.96 of the EHCI
Specification and their use may yield undefined results.

Table 24-59. Host-Controller Rules for Bits in Overlay (DWords 5, 6, 8 and 9)

DWord QH Offset Bit Name Description

5 0x14 4–1 NakCnt Nak counter—RW. This field is a counter the host controller decrements
whenever a transaction for the endpoint associated with this queue head results
in a Nak or Nyet response. This counter is reloaded from RL before a transaction
is executed during the first pass of the reclamation list (relative to an
Asynchronous List Restart condition). It is also loaded from RL during an overlay.

6 0x18 31 dt Data toggle. The Data Toggle Control controls whether the host controller
preserves this bit when an overlay operation is performed.

6 0x18 15 ioc Interrupt on complete. The ioc control bit is always inherited from the source qTD
when the overlay operation is performed.

6 0x18 11–1
0

Cerr Error counter. This two-bit field is copied from the qTD during the overlay and
written back during queue advancement.

6 0x18 0 Status[0] Ping state (P)/ERR. If the EPS field indicates a high-speed endpoint, then this
field should be preserved during the overlay operation.

8 0x20 7–0 C-prog-mas
k

Split-transaction complete-split progress. This field is initialized to zero during any
overlay. This field is used to track the progress of an interrupt split-transaction.

9 0x24 11–5 S-bytes The software must ensure that the S-bytes field in a qTD is zero before activating
the qTD. This field is used to keep track of the number of bytes sent or received
during an IN or OUT split transaction.

9 0x24 4–0 FrameTag Split-transaction frame tag. This field is initialized to zero during any overlay. This
field is used to track the progress of an interrupt split-transaction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Offset

Normal Path Link Pointer 00 Typ T 0x00

Back Path Link Pointer 00 Typ T 0x04

Figure 24-42. Frame Span Traversal Node Structure

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-66 Freescale Semiconductor

24.8.7.1 FTSN Normal Path Pointer

The first DWord of an FSTN contains a link pointer to the next schedule object. This object can be of any
valid periodic schedule data type.

24.8.7.2 FSTN Back Path Link Pointer

The second DWord of an FTSN node contains a link pointer to a queue head. If the T-bit in this pointer is
a zero, then this FSTN is a Save-Place indicator. Its Typ field must be set by the software to indicate the
target data structure is a queue head. If the T-bit in this pointer is set, then this FSTN is the Restore
indicator. When the T-bit is a one, the host controller ignores the Typ field.

24.9 Host Operations
The general operational model is for the USB modules in host mode is defined by the Enhanced Host
Controller Interface (EHCI) Specification. The EHCI specification describes the register-level interface for
a host controller for the USB Revision 2.0. It includes a description of the hardware/software interface

Table 24-60. FTSN Normal Path Pointer

Bit Name Description

31–5 NPLP Normal Path Link Pointer. This field contains the address of the next data object to be processed in the periodic
list and corresponds to memory address signals [31–5], respectively.

4–3 – Reserved. These bits must be written as 0s.

2–1 Typ This field indicates to the host controller whether the item referenced is a iTD/siTD, a QH or an FSTN. This allows
the host controller to perform the proper type of processing on the item after it is fetched.
00 iTD (isochronous transfer descriptor)
01 QH (queue head)
10 siTD (split transaction isochronous transfer descriptor)
11 FSTN (Frame Span Traversal Node)

0 T Terminate.
0 Link Pointer is valid.
1 Link Pointer field is not valid.

Table 24-61. FSTN Back Path Link Pointer

Bit Name Description

31–5 BPLP Back Path Link Pointer. This field contains the address of a Queue Head. This field corresponds to memory
address signals [31–5], respectively.

4–3 – Reserved. These bits must be written as 0s.

2–1 Typ The software must ensure this field is set to indicate the target data structure is a Queue Head (01). Any other
value in this field yields undefined results.

0 T Terminate.
0 Link Pointer is valid (that is, the host controller may use bits [31–5] (in combination with the CTRLDSSEGMENT

register if applicable) as a valid memory address). This value also indicates that this FSTN is a Save-Place
indicator.

1 Link Pointer field is not valid (that is, the host controller must not use bits [31–5] (in combination with the
CTRLDSSEGMENT register if applicable) as a valid memory address). This value also indicates that this FSTN
is a Restore indicator.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-67

between the system software and the host controller hardware. Information concerning the initialization of
the USB modules is included in the following section; however, the full details of the EHCI specification
are beyond the scope of this document.

24.9.1 Host Controller Initialization

After initial power-on or HCReset (hardware or via HCReset bit in the USBCMD register), all of the
operational registers will be at their default values, as illustrated in Table 24-62. After a hardware reset,
only the operational registers not contained in the Auxiliary power well will be at their default values.

In order to initialize the host controller, the software should perform the following steps:

1. Optionally set Streaming Disable in the USBMODE register.

2. Optionally modify the BURSTSIZE register.

3. Program the PTS field of the PORTSCx register.

4. Set the USB_EN bit in the CONTROL register.

5. Program the CTRLDSSEGMENT register with 4-Gigabyte segment where all of the interface data
structures are allocated.

6. Write the appropriate value to the USBINTR register to enable the appropriate interrupts.

7. Write the base address of the Periodic Frame List to the PERIODICLIST BASE register. If there
are no work items in the periodic schedule, all elements of the Periodic Frame List should have
their T-Bits set.

8. Write the USBCMD register to set the desired interrupt threshold, frame list size (if applicable) and
turn the controller on via setting the Run/Stop bit.

At this point, the host controller is up and running and the port registers begin reporting device connects.
The system software can enumerate a port through the reset process (where the port is in the enabled state).
At this point, the port is active with SOFs occurring down the enabled port enabled High-speed ports, but
the schedules have not yet been enabled. The EHCI host controller will not transmit SOFs to enabled Full-
or Low-speed ports.

Table 24-62. Default Values of Operational Register Space

Operational Register Default Value (after Reset)

USBCMD 0x0008_0000

USBSTS 0x0000_1000

USBINTR 0x0000_0000

FRINDEX 0x0000_0000

CTRLDSSEGMENT 0x0000_0000

PERIODICLISTBASE Undefined

ASYNCLISTADDR Undefined

CONFIGFLAG 0x0000_00001

PORTSC 0x1c00_0004

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-68 Freescale Semiconductor

In order to communicate with devices via the asynchronous schedule, the system software must write the
ASYNDLISTADDR register with the address of a control or bulk queue head. The software must then
enable the asynchronous schedule by writing a one to the Asynchronous Schedule Enable bit in the
USBCMD register. In order to communicate with devices via the periodic schedule, the system software
must enable the periodic schedule by writing a one to the Periodic Schedule Enable bit in the USBCMD
register. Note that the schedules can be turned on before the first port is reset (and enabled).

Any time the USBCMD register is written, the system software must ensure the appropriate bits are
preserved, depending on the intended operation.

24.9.2 Power Port

The Port Power Control (PPC) bit in the HCSPARAMS register indicates whether the USB 2.0 host
controller has port power control. When the PPC bit is a one, then the host controller supports port power
switches. Each available switch has an output enable. PPE is controlled based on the state of the
combination bits PPC bit, EHCI Configured (CF)-bit and individual Port Power (PP) bits.

24.9.3 Reporting Over-Current

Host ports by definition are power providers on USB. Whether the ports are considered high- or
low-powered is a platform implementation issue. Each EHCI PORTSC register has an over-current status
and over-current change bit. The functionality of these bits is specified in the USB Specification
Revision 2.0.

In this implementation, however, over-current is not reported to the USB core. Therefore the bits:
Over-current Active and Over-current Change in the PORTSC register will be static. The over-current
detection and limiting logic resides outside the MCF5251. The USB software stack is responsible for
monitoring the Over-current condition on the external device.

24.9.4 Suspend/Resume

The host controller provides an equivalent suspend and resume model as that defined for individual ports
in a USB 2.0 hub. Control mechanisms are provided to allow the system software to suspend and resume
individual ports. The mechanisms allow the individual ports to be resumed completely via software
initiation. Other control mechanisms are provided to parameterize the host controller's response (or
sensitivity) to external resume events. In this discussion, host-initiated, or software-initiated resumes are
called Resume Events/Actions; bus-initiated resume events are called wake-up events. The classes of
wakeup events are:

• Remote-wakeup enabled device asserts resume signaling. In similar kind to USB 2.0 hubs, when
in host mode the host controller responds to explicit device resume signaling and wake up the
system (if necessary).

• Port connect and disconnect. Sensitivity to these events can be turned on or off by using the port
control bits in the PORTSC register. An Over-current event will not wake the USB core.

Selective suspend is a feature supported by the PORTSC register. It is used to place specific ports into a
suspend mode. This feature is used as a functional component for implementing the appropriate power

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-69

management policy implemented in a particular operating system. When the system software intends to
suspend the bus, it should suspend the enabled port, then shut off the controller by setting the Run/Stop bit
in the USBCMD register to a zero.

When a wake event occurs the system will resume operation, and the system software must set the
Run/Stop bit to a one and resume the suspended port.

24.9.4.1 Port Suspend/Resume

The system software places the USB into suspend mode by writing a one into the appropriate PORTSC
Suspend bit. The software must only set the Suspend bit when the port is in the enabled state (Port Enabled
bit is a one).

The host controller may evaluate the Suspend bit immediately or wait until a micro-frame or frame
boundary occurs. If evaluated immediately, the port is not suspended until the current transaction (if one
is executing) completes. Therefore, there may be several micro-frames of activity on the port until the host
controller evaluates the Suspend bit. The host controller must evaluate the Suspend bit at least every frame
boundary.

The system software can initiate a resume on the suspended port by writing a one to the Force Port Resume
bit. The software should not attempt to resume a port unless the port reports that it is in the suspended state.
If the system software sets the Force Port Resume bit when the port is not in the suspended state, the
resulting behavior is undefined. In order to assure proper USB device operation, the software must wait
for at least 10 milliseconds after a port indicates that it is suspended (Suspend bit is a one) before initiating
a port resume via the Force Port Resume bit. When Force Port Resume bit is set, the host controller sends
resume signaling down the port. The system software times the duration of the resume (nominally 20
milliseconds) then clears the Force Port Resume bit. When the host controller receives the write to
transition Force Port Resume to zero, it completes the resume sequence as defined in the USB
specification, and clears both the Force Port Resume and Suspend bits. Software-initiated port resumes do
not affect the Port Change Detect bit in the USBSTS register nor do they cause an interrupt if the Port
Change Interrupt Enable bit in the USBINTR register is a one. When a wake event occurs on a suspended
port, the resume signaling is detected by the port and the resume is reflected downstream within 100 µsec.
The port's Force Port Resume bit is set and the Port Change Detect bit in the USBSTS register is set. If the
Port Change Interrupt Enable bit in the USBINTR register is a one the host controller issues a hardware
interrupt.

The system software observes the resume event on the port, delays a port resume time (nominally 20
milliseconds), then terminates the resume sequence by clearing the Force Port Resume bit in the port. The
host controller receives the write of zero to Force Port Resume, terminates the resume sequence and clears
the Force Port Resume and Suspend port bits. The software can determine that the port is enabled (not
suspended) by sampling the PORTSC register and observing that the Suspend and Force Port Resume bits
are zero. The software must ensure that the host controller is running (that is, HCHalted bit in the USBSTS
register is a zero), before terminating a resume by clearing the port's Force Port Resume bit. If HCHalted
is a one when Force Port Resume is cleared, then SOFs will not occur down the enabled port and the device
will return to suspend mode in a maximum of 10 milliseconds.

Table 24-63 summarizes the wake-up events. Whenever a resume event is detected, the Port Change Detect
bit in the USBSTS register is set. If the Port Change Interrupt Enable bit is a one in the USBINTR register,

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-70 Freescale Semiconductor

the host controller also generates an interrupt on the resume event. The software acknowledges the resume
event interrupt by clearing the Port Change Detect status bit in the USBSTS register.

[1] Hardware interrupt issued if Port Change Interrupt Enable bit in the USBINTR register is set.
[2] PME# asserted if enabled (Note: PME Status must always be set).

[3] PME# not asserted.

24.9.5 Schedule Traversal Rules

The host controller executes transactions for devices using a simple, shared-memory schedule. The
schedule is comprised of a few data structures, organized into two distinct lists. The data structures are
designed to provide the maximum flexibility required by USB and minimize memory traffic and
hardware/software complexity.

The system software maintains two schedules for the host controller: a periodic schedule and an
asynchronous schedule. The root of the periodic schedule is the PERIODICLISTBASE register. See
Section 24.6.3.6, “Periodic Frame List Base Address Register (PERIODICLISTBASE),” for more
information. The PERIODICLISTBASE register is the physical memory base address of the periodic
frame list. The periodic frame list is an array of physical memory pointers. The objects referenced from
the frame list must be valid schedule data structures as defined in Section 24.8, “Host Data Structures.” In

Table 24-63. Behavior During Wake-up Events

Port Status and Signaling Type Signaled Port Response
Device State

D0 not D0

Port disabled, resume K-State received No Effect N/A N/A

Port suspended, Resume K-State received Resume reflected downstream on signaled port. Force Port
Resume status bit in PORTSC register is set. Port Change
Detect bit in USBSTS register is set.

[1], [2] [2]

Port is enabled, disabled or suspended, and
the port's WKDSCNNT_E bit is set. A
disconnect is detected.

Depending in the initial port state, the PORTSC Connect and
Enable status bits are cleared, and the Connect Change status
bit is set. Port Change Detect bit in the USBSTS register is set.

[1], [2] [2]

Port is enabled, disabled or suspended, and
the port's WKDSCNNT_E bit is cleared. A
disconnect is detected.

Depending on the initial port state, the PORTSC Connect and
Enable status bits are cleared, and the Connect Change status
bit is set. Port Change Detect bit in the USBSTS register is set.

[1], [3] [3]

Port is not connected and the port's
WKCNNT_E bit is a one. A connect is
detected.

PORTSC Connect Status and Connect Status Change bits are
set. Port Change Detect bit in the USBSTS register is set.

[1], [2] [2]

Port is not connected and the port's
WKCNNT_E bit is a zero. A connect is
detected.

PORTSC Connect Status and Connect Status Change bits are
set. Port Change Detect bit in the USBSTS register is set.

[1], [3] [3]

Port is connected and the port's WKOC_E
bit is a one. An over-current condition
occurs.

PORTSC Over-current Active, Over-current Change bits are set.
If Port Enable/Disable bit is a one, it is cleared. Port Change
Detect bit in the USBSTS register is set

[1], [2] [2]

Port is connected and the port's WKOC_E
bit is a zero. An over-current condition
occurs.

PORTSC Over-current Active, Over-current Change bits are set.
If Port Enable/Disable bit is a one, it is cleared. Port Change
Detect bit in the USBSTS register is set.

[1], [3] [3]

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-71

each micro-frame, if the periodic schedule is enabled (see) then the host controller must execute from the
periodic schedule before executing from the asynchronous schedule. It will only execute from the
asynchronous schedule after it encounters the end of the periodic schedule. The host controller traverses
the periodic schedule by constructing an array offset reference from the PERIODICLISTBASE and the
FRINDEX registers (see Figure 24-43). It fetches the element and begins traversing the graph of linked
schedule data structures.

The end of the periodic schedule is identified by a next link pointer of a schedule data structure having its
T-bit set. When the host controller encounters a T-Bit set during a horizontal traversal of the periodic list,
it interprets this as an End-Of-Periodic-List mark. This causes the host controller to cease working on the
periodic schedule and transitions immediately to traversing the asynchronous schedule. Once this
transition is made, the host controller executes from the asynchronous schedule until the end of the
micro-frame.

Figure 24-43. Derivation of Pointer into Frame List Array

When the host controller determines that it is time to execute from the asynchronous list, it uses the
operational register ASYNCLISTADDR to access the asynchronous schedule, as shown in Figure 24-44.

Figure 24-44. General Format of Asynchronous Schedule List

The ASYNCLISTADDR register contains a physical memory pointer to the next queue head. When the
host controller makes a transition to executing the asynchronous schedule, it begins by reading the queue
head referenced by the ASYNCLISTADDR register. The software must set queue head horizontal pointer
T-bits to a zero for queue heads in the asynchronous schedule.

See Section 24.9.9, “Asynchronous Schedule” for complete operational details.

Periodic Frame
List

31 12 11 2 1 0

31 12 13 12 3 2 0

DWord-Aligned
Periodic Frame List Element

Address

Periodic Frame List Base
Address

Frame Index Register

•
•
•

USBSTS

Operational
Registers

USBCMD

AsyncListAddr

•
•
•

•
•
•

H

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-72 Freescale Semiconductor

24.9.6 Periodic Schedule Frame Boundaries vs. Bus Frame Boundaries

The USB Specification Revision 2.0 requires that the frame boundaries (SOF frame number changes) of
the high-speed bus and the full- and low-speed bus(es) below USB 2.0 hubs be strictly aligned.
Super-imposed on this requirement is that USB 2.0 hubs manage full- and low-speed transactions via a
micro-frame pipeline (see start- (SS) and complete- (CS) splits illustrated in Figure 24-45). A simple,
direct projection of the frame boundary model into the host controller interface schedule architecture
creates tension (complexity for both hardware and software) between the frame boundaries and the
scheduling mechanisms required to service the full- and low-speed transaction translator periodic
pipelines.

Figure 24-45. Frame Boundary Relationship between HS Bus and FS/LS Bus

The simple projection, as Figure 24-45 illustrates, introduces frame-boundary wrap conditions for
scheduling on both the beginning and end of a frame. In order to reduce the complexity for hardware and
software, the host controller is required to implement a one micro-frame phase shift for its view of frame
boundaries. The phase shift eliminates the beginning of frame and frame-wrap scheduling boundary
conditions.

The implementation of this phase shift requires that the host controller use one register value for accessing
the periodic frame list and another value for the frame number value included in the SOF token. These two
values are separate, but tightly coupled. The periodic frame list is accessed via the Frame List Index
Register (FRINDEX). Bits FRINDEX[2:0], represent the micro-frame number. The SOF value is coupled
to the value of FRINDEX[13:3]. Both FRINDEX[13:3] and the SOF value are incremented based on
FRINDEX[2:0]. It is required that the SOF value be delayed from the FRINDEX value by one
micro-frame. The one micro-frame delay yields a host controller periodic schedule and bus frame
boundary relationship as illustrated in Figure 24-46. This adjustment allows the software to trivially
schedule the periodic start and complete-split transactions for full-and low-speed periodic endpoints, using
the natural alignment of the periodic schedule interface.

Figure 24-46 illustrates how periodic schedule data structures relate to schedule frame boundaries and bus
frame boundaries. To aid the presentation, two terms are defined. The host controller's view of the
1-millisecond boundaries is called H-Frames. The high-speed bus's view of the 1-millisecond boundaries
is called B-Frames.

FS/LS Bus

HS Bus SS

7

CSCSCSCSCSCSCSCS

076543210

Frame
Boundary

SS

Micro-Frame
Numbers 1

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-73

Figure 24-46. Relationship of Periodic Schedule Frame Boundaries to Bus Frame Boundaries

H-Frame boundaries for the host controller correspond to increments of FRINDEX[13:3]. Micro-frame
numbers for the H-Frame are tracked by FRINDEX[2:0]. B-Frame boundaries are visible on the
high-speed bus via changes in the SOF token's frame number. Micro-frame numbers on the high-speed bus
are only derived from the SOF token's frame number (that is, the high-speed bus will see eight SOFs with
the same frame number value). H-Frames and B-Frames have the fixed relationship (that is, B-Frames lag
H-Frames by one micro-frame time) illustrated in Figure 24-46. The host controller's periodic schedule is
naturally aligned to H-Frames. The software schedules transactions for full- and low-speed periodic
endpoints relative the H-Frames. The result is these transactions execute on the high-speed bus at exactly
the right time for the USB 2.0 hub periodic pipeline. As described in Section 24.6.3.4, “Frame Index
Register (FRINDEX),” the SOF Value can be implemented as a shadow register (in this example, called
SOFV), which lags the FRINDEX register bits [13:3] by one micro-frame count. Table 24-64 illustrates
the required relationship between the value of FRINDEX and the value of SOFV. This lag behavior can be
accomplished by incrementing FRINDEX[13:3] based on carry-out on the 7 to 0 increment of
FRINDEX[2:0] and incrementing SOFV based on the transition of 0 to 1 of FRINDEX[2:0].

The software is allowed to write to FRINDEX. Section 24.6.3.4, “Frame Index Register (FRINDEX),”
provides the requirements that the software should adhere when writing a new value in FRINDEX.

HS Bus

7

CSCSCSCSSS

076543210

HC Periodic Schedule
Frame Boundaries

HC Periodic
Schedule 1

CSCS

10765432 2

SS CS CS

Frames

Micro-Frames

Full/Low-Speed
Transaction

Full/Low-Speed
Transaction

B-Frame N B-Frame N+1

HS/FS/LS Bus
Frame Boundaries

H-Frame N
Interface Data Structure

H-Frame N+1
Interface Data Structure

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-74 Freescale Semiconductor

24.9.7 Periodic Schedule

The periodic schedule traversal is enabled or disabled via the Periodic Schedule Enable bit in the
USBCMD register. If the Periodic Schedule Enable bit is cleared, then the host controller simply does not
try to access the periodic frame list via the PERIODICLISTBASE register. Likewise, when the Periodic
Schedule Enable bit is a one, then the host controller does use the PERIODICLISTBASE register to
traverse the periodic schedule. The host controller will not react to modifications to the Periodic Schedule
Enable immediately. In order to eliminate conflicts with split transactions, the host controller evaluates the
Periodic Schedule Enable bit only when FRINDEX[2:0] is zero. The system software must not disable the
periodic schedule if the schedule contains an active split transaction work item that spans the 0b000
micro-frame. These work items must be removed from the schedule before the Periodic Schedule Enable
bit is cleared. The Periodic Schedule Status bit in the USBSTS register indicates status of the periodic
schedule. The system software enables (or disables) the periodic schedule by setting (or clearing) the
Periodic Schedule Enable bit in the USBCMD register. The software then can poll the Periodic Schedule
Status bit to determine when the periodic schedule has made the desired transition. The software must not
modify the Periodic Schedule Enable bit unless the value of the Periodic Schedule Enable bit equals that
of the Periodic Schedule Status bit.

The periodic schedule is used to manage all isochronous and interrupt transfer streams. The base of the
periodic schedule is the periodic frame list. The software links schedule data structures to the periodic
frame list to produce a graph of scheduled data structures. The graph represents an appropriate sequence
of transactions on the USB. Figure 24-47 illustrates isochronous transfers (using iTDs and siTDs) with a
period of one are linked directly to the periodic frame list. Interrupt transfers (are managed with queue
heads) and isochronous streams with periods other than one are linked following the period-one
iTD/siTDs. Interrupt queue heads are linked into the frame list ordered by poll rate. Longer poll rates are
linked first (for example, closest to the periodic frame list), followed by shorter poll rates, with queue heads
with a poll rate of one, on the very end.

Table 24-64. Operation of FRINDEX and SOFV (SOF Value Register)

Current Next

FRINDEX[13:3] SOFV FRINDEX[2:0] FRINDEX[13:3] SOFV FRINDEX[2:0]

N N 111 N+1 N 000

N+1 N 000 N+1 N+1 001

N+1 N+1 001 N+1 N+1 010

N+1 N+1 010 N+1 N+1 011

N+1 N+1 011 N+1 N+1 100

N+1 N+1 100 N+1 N+1 101

N+1 N+1 101 N+1 N+1 110

N+1 N+1 110 N+1 N+1 111

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-75

Figure 24-47. Example Periodic Schedule

24.9.8 Managing Isochronous Transfers Using iTDs

The structure of an iTD is presented in Isochronous (High-Speed) Transfer Descriptor (iTD). There are
four distinct sections to an iTD:

• The first field is the Next Link Pointer. This field is for schedule linkage purposes only.

• Transaction description array. This area is an eight-element array. Each element represents control
and status information for one micro-frame's worth of transactions for a single high-speed
isochronous endpoint.

• The buffer page pointer array is a 7-element array of physical memory pointers to data buffers.
These are 4K aligned pointers to physical memory.

• Endpoint capabilities. This area utilizes the unused low-order 12 bits of the buffer page pointer
array. The fields in this area are used across all transactions executed for this iTD, including
endpoint addressing, transfer direction, maximum packet size and high-bandwidth multiplier.

24.9.8.1 Host Controller Operational Model for iTDs

The host controller uses FRINDEX register bits [12:3] to index into the periodic frame list. This means
that the host controller visits each frame list element eight consecutive times before incrementing to the
next periodic frame list element. Each iTD contains eight transaction descriptions, which map directly to
FRINDEX register bits [2:0]. Each iTD can span 8 micro-frames worth of transactions. When the host
controller fetches an iTD, it uses FRINDEX register bits [2:0] to index into the transaction description
array. If the active bit in the Status field of the indexed transaction description is cleared, the host controller
ignores the iTD and follows the Next pointer to the next schedule data structure.

When the indexed active bit is a one the host controller continues to parse the iTD. It stores the indexed
transaction description and the general endpoint information (device address, endpoint number, maximum

Last
Periodic has
End of
List Mark

•
•
•

8

A

A

A

A

A

A

4

1

1024, 512, or 256
Elements

Poll Rate: N ––> 1

Isochronous Transfer
Descriptor(s)

Periodic Frame List

•
•
•

• • •
A

Interrupt Queue
HeadsPoll Rate: 1

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-76 Freescale Semiconductor

packet size, etc.). It also uses the Page Select (PG) field to index the buffer pointer array, storing the
selected buffer pointer and the next sequential buffer pointer. For example, if PG field is a 0, then the host
controller will store Page 0 and Page 1.

The host controller constructs a physical data buffer address by concatenating the current buffer pointer
(as selected using the current transaction description's PG field) and the transaction description's
Transaction Offset field. The host controller uses the endpoint addressing information and I/O-bit to
execute a transaction to the appropriate endpoint. When the transaction is complete, the host controller
clears the active bit and writes back any additional status information to the Status field in the currently
selected transaction description.

The data buffer associated with the iTD must be virtually contiguous memory. Seven page pointers are
provided to support eight high-bandwidth transactions regardless of the starting packet’s offset alignment
into the first page. A starting buffer pointer (physical memory address) is constructed by concatenating the
page pointer (example: page 0 pointer) selected by the active transaction descriptions’ PG (example value:
0b00) field with the transaction offset field. As the transaction moves data, the host controller must detect
when an increment of the current buffer pointer will cross a page boundary. When this occurs the host
controller simply replaces the current buffer pointer’s page portion with the next page pointer (example:
page 1 pointer) and continues to move data. The size of each bus transaction is determined by the value in
the Maximum Packet Size field. An iTD supports high-bandwidth pipes via the Mult (multiplier) field.
When the Mult field is 1, 2, or 3, the host controller executes the specified number of Maximum Packet
sized bus transactions for the endpoint in the current micro-frame. In other words, the Mult field represents
a transaction count for the endpoint in the current micro-frame. If the Mult field is zero, the operation of
the host controller is undefined. The transfer description is used to service all transactions indicated by the
Mult field.

For OUT transfers, the value of the Transaction n Length field represents the total bytes to be sent during
the micro-frame. The Mult field must be set by the software to be consistent with Transaction n Length
and Maximum Packet Size. The host controller will send the bytes in Maximum Packet Size'd portions.
After each transaction, the host controller decrements it's local copy of Transaction n Length by Maximum
Packet Size. The number of bytes the host controller sends is always Maximum Packet Size or Transaction
n Length, whichever is less. The host controller advances the transfer state in the transfer description,
updates the appropriate record in the iTD and moves to the next schedule data structure. The maximum
sized transaction supported is 3 × 1024 bytes.

For IN transfers, the host controller issues Mult transactions. It is assumed that the software has properly
initialized the iTD to accommodate all of the possible data. During each IN transaction, the host controller
must use Maximum Packet Size to detect packet babble errors. The host controller keeps the sum of bytes
received in the Transaction n Length field. After all transactions for the endpoint have completed for the
micro-frame, Transaction n Length contains the total bytes received. If the final value of Transaction n
Length is less than the value of Maximum Packet Size, then less data than was allowed for was received
from the associated endpoint. This short packet condition does not set the USBINT bit in the USBSTS
register. The host controller will not detect this condition. If the device sends more than Transaction n
Length or Maximum Packet Size bytes (whichever is less), then the host controller will set the Babble
Detected bit and clear the Active bit. Note, that the host controller is not required to update the iTD field
Transaction n Length in this error scenario. If the Mult field is greater than one, then the host controller

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-77

will automatically execute the value of Mult transactions. The host controller will not execute all Mult
transactions if:

• The endpoint is an OUT and Transaction n Length goes to zero before all the Mult transactions
have executed (ran out of data), or

• The endpoint is an IN and the endpoint delivers a short packet, or an error occurs on a transaction
before Mult transactions have been executed. The end of micro-frame may occur before all of the
transaction opportunities have been executed. When this happens, the transfer state of the transfer
description is advanced to reflect the progress that was made, the result written back to the iTD and
the host controller proceeds to processing the next micro-frame.

24.9.8.2 Software Operational Model for iTDs

A client buffer request to an isochronous endpoint may span 1 to N micro-frames. When N is larger than
one, the system software may have to use multiple iTDs to read or write data with the buffer (if N is larger
than eight, it must use more than one iTD).

Figure 24-48 illustrates the simple model of how a client buffer is mapped by the system software to the
periodic schedule (that is, the periodic frame list and a set of iTDs). On the right is the client description
of its request. The description includes a buffer base address plus additional annotations to identify which
portions of the buffer should be used with each bus transaction. In the middle is the iTD data structures
used by the system software to service the client request. Each iTD can be initialized to service up to 24
transactions, organized into eight groups of up to three transactions each. Each group maps to one
micro-frame's worth of transactions. The EHCI controller does not provide per-transaction results within
a micro-frame. It treats the per-micro-frame transactions as a single logical transfer. On the left is the host
controller’s frame list. The system software establishes references from the appropriate locations in the
frame list to each of the appropriate iTDs. If the buffer is large, then the system software can use a small
set of iTDs to service the entire buffer. The system software can activate the transaction description records
(contained in each iTD) in any pattern required for the particular data stream.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-78 Freescale Semiconductor

Figure 24-48. Example Association of iTDs to Client Request Buffer

As noted above, the client request includes a pointer to the base of the buffer and offsets into the buffer to
annotate which buffer sections are to be used on each bus transaction that occurs on this endpoint. The
system software must initialize each transaction description in an iTD to ensure it uses the correct portion
of the client buffer. For example, for each transaction description, the PG field is set to index the correct
physical buffer page pointer and the Transaction Offset field is set relative to the correct buffer pointer page
(for example, the same one referenced by the PG field). When the host controller executes a transaction it
selects a transaction description record based on FRINDEX[2:0]. It then uses the current Page Buffer
Pointer (as selected by the PG field) and concatenates to the transaction offset field. The result is a starting
buffer address for the transaction. As the host controller moves data for the transaction, it must watch for
a page wrap condition and properly advance to the next available Page Buffer Pointer. The system software
must not use the Page 6 buffer pointer in a transaction description where the length of the transfer will wrap
a page boundary. Doing so yields undefined behavior. The host controller hardware is not required to alias
the page selector to page zero. USB 2.0 isochronous endpoints can specify a period greater than one. The
software can achieve the appropriate scheduling by linking iTDs into the appropriate frames (relative to
the frame list) and by setting appropriate transaction description elements active bits to a one.

24.9.8.2.1 Periodic Scheduling Threshold

The Isochronous Scheduling Threshold field in the HCCPARAMS capability register is an indicator to the
system software as to how the host controller pre-fetches and effectively caches schedule data structures.
It is used by the system software when adding isochronous work items to the periodic schedule. The value
of this field indicates to the system software the minimum distance it can update isochronous data (relative
to the current location of the host controller execution in the periodic list) and still have the host controller
process them.

Frame i+1

Frame List

Frame i

Frame i+2

•
•
•

Frame i+n

Client
Request

Client Buffer

USB
Transaction

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

iTD0

iTD1

iTDN

Information

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-79

The iTD and siTD data structures each describe 8 micro-frames worth of transactions. The host controller
is allowed to cache one (or more) of these data structures in order to reduce memory traffic. There are three
basic caching models that account for the fact the isochronous data structures span 8 micro-frames. The
three caching models are: no caching, micro-frame caching and frame caching.

When the software is adding new isochronous transactions to the schedule, it always performs a read of
the FRINDEX register to determine the current frame and micro-frame the host controller is currently
executing. Of course, there is no information about where in the micro-frame the host controller is, so a
constant uncertainty factor of one micro-frame has to be assumed. Combining the knowledge of where the
host controller is executing with the knowledge of the caching model allows the definition of simple
algorithms for how closely the software can reliably work to the executing host controller.

No caching is indicated with a value of zero in the Isochronous Scheduling Threshold field. The host
controller may pre-fetch data structures during a periodic schedule traversal (per micro-frame) but will
always dump any accumulated schedule state at the end of the micro-frame. At the appropriate time
relative to the beginning of every micro-frame, the host controller always begins schedule traversal from
the frame list. The software can use the value of the FRINDEX register (plus the constant 1
uncertainty-factor) to determine the approximate position of the executing host controller. When no
caching is selected, the software can add an isochronous transaction as near as 2 micro-frames in front of
the current executing position of the host controller.

Frame caching is indicated with a non-zero value in bit [7] of the Isochronous Scheduling Threshold field.
In the frame-caching model, the system software assumes that the host controller caches one (or more)
isochronous data structures for an entire frame (8 micro-frames). The software uses the value of the
FRINDEX register (plus the constant 1 uncertainty) to determine the current micro-frame/frame (assume
modulo 8 arithmetic in adding the constant 1 to the micro-frame number). For any current frame N, if the
current micro-frame is 0 to 6, then the software can safely add isochronous transactions to Frame N + 1.
If the current micro-frame is 7, then software can add isochronous transactions to Frame N + 2.

Micro-frame caching is indicated with a non-zero value in the least-significant 3 bits of the Isochronous
Scheduling Threshold field. The system software assumes the host controller caches one or more periodic
data structures for the number of micro-frames indicated in the Isochronous Scheduling Threshold field.
For example, if the count value were 2, then the host controller keeps a window of 2 micro-frames worth
of state (current micro-frame, plus the next) on-chip. On each micro-frame boundary, the host controller
releases the current micro-frame state and begins accumulating the next micro-frame state.

24.9.9 Asynchronous Schedule

The Asynchronous schedule traversal is enabled or disabled via the Asynchronous Schedule Enable bit in
the USBCMD register. If the Asynchronous Schedule Enable bit is cleared, then the host controller simply
does not try to access the asynchronous schedule via the ASYNCLISTADDR register. Likewise, if the
Asynchronous Schedule Enable bit is set, the host controller does use the ASYNCLISTADDR register to
traverse the asynchronous schedule. Modifications to the Asynchronous Schedule Enable bit are not
necessarily immediate. Rather the new value of the bit will only be taken into consideration the next time
the host controller needs to use the value of the ASYNCLISTADDR register to get the next queue head.

The Asynchronous Schedule Status bit in the USBSTS register indicates status of the asynchronous
schedule. The system software enables (or disables) the asynchronous schedule by writing a one (or zero)

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-80 Freescale Semiconductor

to the Asynchronous Schedule Enable bit in the USBCMD register. The software then can poll the
Asynchronous Schedule Status bit to determine when the asynchronous schedule has made the desired
transition. The software must not modify the Asynchronous Schedule Enable bit unless the value of the
Asynchronous Schedule Enable bit equals that of the Asynchronous Schedule Status bit.

The asynchronous schedule is used to manage all Control and Bulk transfers. Control and Bulk transfers
are managed using queue head data structures. The asynchronous schedule is based at the
ASYNCLISTADDR register. The default value of the ASYNCLISTADDR register after reset is undefined
and the schedule is disabled when the Asynchronous Schedule Enable bit is cleared.

The software may only write this register with defined results when the schedule is disabled, for example,
Asynchronous Schedule Enable bit in the USBCMD and the Asynchronous Schedule Status bit in the
USBSTS register are cleared. The system software enables execution from the asynchronous schedule by
writing a valid memory address (of a queue head) into this register. Then the software enables the
asynchronous schedule by setting the Asynchronous Schedule Enable bit is set. The asynchronous
schedule is actually enabled when the Asynchronous Schedule Status bit is set.

When the host controller begins servicing the asynchronous schedule, it begins by using the value of the
ASYNCLISTADDR register. It reads the first referenced data structure and begins executing transactions
and traversing the linked list as appropriate. When the host controller completes processing the
asynchronous schedule, it retains the value of the last accessed queue head's horizontal pointer in the
ASYNCLISTADDR register. Next time the asynchronous schedule is accessed, this is the first data
structure that is serviced. This provides round-robin fairness for processing the asynchronous schedule.

A host controller completes processing the asynchronous schedule when one of the following events occur:

• The end of a micro-frame occurs.

• The host controller detects an empty list condition.

• The schedule has been disabled via the Asynchronous Schedule Enable bit in the USBCMD
register.

The queue heads in the asynchronous list are linked into a simple circular list as shown in Figure 24-44.
Queue head data structures are the only valid data structures that may be linked into the asynchronous
schedule. An isochronous transfer descriptor (iTD or siTD) in the asynchronous schedule yields undefined
results.

The maximum packet size field in a queue head is sized to accommodate the use of this data structure for
all non-isochronous transfer types. The USB Specification, Revision 2.0 specifies the maximum packet
sizes for all transfer types and transfer speeds. The system software should always parameterize the queue
head data structures according to the core specification requirements.

24.9.9.1 Adding Queue Heads to Asynchronous Schedule

This is a software requirement section. There are two independent events for adding queue heads to the
asynchronous schedule. The first is the initial activation of the asynchronous list. The second is inserting
a new queue head into an activated asynchronous list.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-81

Activation of the list is simple. The system software writes the physical memory address of a queue head
into the ASYNCLISTADDR register, then enables the list by setting the Asynchronous Schedule Enable
bit in the USBCMD register to a one.

When inserting a queue head into an active list, the software must ensure that the schedule is always
coherent from the host controllers' point of view. This means that the system software must ensure that all
queue head pointer fields are valid. For example qTD pointers have T-Bits set or reference valid qTDs and
the Horizontal Pointer references a valid queue head data structure. The following algorithm represents the
functional requirements:

InsertQueueHead (pQHeadCurrent, pQueueHeadNew)
--
-- Requirement: all inputs must be properly initialized.
--
-- pQHeadCurrent is a pointer to a queue head that is
-- already in the active list
-- pQHeadNew is a pointer to the queue head to be added
--
-- This algorithm links a new queue head into a existing
-- list
--
pQueueHeadNew.HorizontalPointer = pQueueHeadCurrent.HorizontalPointer
pQueueHeadCurrent.HorizontalPointer = physicalAddressOf(pQueueHeadNew)

End InsertQueueHead

24.9.9.2 Removing Queue Heads from Asynchronous Schedule

This is a software requirement section. There are two independent events for removing queue heads from
the asynchronous schedule. The first is shutting down (deactivating) the asynchronous list. The second is
extracting a single queue head from an activated list. The software deactivates the asynchronous schedule
by setting the Asynchronous Schedule Enable bit in the USBCMD register to a zero. The software can
determine when the list is idle when the Asynchronous Schedule Status bit in the USBSTS register is
cleared. The normal mode of operation is that the software removes queue heads from the asynchronous
schedule without shutting it down. The software must not remove an active queue head from the schedule.
The software should first deactivate all active qTDs, wait for the queue head to go inactive, then remove
the queue head from the asynchronous list. The software removes a queue head from the asynchronous list
using the following algorithm. The software merely must ensure all of the link pointers reachable by the
host controller are kept consistent.

UnlinkQueueHead (pQHeadPrevious, pQueueHeadToUnlink, pQHeadNext)
--
-- Requirement: all inputs must be properly initialized.
--
-- pQHeadPrevious is a pointer to a queue head that
-- references the queue head to remove
-- pQHeadToUnlink is a pointer to the queue head to be
-- removed
-- pQheadNext is a pointer to a queue head still in the
-- schedule. Software provides this pointer with the
-- following strict rules:
-- if the host software is one queue head, then
-- pQHeadNext must be the same as
-- QueueheadToUnlink.HorizontalPointer. If the host

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-82 Freescale Semiconductor

-- software is unlinking a consecutive series of
-- queue heads, QHeadNext must be set by software to
-- the queue head remaining in the schedule.
--
-- This algorithm unlinks a queue head from a circular list
--
pQueueHeadPrevious.HorizontalPointer = pQueueHeadToUnlink.HorizontalPointer
pQueueHeadToUnlink.HorizontalPointer = pQHeadNext

End UnlinkQueueHead

If the software removes the queue head with the H-bit set, it must select another queue head still linked
into the schedule and set its H-bit. This should be completed before removing the queue head. The
requirement is that the software keep one queue head in the asynchronous schedule, with its H-bit set. At
the point the software has removed one or more queue heads from the asynchronous schedule, it is
unknown whether the host controller has a cached pointer to them. Similarly, it is unknown how long the
host controller might retain the cached information, as it is implementation dependent and may be affected
by the actual dynamics of the schedule load. Therefore, once the software has removed a queue head from
the asynchronous list, it must retain the coherency of the queue head (link pointers). It cannot disturb the
removed queue heads until it knows that the host controller does not have a local copy of a pointer to any
of the removed data structures.

The method the software uses to determine when it is safe to modify a removed queue head is to handshake
with the host controller. The handshake mechanism allows the software to remove items from the
asynchronous schedule, then execute a simple, lightweight handshake that is used by the software as a key
that it can free (or reuse) the memory associated the data structures it has removed from the asynchronous
schedule.

The handshake is implemented with three bits in the host controller. The first bit is a command bit
(Interrupt on Async Advance Doorbell bit in the USBCMD register) that allows the software to inform the
host controller that something has been removed from its asynchronous schedule. The second bit is a status
bit (Interrupt on Async Advance bit in the USBSTS register) that the host controller sets after it has
released all on-chip state that may potentially reference one of the data structures just removed. When the
host controller sets this status bit, it also clears the command bit. The third bit is an interrupt enable
(Interrupt on Async Advance bit in the USBINTR register) that is matched with the status bit. If the status
bit is set and the interrupt enable bit is set, then the host controller asserts a hardware interrupt.

Figure 24-49 illustrates a general example where consecutive queue heads (B and C) are unlinked from the
schedule using the algorithm above. Before the unlink operation, the host controller has a copy of queue
head A.

The unlink algorithm requires that as the software unlinks each queue head, the unlinked queue head is
loaded with the address of a queue head that will remain in the asynchronous schedule.

When the host controller observes that doorbell bit being set, it makes a note of the local reachable
schedule information. In this example, the local reachable schedule information includes both queue heads
(A & B). It is sufficient that the host controller can set the status bit (and clear the doorbell bit) as soon as
it has traversed beyond current reachable schedule information (that is, traversed beyond queue head (B)
in this example).

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-83

Figure 24-49. Generic Queue Head Unlink Scenario

Alternatively, a host controller implementation is allowed to traverse the entire asynchronous schedule list
(for example, observed the head of the queue (twice)) before setting the Advance on Async status bit.

The software may re-use the memory associated with the removed queue heads after it observes the
Interrupt on Async Advance status bit is set, following assertion of the doorbell. The software should
acknowledge the Interrupt on Async Advance status as indicated in the USBSTS register, before using the
doorbell handshake again

24.9.9.3 Empty Asynchronous Schedule Detection

EHCI uses two bits to detect when the asynchronous schedule is empty. The queue head data structure (see
Figure 24-41) defines an H-bit in the queue head, which allows the software to mark a queue head as being
the head of the reclaim list. host controller also keeps a 1-bit flag in the USBSTS register (Reclamation)
that is cleared when the host controller observes a queue head with the H-bit set. The reclamation flag in
the status register is set when any USB transaction from the asynchronous schedule is executed (or
whenever the asynchronous schedule starts, see Section 24.9.9.4, “Asynchronous Schedule Traversal: Start
Event.”

If the controller ever encounters an H-bit of one and a Reclamation bit of zero, the controller simply stops
traversal of the asynchronous schedule.

An example illustrating the H-bit in a schedule is shown in Figure 24-50.

Memory State

BA C D

A
USBCMD Interrupt on

Async-Advance Doorbell = 0

Before Unlink

HC State

Memory State

B

A D

A

USBCMD Interrupt on
Async-Advance Doorbell = 1

After Unlink (B, C) and at Doorbell

HC State

C

USBSTS Interrupt on Async-Advance = 0

Memory State

B

A D

D

USBCMD Interrupt on
Async-Advance Doorbell = 0

After Doorbell

HC State

C

USBSTS Interrupt on Async-Advance = 1

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-84 Freescale Semiconductor

Figure 24-50. Asynchronous Schedule List with Annotation to Mark Head of List

24.9.9.4 Asynchronous Schedule Traversal: Start Event

Once the host controller has idled itself using the empty schedule detection, it naturally activates and
begins processing from the Periodic Schedule at the beginning of each micro-frame. In addition, it may
have idled itself early in a micro-frame. When this occurs (idles early in the micro-frame) the host
controller must occasionally reactivate during the micro-frame and traverse the asynchronous schedule to
determine whether any progress can be made. Asynchronous schedule Start Events are defined to be:

• Whenever the host controller transitions from the periodic schedule to the asynchronous schedule.
If the periodic schedule is disabled and the asynchronous schedule is enabled, then the beginning
of the micro-frame is equivalent to the transition from the periodic schedule, or

• The asynchronous schedule traversal restarts from a sleeping state.

24.9.9.5 Reclamation Status Bit (USBSTS Register)

The operation of the empty asynchronous schedule detection feature depends on the proper management
of the Reclamation bit in the USBSTS register. The host controller tests for an empty schedule just after it
fetches a new queue head while traversing the asynchronous schedule. The host controller sets the
Reclamation bit whenever an asynchronous schedule traversal Start Event occurs. The Reclamation bit is
also set whenever the host controller executes a transaction while traversing the asynchronous
schedule.The host controller clears the Reclamation bit whenever it finds a queue head with its H-bit set.
The software should only set a queue head's H-bit if the queue head is in the asynchronous schedule. If the
software sets the H-bit in an interrupt queue head, the resulting behavior is undefined. The host controller
may clear the Reclamation bit when executing from the periodic schedule.

24.9.10 Managing Control/Bulk/Interrupt Transfers via Queue Heads

This section presents an overview of how the host controller interacts with queuing data structures.

Queue heads use the Queue Element Transfer Descriptor (qTD) structure defined in Section 24.8.5,
“Queue Element Transfer Descriptor (qTD).”

USBSTS
Reclamation Flag

USBCMD

•
•
•

AsyncListAddr 01Horizontal Ptr 0

1

H

•
•
•

Operational
Registers

Operational
Area

Horizontal Ptr

0

H

Operational
Area

0

H

Operational
Area

Typ T

01 0

Typ T

01 0

Typ T

Horizontal Ptr

List Head

Asynchronous Schedule

1: Transaction Executed
0: Head of List Seen

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-85

One queue head is used to manage the data stream for one endpoint. The queue head structure contains
static endpoint characteristics and capabilities. It also contains a working area from where individual bus
transactions for an endpoint are executed. Each qTD represents one or more bus transactions, which is
defined in the context of the EHCI specification as a transfer.

The general processing model for the host controller's use of a queue head is simple:

• Read a queue head

• Execute a transaction from the overlay area

• Write back the results of the transaction to the overlay area

• Move to the next queue head

If the host controller encounters errors during a transaction, the host controller will set one of the error
reporting bits in the queue head's Status field. The Status field accumulates all errors encountered during
the execution of a qTD (that is, the error bits in the queue head Status field are sticky until the transfer
(qTD) has completed). This state is always written back to the source qTD when the transfer is complete.
On transfer (for example, buffer or halt conditions) boundaries, the host controller must auto-advance
(without software intervention) to the next qTD. Additionally, the hardware must be able to halt the queue
so no additional bus transactions will occur for the endpoint and the host controller will not advance the
queue.

24.9.10.1 Buffer Pointer List Use for Data Streaming with qTDs

A qTD has an array of buffer pointers, which is used to reference the data buffer for a transfer. The EHCI
specification requires that the buffer associated with the transfer be virtually contiguous. This means that
if the buffer spans more than one physical page, it must obey the following rules:

• The first portion of the buffer must begin at some offset in a page and extend through the end of
the page.

• The remaining buffer cannot be allocated in small chunks scattered around memory. For each 4K
chunk beyond the first page, each buffer portion matches to a full 4K page. The final portion, which
may only be large enough to occupy a portion of a page, must start at the top of the page and be
contiguous within that page.

Figure 24-51 illustrates these requirements.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-86 Freescale Semiconductor

Figure 24-51. Example Mapping of qTD Buffer Pointers to Buffer Pages

The buffer pointer list in the qTD is long enough to support a maximum transfer size of 20K bytes. This
case occurs when all five buffer pointers are used and the first offset is zero. A qTD handles a 16Kbyte
buffer with any starting buffer alignment.

The host controller uses the C_Page field as an index value to determine which buffer pointer in the list
should be used to start the current transaction. The host controller uses a different buffer pointer for each
physical page of the buffer. This is always true, even if the buffer is physically contiguous.

The host controller must detect when the current transaction spans a page boundary and automatically
move to the next available buffer pointer in the page pointer list. The next available pointer is reached by
incrementing C_Page and pulling the next page pointer from the list. The software must ensure there are
sufficient buffer pointers to move the amount of data specified in the Bytes to Transfer field.

Figure 24-51 illustrates a nominal example of how System the software would initialize the buffer pointers
list and the C_Page field for a transfer size of 16383 bytes. C_Page is cleared. The upper 20-bits of Page
0 references the start of the physical page. Current Offset (the lower 12-bits of queue head Dword 7) holds
the offset in the page for example, 2049 (for example, 4096-2047). The remaining page pointers are set to
reference the beginning of each subsequent 4K page.

For the first transaction on the qTD (assuming a 512-byte transaction), the host controller uses the first
buffer pointer (page 0 because C_Page is cleared) and concatenates the Current Offset field. The 512 bytes
are moved during the transaction, the Current Offset and Total Bytes to Transfer are adjusted by 512 and
written back to the queue head working area.

During the 4th transaction, the host controller needs 511 bytes in page 0 and one byte in page 1. The host
controller will increment C_Page (to 1) and use the page 1 pointer to move the final byte of the transaction.
After the 4th transaction, the active page pointer is the page 1 pointer and Current Offset has rolled to one,
and both are written back to the overlay area. The transactions continue for the rest of the buffer, with the
host controller automatically moving to the next page pointer (that is, C_Page) when necessary. There are
three conditions for how the host controller handles C_Page.

Pointer (Page 1)

C_Page = 0

Pointer (Page 0)

Pointer (Page 2)

2047

4096

4096

Pointer (Page 3)

Pointer (Page 4)
4096

2048

Bytes to Transfer = 16383 bytes

Page 0 = 2047
Page 1 = 4096
Page 2 = 4096
Page 3 = 4096
Page 4 = 2048

Total: 16383

The physical pages in memory
may or may not be physically
contiguous.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-87

• The current transaction does not span a page boundary. The value of C_Page is not adjusted by the
host controller.

• The current transaction does span a page boundary. The host controller must detect the page cross
condition and advance to the next buffer while streaming data to/from the USB.

• The current transaction completes on a page boundary (that is, the last byte moved for the current
transaction is the last byte in the page for the current page pointer). The host controller must
increment C_Page before writing back status for the transaction.

Note that the only valid adjustment the host controller may make to C_Page is to increment by one.

24.9.10.2 Adding Interrupt Queue Heads to the Periodic Schedule

The link path(s) from the periodic frame list to a queue head establishes in which frames a transaction can
be executed for the queue head. Queue heads are linked into the periodic schedule so they are polled at the
appropriate rate. The system software sets a bit in a queue head's S-Mask to indicate which micro-frame
within a 1 millisecond period a transaction should be executed for the queue head. The software must
ensure that all queue heads in the periodic schedule have S-Mask set to a non-zero value. An S-mask with
a zero value in the context of the periodic schedule yields undefined results.

If the desired poll rate is greater than one frame, the system software can use a combination of queue head
linking and S-Mask values to spread interrupts of equal poll rates through the schedule so that the periodic
bandwidth is allocated and managed in the most efficient manner possible. Some examples are illustrated
in Table 24-65.

24.9.10.3 Managing Transfer Complete Interrupts from Queue Heads

The host controller sets an interrupt to be signaled at the next interrupt threshold when the completed
transfer (qTD) has an Interrupt on Complete (IOC) bit set, or whenever a transfer (qTD) completes with a
short packet. If the system software needs multiple qTDs to complete a client request (that is, like a control
transfer) the intermediate qTDs do not require interrupts. The system software may only need a single
interrupt to notify it that the complete buffer has been transferred. The system software may set IOC's to
occur more frequently. A motivation for this may be that it wants early notification so that interface data
structures can be re-used in a timely manner.

Table 24-65. Example Periodic Reference Patterns for Interrupt Transfers

Frame #
Reference
Sequence

Description

0, 2, 4, 6, 8,....
S-Mask = 0x01

A queue head for the bInterval of 2 milliseconds (16 micro-frames) is linked into the periodic schedule so that
it is reachable from the periodic frame list locations indicated in the previous column. In addition, the S-Mask
field in the queue head is set to 0x01, indicating that the transaction for the endpoint should be executed on
the bus during micro-frame 0 of the frame.

0, 2, 4, 6, 8,...
S-Mask = 0x02

Another example of a queue head with a bInterval of 2 milliseconds is linked into the periodic frame list at
exactly the same interval as the previous example. However, the S-Mask is set to 0x02 indicating that the
transaction for the endpoint should be executed on the bus during micro-frame 1 of the frame.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-88 Freescale Semiconductor

24.9.11 Ping Control

USB 2.0 defines an addition to the protocol for high-speed devices called Ping. Ping is required for all USB
2.0 High-speed bulk and control endpoints. Ping is not allowed for a split-transaction stream. This
extension to the protocol eliminates the bad side-effects of Naking OUT endpoints. The Status field has a
Ping State bit, which the host controller uses to determine the next actual PID it will use in the next
transaction to the endpoint (see Table 24-53). The Ping State bit is only managed by the host controller for
queue heads that meet all of the following criteria:

• The queue head is not an interrupt

• The EPS field equals High-Speed

• The PIDCode field equals OUT

Table 24-66 illustrates the state transition table for the host controller's responsibility for maintaining the
PING protocol. Refer to Chapter 8 in the USB Specification, Revision 2.0 for detailed description on the
Ping protocol.

The Ping State bit is described in Table 24-53. The defined ping protocol allows the host to be imprecise
on the initialization of the ping protocol (that is, start in Do OUT when we don't know whether there is
space on the device or not). The host controller manages the Ping State bit. The system software sets the
initial value in the queue head when it initializes a queue head. The host controller preserves the Ping State
bit across all queue advancements. This means that when a new qTD is written into the queue head overlay
area, the previous value of the Ping State bit is preserved.

Table 24-66. Ping Control State Transition

Event

Current Host Device Next

Do Ping PING Nak Do Ping

Do Ping PING Ack Do OUT

Do Ping PING XactErr1

1 Transaction Error (XactErr) is any time the host misses the handshake.

Do Ping

Do Ping PING Stall N/C2

2 No transition change required for the Ping State bit. The Stall handshake
results in the endpoint being halted (for example, Active cleared and Halt
set). Software intervention is required to restart queue.

Do OUT OUT Nak Do Ping

Do OUT OUT Nyet Do Ping3

3 A Nyet response to an OUT means that the device has accepted the data,
but cannot receive any more at this time. Host must advance the transfer
state and additionally, transition the Ping State bit to Do Ping.

Do OUT OUT Ack Do OUT

Do OUT OUT XactErr1 Do Ping

Do OUT OUT Stall N/C2

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-89

24.9.12 Split Transactions

USB 2.0 defines extensions to the bus protocol for managing USB 1.x data streams through USB 2.0 hubs.
This section describes how the host controller uses the interface data structures to manage data streams
with full- and low-speed devices, connected below a USB 2.0 hub, utilizing the split transaction protocol.
Refer to the USB 2.0 Specification for the complete definition of the split transaction protocol. Full- and
low-speed devices are enumerated identically as high-speed devices, but the transactions to the full- and
low-speed endpoints use the split-transaction protocol on the high-speed bus. The split transaction protocol
is an encapsulation of (or wrapper around) the full- or low-speed transaction. The high-speed wrapper
portion of the protocol is addressed to the USB 2.0 hub and Transaction Translator below which the full-
or low-speed device is attached.

EHCI uses dedicated data structures for managing full-speed isochronous data streams. Control, Bulk and
Interrupt are managed using the queuing data structures. The interface data structures need to be
programmed with the device address and the Transaction Translator number of the USB 2.0 hub operating
as the low-/full-speed host controller for this link. The following sections describe the details of how the
host controller processes and manages the split transaction protocol.

24.9.12.1 Split Transactions for Asynchronous Transfers

A queue head in the asynchronous schedule with an EPS field indicating a full-or low-speed device
indicates to the host controller that it must use split transactions to stream data for this queue head. All
full-speed bulk and full-, low-speed control are managed via queue heads in the asynchronous schedule.

The software must initialize the queue head with the appropriate device address and port number for the
transaction translator that is serving as the full-/low-speed host controller for the links connecting the
endpoint. The software must also initialize the split transaction state bit (SplitXState) to Do-Start-Split.
Finally, if the endpoint is a control endpoint, then system The software must set the Control Transfer Type
(C) bit in the queue head to a one. If this is not a control transfer type endpoint, the C bit must be initialized
by the software to be a zero. This information is used by the host controller to properly set the Endpoint
Type (ET) field in the split transaction bus token. When the C bit is a zero, the split transaction token's ET
field is set to indicate a bulk endpoint. When the C bit is a one, the split transaction token's ET field is set
to indicate a control endpoint. Refer to Chapter 8 of USB Specification, Revision 2.0 for details.

Figure 24-52. Host Controller Asynchronous Schedule Split-Transaction State Machine

Do

AcK

Complete-
Split

Do
Start-
Split

!XactErr
.and.

!NYET
.and.
!Stall

Endpoint Halt

NyetNaK

XactErr

Endpoint Halt

Endpoint Active

Set XactErr Bit and
Decrement Error Count

(CERR)

XactErr

CERR goes
to Zero

Stall

Decrement
Error Count

(CERR)

CERR goes
to Zero

NaK
.and.

PidCode .eq. SETUP

Decrement
Error Count

(CERR)
and

Do Immediate Retry
of Complete-Split

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-90 Freescale Semiconductor

24.9.12.1.1 Asynchronous—Do-Start-Split

Do-Start-Split is the state which the software must initialize a full- or low-speed asynchronous queue head.
This state is entered from the Do-Complete-Split state only after a complete-split transaction receives a
valid response from the transaction translator that is not a Nyet handshake.

For queue heads in this state, the host controller executes a start-split transaction to the transaction
translator. If the bus transaction completes without an error and PID Code indicates an IN or OUT
transaction, then the host controller reloads the error counter (Cerr). If it is a successful bus transaction and
the PID Code indicates a SETUP, the host controller will not reload the error counter. If the transaction
translator responds with a Nak, the queue head is left in this state, and the host controller proceeds to the
next queue head in the asynchronous schedule.

If the host controller times out the transaction (no response, or bad response) the host controller decrements
Cerr and proceeds to the next queue head in the asynchronous schedule.

24.9.12.1.2 Asynchronous—Do-Complete-Split

This state is entered from the Do-Start-Split state only after a start-split transaction receives an Ack
handshake from the transaction translator.

For queue heads in this state, the host controller executes a complete-split transaction to the transaction
translator. If the transaction translator responds with a Nyet handshake, the queue head is left in this state,
the error counter is reset and the host controller proceeds to the next queue head in the asynchronous
schedule. When a Nyet handshake is received for a bus transaction where the queue head's PID Code
indicates an IN or OUT, the host controller reloads the error counter (Cerr). When a Nyet handshake is
received for a complete-split bus transaction where the queue head's PID Code indicates a SETUP, the host
controller must not adjust the value of Cerr.

Independent of PID Code, the following responses have the indicated effects:

• Transaction Error (XactErr). Timeout/data CRC failure. The error counter (Cerr) is decremented
by one and the complete split transaction is immediately retried (if possible). If there is not enough
time in the micro-frame to execute the retry, the host controller ensures that the next time the host
controller begins executing from the Asynchronous schedule, it must begin executing from this
queue head. If another start-split (for some other endpoint) is sent to the transaction translator
before the complete-split is really completed, the transaction translator could dump the results
(which were never delivered to the host). This is why the core specification states the retries must
be immediate. When the host controller returns to the asynchronous schedule in the next
micro-frame, the first transaction from the schedule will be the retry for this endpoint. If Cerr went
to zero, the host controller halts the queue.

• NAK. The target endpoint Nak'd the full- or low-speed transaction. The state of the transfer is not
advanced and the state is exited. If the PID Code is a SETUP, then the Nak response is a protocol
error. The XactErr status bit is set and the Cerr field is decremented.

• STALL. The target endpoint responded with a STALL handshake. The host controller sets the halt
bit in the status byte, retires the qTD but does not attempt to advance the queue.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-91

If the PID Code indicates an IN, then any of following responses are expected:

• DATA0/1. On reception of data, the host controller ensures the PID matches the expected data
toggle and checks CRC. If the packet is good, the host controller advances the state of the transfer
(for example, moves the data pointer by the number of bytes received, decrements the
BytesToTransfer field by the number of bytes received, and toggles the dt bit). The host controller
then exits this state. The response and advancement of transfer may trigger other processing events,
such as retirement of the qTD and advancement of the queue.

If the data sequence PID does not match the expected, the data is ignored, the transfer state is not
advanced and this state is exited.

If the PID Code indicates an OUT/SETUP, then any of following responses are expected:

• ACK. The target endpoint accepted the data, so the host controller must advance the state of the
transfer. The Current Offset field is incremented by Maximum Packet Length or Bytes to Transfer,
whichever is less. The Bytes To Transfer field is decremented by the same amount and the data
toggle bit (dt) is toggled. The host controller then exits this state.

Advancing the transfer state may cause other processing events such as retirement of the qTD and
advancement of the queue.

24.9.12.2 Split Transaction Interrupt

Split-transaction Interrupt-IN/OUT endpoints are managed using the same data structures used for
high-speed interrupt endpoints. They both co-exist in the periodic schedule. Queue heads/qTDs offer the
set of features required for reliable data delivery, which is characteristic to interrupt transfer types. The
split-transaction protocol is managed completely within this defined functional transfer framework. For
example, for a high-speed endpoint, the host controller will visit a queue head, execute a high-speed
transaction (if criteria are met) and advance the transfer state (or not) depending on the results of the entire
transaction. For low- and full-speed endpoints, the details of the execution phase are different (that is, takes
more than one bus transaction to complete), but the remainder of the operational framework is intact.

24.9.12.2.1 Split Transaction Scheduling Mechanisms for Interrupt

Full- and low-speed Interrupt queue heads have an EPS field indicating full- or low-speed and have a
non-zero S-mask field. The host controller can detect this combination of parameters and assume the
endpoint is a periodic endpoint. Low- and full-speed interrupt queue heads require the use of the split
transaction protocol. The host controller sets the Endpoint Type (ET) field in the split token to indicate the
transaction is an interrupt. These transactions are managed through a transaction translator's periodic
pipeline. The software should not set these fields to indicate the queue head is an interrupt unless the queue
head is used in the periodic schedule.

The system software manages the per/transaction translator periodic pipeline by budgeting and scheduling
exactly during which micro-frames the start-splits and complete-splits for each endpoint will occur. The
characteristics of the transaction translator are such that the high-speed transaction protocol must execute
during explicit micro-frames, or the data or response information in the pipeline is lost. Figure 24-53
illustrates the general scheduling boundary conditions that are supported by the EHCI periodic schedule
and queue head data structure. The S and Cn labels indicate micro-frames where the software can schedule
start-splits and complete splits (respectively).

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-92 Freescale Semiconductor

Figure 24-53. Split Transaction, Interrupt Scheduling Boundary Conditions

The scheduling cases are:

• Case 1: The normal scheduling case is where the entire split transaction is completely bounded by
a frame (H-Frame in this case).

• Case 2a through Case 2c: The USB 2.0 hub pipeline rules states clearly, when and how many
complete-splits must be scheduled to account for earliest to latest execution on the full/low-speed
link. The complete-splits may span the H-Frame boundary when the start-split is in micro-frame 4
or later. When this occurs, the H-Frame to B-Frame alignment requires that the queue head be
reachable from consecutive periodic frame list locations. The system software cannot build an
efficient schedule that satisfies this requirement unless it uses FSTNs. Figure 24-54 illustrates the
general layout of the periodic schedule.

7

C2C1C0S

076543210
Periodic Schedule

Micro-Frame 1

Case 1:
Normal Case

C1C0S
Case 2a:

End of Frame

C2C1C0S

C2C1C0S

6 765432107
HS/FS/LS Bus

Micro-Frame 0

Case 2b:
End of Frame

Case 2c:
End of Frame

B-Frame N B-Frame N+1B-Frame N–1

H-Frame N

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-93

Figure 24-54. General Structure of EHCI Periodic Schedule Utilizing Interrupt Spreading

The periodic frame list is effectively the leaf level a binary tree, which is always traversed leaf to root. Each
level in the tree corresponds to a 2N poll rate. The software can efficiently manage periodic bandwidth on
the USB by spreading interrupt queue heads that have the same poll rate requirement across all the
available paths from the frame list. For example, system the software can schedule eight poll rate 8 queue
heads and account for them once in the high-speed bus bandwidth allocation.

When an endpoint is allocated an execution footprint that spans a frame boundary, the queue head for the
endpoint must be reachable from consecutive locations in the frame list. An example would be if 80b were
such an endpoint. Without additional support on the interface, to get 80b reachable at the correct time, the
software would have to link 81 to 80b. It would then have to move 41 and everything linked after into the
same path as 40. This upsets the integrity of the binary tree and disallows the use of the spreading
technique.

FSTN data structures are used to preserve the integrity of the binary-tree structure and enable the use of
the spreading technique. Section 24.8.7, “Periodic Frame Span Traversal Node (FSTN),” defines the
hardware and software operational model requirements for using FSTNs.

The following queue head fields are initialized by the system software to instruct the host controller when
to execute portions of the split-transaction protocol.

• SplitXState. This is a single bit residing in the Status field of a queue head (Table 24-53). This bit
is used to track the current state of the split transaction.

• Frame S-mask. This is a bit-field where the system software sets a bit corresponding to the
micro-frame (within an H-Frame) that the host controller should execute a start-split transaction.
This is always qualified by the value of the SplitXState bit in the Status field of the queue head. For
example, referring to Figure 24-53, case one, the S-mask would have a value of 0b0000_0001
indicating that if the queue head is traversed by the host controller, and the SplitXState indicates
Do_Start, and the current micro-frame as indicated by FRINDEX[2:0] is 0, then execute a
start-split transaction.

21

43

•
•
•

40

20

10

Periodic
Frame List

• • •

87

86

85

84

83

82

81

80
80b

42

41

Level 8 Level 4

Level 2

Level 1

Linkage repeats every 8 for
remainder of frame list

(Root)

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-94 Freescale Semiconductor

• Frame C-mask. This is a bit-field where the system software sets one or more bits corresponding
to the micro-frames (within an H-Frame) that the host controller should execute complete-split
transactions. The interpretation of this field is always qualified by the value of the SplitXState bit
in the Status field of the queue head. For example, referring to Figure 24-53, case one, the C-mask
would have a value of 0b0001_1100 indicating that if the queue head is traversed by the host
controller, and the SplitXState indicates Do_Complete, and the current micro-frame as indicated
by FRINDEX[2:0] is 2, 3, or 4, then execute a complete-split transaction. It is the software's
responsibility to ensure that the translation between H-Frames and B-Frames is correctly
performed when setting bits in S-mask and C-mask.

24.9.12.2.2 Host Controller Operational Model for FSTNs

The FSTN data structure is used to manage Low/Full-speed interrupt queue heads that need to be reached
from consecutive frame list locations (that is, boundary cases 2a through 2c). An FSTN is essentially a
back pointer, similar in intent to the back pointer field in the siTD data structure.

This feature provides the software a simple primitive to save a schedule position, redirect the host
controller to traverse the necessary queue heads in the previous frame, then restore the original schedule
position and complete normal traversal.

There are four components to the use of FSTNs:

• FSTN data structure, defined in Section 24.8.7, “Periodic Frame Span Traversal Node (FSTN).”

• A Save Place indicator; this is always an FSTN with its Back Path Link Pointer[T] bit cleared.

• A Restore indicator; this is always an FSTN with its Back Path Link Pointer[T] bit set.

• Host controller FSTN traversal rules.

When the host controller encounters an FSTN during micro-frames 2 through 7 it simply follows the node's
Normal Path Link Pointer to access the next schedule data structure. Note that the FSTN's Normal Path
Link Pointer[T] bit may set, which the host controller must interpret as the end of periodic list mark.

When the host controller encounters a Save-Place FSTN in micro-frames 0 or 1, it saves the value of the
Normal Path Link Pointer and sets an internal flag indicating that it is executing in Recovery Path mode.
Recovery Path mode modifies the host controller's rules for how it traverses the schedule and limits which
data structures are considered for execution of bus transactions. The host controller continues executing in
Recovery Path mode until it encounters a Restore FSTN or it determines that it has reached the end of the
micro-frame.

The rules for schedule traversal and limited execution while in Recovery Path mode are:

• Always follow the Normal Path Link Pointer when it encounters an FSTN that is a Save-Place
indicator. The host controller must not recursively follow Save-Place FSTNs. Therefore, while
executing in Recovery Path mode, it must never follow an FSTN's Back Path Link Pointer.

• Do not process an siTD or iTD data structure; simply follow its Next Link Pointer.

• Do not process a QH (Queue Head) whose EPS field indicates a high-speed device; simply follow
its Horizontal Link Pointer.

• When a QH's EPS field indicates a Full/Low-speed device, the host controller only considers it for
execution if its SplitXState is DoComplete (note: this applies whether the PID Code indicates an

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-95

IN or an OUT). Refer to the EHCI Specification for a complete list of additional conditions that
must be met in general for the host controller to issue a bus transaction. Note that the host controller
must not execute a Start-split transaction while executing in Recovery Path mode. Refer to the
EHCI Specification for special handling when in Recovery Path mode.

• Stop traversing the recovery path when it encounters an FSTN that is a Restore indicator. The host
controller unconditionally uses the saved value of the Save-Place FSTN's Normal Path Link Pointer
when returning to the normal path traversal. The host controller must clear the context of executing
a Recovery Path when it restores schedule traversal to the Save-Place FSTN's Normal Path Link
Pointer.

If the host controller determines that there is not enough time left in the micro-frame to complete
processing of the periodic schedule, it abandons traversal of the recovery path, and clears the
context of executing a recovery path. The result is that at the start of the next consecutive
micro-frame, the host controller starts traversal at the frame list.

An example traversal of a periodic schedule that includes FSTNs is illustrated in Figure 24-55.

Figure 24-55. Example Host Controller Traversal of Recovery Path via FSTNs

In frame N (micro-frames 0-7), for this example, the host controller traverses all of the schedule data
structures utilizing the Normal Path Link Pointers in any FSTNs it encounters. This is because the host
controller has not yet encountered a Save-Place FSTN so it is not executing in Recovery Path mode. When
it encounters the Restore FSTN, (Restore-N), during micro-frames 0 and 1, it uses Restore-N. Normal Path
Link Pointer to traverse to the next data structure (that is, normal schedule traversal). This is because the
host controller must use a Restore FSTN's Normal Path Link Pointer when not executing in a
Recovery-Path mode. The nodes traversed during frame N include: {82.0, 82.1, 82.2, 82.3, 42, 20, Restore-N,
10...}.

In frame N+1 (micro-frames 0 and 1), when the host controller encounters Save-Path FSTN (Save-N), it
observes that Save-N.Back Path Link Pointer.T-bit is zero (definition of a Save-Path indicator). The host
controller saves the value of Save-N. Normal Path Link Pointer and follows Save-N.Back Path Link

21
• • •

87

86

85

84Normal Traversal
for Frame N+1

Micro-Frames 0, 1

N+1 B-Ptr

N-Ptr

43

N

42

81

80

41

40

B-Ptr

N-Ptr

20

10

N+3

N+4

N+5

N–1

N–2

Normal Traversal
for Frame N

T-Int = 1

Save = N

T-Int = 0

Restore = N

Causes ‘Restore’
to Normal Path

Traversal

Frame Numbers

Recovery Path
Traversal

82.3

83.0 83.1 83.2

82.0 82.1 82.2

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-96 Freescale Semiconductor

Pointer. At the same time, it sets an internal flag indicating that it is now in Recovery Path mode (the
recovery path is annotated in Figure 24-55 with a large dashed line). The host controller continues
traversing data structures on the recovery path and executing only those bus transactions as noted above,
on the recovery path until it reaches Restore FSTN (Restore-N). Restore-N.Back Path Link Pointer.T-bit
is set (definition of a Restore indicator), so the host controller exits Recovery Path mode by clearing the
internal Recovery Path mode flag and commences (restores) schedule traversal using the saved value of
the Save-Place FSTN's Normal Path Link Pointer (for example, Save-N.Normal Path Link Pointer). The
nodes traversed during these micro-frames include: {83.0, 83.1, 83.2, Save-A, 82.2, 82.3, 42, 20, Restore-N,
43, 21, Restore-N, 10...}.

In frame N+1 (micro-frames 2-7), when the host controller encounters Save-Path FSTN Save-N, it
unconditionally follows Save-N.Normal Path Link Pointer. The nodes traversed during these micro-frames
include: {83.0, 83.1, 83.2, Save-A, 43, 21, Restore-N, 10...}.

24.9.12.2.3 Software Operational Model for FSTNs

The software must create a consistent, coherent schedule for the host controller to traverse. When using
FSTNs, the system software must adhere to the following rules:

• Each Save-Place indicator requires a matching Restore indicator.

The Save-Place indicator is an FSTN with a valid Back Path Link Pointer and T-bit equal to zero.
Note that Back Path Link Pointer[Typ] field must be set to indicate the referenced data structure is
a queue head. The Restore indicator is an FSTN with its Back Path Link Pointer[T] bit set.

A Restore FSTN may be matched to one or more Save-Place FSTNs. For example, if the schedule
includes a poll-rate 1 level, then the system software only needs to place a Restore FSTN at the
beginning of this list in order to match all possible Save-Place FSTNs.

• If the schedule does not have elements linked at a poll-rate level of one, and one or more Save-Place
FSTNs are used, then the system software must ensure the Restore FSTN's Normal Path Link
Pointer's T-bit is set, as this will be use to mark the end of the periodic list.

• When the schedule does have elements linked at a poll rate level of one, a Restore FSTN must be
the first data structure on the poll rate one list. All traversal paths from the frame list converge on
the poll-rate one list. The system software must ensure that Recovery Path mode is exited before
the host controller is allowed to traverse the poll rate level one list.

• A Save-Place FSTN's Back Path Link Pointer must reference a queue head data structure. The
referenced queue head must be reachable from the previous frame list location. In other words, if
the Save-Place FSTN is reachable from frame list offset N, then the FSTN's Back Path Link Pointer
must reference a queue head that is reachable from frame list offset N-1.

The software should make the schedule as efficient as possible. What this means in this context is that the
software should have no more than one Save-Place FSTN reachable in any single frame. Note there will
be times when two (or more, depending on the implementation) could exist as full/low-speed footprints
change with bandwidth adjustments. This could occur, for example when a bandwidth rebalance causes
the system software to move the Save-Place FSTN from one poll rate level to another. During the
transition, the software must preserve the integrity of the previous schedule until the new schedule is in
place.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-97

24.9.12.2.4 Tracking Split Transaction Progress for Interrupt Transfers

To correctly maintain the data stream, the host controller must be able to detect and report errors where
data is lost. For interrupt-IN transfers, data is lost when it makes it into the USB 2.0 hub, but the USB 2.0
host system is unable to get it from the USB 2.0 hub and into the system before it expires from the
transaction translator pipeline. When a lost data condition is detected, the queue is halted, thus signaling
the system software to recover from the error. A data-loss condition exists whenever a start-split is issued,
accepted and successfully executed by the USB 2.0 hub, but the complete-splits get unrecoverable errors
on the high-speed link, or the complete-splits do not occur at the correct times. One reason complete-splits
might not occur at the right time would be due to host-induced system hold-offs that cause the host
controller to miss bus transactions because it cannot get timely access to the schedule in system memory.

The same condition can occur for an interrupt-OUT, but the result is not an endpoint halt condition, but
rather effects only the progress of the transfer. The queue head has the following fields to track the progress
of each split transaction. These fields are used to keep incremental state about which (and when) portions
have been executed.

• C-prog-mask. This is an eight-bit bit-vector where the host controller keeps track of which
complete-splits have been executed. Due to the nature of the Transaction Translator periodic
pipeline, the complete-splits need to be executed in-order. The host controller needs to detect when
the complete-splits have not been executed in order. This can only occur due to system hold-offs
where the host controller cannot get to the memory-based schedule. C-prog-mask is a simple
bit-vector that the host controller sets one of the C-prog-mask bits for each complete-split executed.
The bit position is determined by the micro-frame number in which the complete-split was
executed. The host controller always checks C-prog-mask before executing a complete-split
transaction. If the previous complete-splits have not been executed then it means one (or more)
have been skipped and data has potentially been lost.

• FrameTag. This field is used by the host controller during the complete-split portion of the split
transaction to tag the queue head with the frame number (H-Frame number) when the next
complete split must be executed.

• S-bytes. This field can be used to store the number of data payload bytes sent during the start-split
(if the transaction was an OUT). The S-bytes field must be used to accumulate the data payload
bytes received during the complete-splits (for an IN).

24.9.12.2.5 Split Transaction Execution State Machine for Interrupt

In the following section, all references to micro-frame are in the context of a micro-frame within an
H-Frame.

As with asynchronous Full- and Low-speed endpoints, a split-transaction state machine is used to manage
the split transaction sequence. Aside from the fields defined in the queue head for scheduling and tracking
the split transaction, the host controller calculates one internal mechanism that is also used to manage the
split transaction. The internal calculated mechanism is:

• cMicroFrameBit. This is a single-bit encoding of the current micro-frame number. It is an eight-bit
value calculated by the host controller at the beginning of every micro-frame. It is calculated from
the three least significant bits of the FRINDEX register (that is, cMicroFrameBit = (1
shifted-left(FRINDEX[2:0]))). The cMicroFrameBit has at most one bit asserted, which always

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-98 Freescale Semiconductor

corresponds to the current micro-frame number. For example, if the current micro-frame is 0, then
cMicroFrameBit will equal 0b0000_0001.

The variable cMicroFrameBit is used to compare against the S-mask and C-mask fields to
determine whether the queue head is marked for a start- or complete-split transaction for the current
micro-frame.

Figure 24-56 illustrates how a complete interrupt split transaction is managed. There are two phases to
each split transaction. The first is a single start-split transaction, which occurs when the SplitXState is at
Do_Start and the single bit in cMicroFrameBit has a corresponding bit active in QH[S-mask]. The
transaction translator does not acknowledge the receipt of the periodic start-split, so the host controller
unconditionally transitions the state to Do_Complete. Due to the available jitter in the transaction
translator pipeline, there will be more than one complete-split transaction scheduled by the software for
the Do_Complete state. This translates simply to the fact that there are multiple bits set in the QH[C-mask]
field.

The host controller keeps the queue head in the Do_Complete state until the split transaction is complete
(see definition below), or an error condition triggers the three-strikes-rule (for example, after the host tries
the same transaction three times, and each encounters an error, the host controller stops retrying the bus
transaction and halts the endpoint, thus requiring the system software to detect the condition and perform
system-dependent recovery).

Figure 24-56. Split Transaction State Machine for Interrupt

24.9.12.2.6 Periodic Interrupt—Do-Start-Split

This is the state the software must initialize a full- or low-speed interrupt queue head StartXState bit. This
state is entered from the Do_Complete Split state only after the split transaction is complete.

Do
Complete-

Split

Do
Start-
Split

MDATA

Halt
Queue

!(QH.S-Mask &

Active
Queue
State

* Issue Start-Split Transaction
* Tag QH with Frame Number According

(QH.C-Mask & cMicroFrameBit)
.and.

State
cMicroFrameBit)

to the Frame Tag Rules **(1,3)
* QH.C-prog-mask = zero(0x00)

(QH.S-Mask &
cMicroFrameBit)

.or.
NYET

(FRINDEX[7:3] .eq. QH.FrameTag)
.and.

CheckPreviousBit(QH.C-prog-mask,
QH.C-Mask, cMicroFrameBit)

Data Loss
.or.

STALL
.or.

Babble
.or.

CERR ––> 0 Split
Transaction
Complete

* Issue Complete-Split Transaction
* Tag QH with Frame Number According

to the **Sframe Tag Rules
* C-prog-mask |= cMicroFrameBit

XactErr
Decrement Error Counter (CERR)

and Do Immediate Retry
of Complete-Split

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-99

This occurs when one of the following events occur: The transaction translator responds to a complete-split
transaction with one of the following:

• NAK. A NAK response is a propagation of the full- or low-speed endpoint's NAK response.

• ACK. An ACK response is a propagation of the full- or low-speed endpoint's ACK response. Only
occurs on an OUT endpoint.

• DATA 0/1. Only occurs for INs. Indicates that this is the last of the data from the endpoint for this
split transaction.

• ERR. The transaction on the low-/full-speed link below the transaction translator had a failure (for
example, timeout, bad CRC, etc.).

• NYET (and Last). The host controller issued the last complete-split and the transaction translator
responded with a NYET handshake. This means that the start-split was not correctly received by
the transaction translator, so it never executed a transaction to the full- or low-speed endpoint, see
Section 24.9.12.2.7, “Periodic Interrupt—Do-Complete-Split” for the definition of 'Last'.

Each time the host controller visits a queue head in this state (once within the Execute Transaction state),
bit-wise ANDs QH[S-mask] with cMicroFrameBit to determine whether to execute a start-split. If the
result is non-zero, then the host controller issues a start-split transaction. If the PID Code field indicates an
IN transaction, the host controller must zero-out the QH[S-bytes] field. After the split-transaction has been
executed, the host controller sets up state in the queue head to track the progress of the complete-split phase
of the split transaction. Specifically, it records the expected frame number into QH[FrameTag] field, sets
C-prog-mask to zero (0x00), and exits this state. Note that the host controller must not adjust the value of
Cerr as a result of completion of a start-split transaction.

24.9.12.2.7 Periodic Interrupt—Do-Complete-Split

This state is entered unconditionally from the Do Start Split state after a start-split transaction is executed
on the bus. Each time the host controller visits a queue head in this state (once within the Execute
Transaction state), it checks to determine whether a complete-split transaction should be executed now.

There are four tests to determine whether a complete-split transaction should be executed.

• Test A. cMicroFrameBit is bit-wise ANDed with QH[C-mask] field. A non-zero result indicates
that the software scheduled a complete-split for this endpoint, during this micro-frame.

• Test B. QH[FrameTag] is compared with the current contents of FRINDEX[7:3]. An equal
indicates a match.

• Test C. The complete-split progress bit vector is checked to determine whether the previous bit is
set, indicating that the previous complete-split was appropriately executed. An example algorithm
for this test is provided below:

Algorithm Boolean CheckPreviousBit(QH.C-prog-mask, QH.C-mask, cMicroFrameBit)
Begin
-- Return values:
-- TRUE - no error
-- FALSE - error
--
Boolean rvalue = TRUE;
previousBit = cMicroframeBit logical-rotate-right(1)
-- Bit-wise anding previousBit with C-mask indicates
-- whether there was an intent

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-100 Freescale Semiconductor

-- to send a complete split in the previous micro-frame. So,
-- if the
-- 'previous bit' is set in C-mask, check C-prog-mask to
-- make sure it
-- happened.
If (previousBit bitAND QH.C-mask)then

If not(previousBit bitAND QH.C-prog-mask) then
rvalue = FALSE;

End if
End If
-- If the C-prog-mask already has a one in this bit position,
-- then an aliasing
-- error has occurred. It will probably get caught by the
-- FrameTag Test, but
-- at any rate it is an error condition that as detectable here
-- should not allow
-- a transaction to be executed.
If (cMicroFrameBit bitAND QH.C-prog-mask) then
rvalue = FALSE;
End if
return (rvalue)
End Algorithm

• Test D. Check to see if a start-split should be executed in this micro-frame. Note this is the same
test performed in the Do Start Split state. Whenever it evaluates to TRUE and the controller is NOT
processing in the context of a Recovery Path mode, it means a start-split should occur in this
micro-frame. Test D and Test A are evaluating to TRUE at the same time as a system software error.
Behavior is undefined.

If (A.and. B.and. C.and. not(D)) then the host controller will execute a complete-split transaction. When
the host controller commits to executing the complete-split transaction, it updates QH[C-prog-mask] by
bit-ORing with cMicroFrameBit. On completion of the complete-split transaction, the host controller
records the result of the transaction in the queue head and sets QH[FrameTag] to the expected H-Frame
number. The effect to the state of the queue head and thus the state of the transfer depends on the response
by the transaction translator to the complete-split transaction. The following responses have the effects
(note that any responses that result in decrementing of the Cerr will result in the queue head being halted
by the host controller if the result of the decrement is zero):

• NYET (and Last). On each NYET response, the host controller checks to determine whether this
is the last complete-split for this split transaction. Last is defined in this context as the condition
where all of the scheduled complete-splits have been executed. If it is the last complete-split (with
a NYET response), then the transfer state of the queue head is not advanced (never received any
data) and this state exited. The transaction translator must have responded to all the complete-splits
with NYETs, meaning that the start-split issued by the host controller was not received. The
start-split should be retried at the next poll period.

• The test for whether this is the Last complete split can be performed by XOR QH[C-mask] with
QH[C-prog-mask]. If the result is all zeros then all complete-splits have been executed. When this
condition occurs, the XactErr status bit is set and the Cerr field is decremented.

• NYET (and not Last). See above description for testing for Last. The complete-split transaction
received a NYET response from the transaction translator. Do not update any transfer state (except
for C-prog-mask and FrameTag) and stay in this state. The host controller must not adjust Cerr on
this response.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-101

• Transaction Error (XactErr). Timeout, data CRC failure, etc. The Cerr field is decremented and the
XactErr bit in the Status field is set. The complete split transaction is immediately retried (if Cerr
is non-zero).If there is not enough time in the micro-frame to complete the retry and the endpoint
is an IN, or Cerr is decremented to a zero from a one, the queue is halted. If there is not enough
time in the micro-frame to complete the retry and the endpoint is an OUT and Cerr is not zero, then
this state is exited (that is, return to Do Start Split). This results in a retry of the entire OUT split
transaction, at the next poll period. Refer to Chapter 11 Hubs (specifically the section on full- and
low-speed interrupts) in the USB Specification Revision 2.0 for detailed requirements on why these
errors must be immediately retried.

• ACK. This can only occur if the target endpoint is an OUT. The target endpoint ACK'd the data and
this response is a propagation of the endpoint ACK up to the host controller. The host controller
must advance the state of the transfer. The Current Offset field is incremented by Maximum Packet
Length or Bytes to Transfer, whichever is less. The field Bytes To Transfer is decremented by the
same amount. And the data toggle bit (dt) is toggled. The host controller will then exit this state for
this queue head. The host controller must reload Cerr with maximum value on this response.
Advancing the transfer state may cause other process events such as retirement of the qTD and
advancement of the queue.

• MDATA. This response will only occur for an IN endpoint. The transaction translator responded
with zero or more bytes of data and an MDATA PID. The incremental number of bytes received is
accumulated in QH[S-bytes]. The host controller must not adjust Cerr on this response.

• DATA0/1. This response may only occur for an IN endpoint. The number of bytes received is added
to the accumulated byte count in QH[S-bytes]. The state of the transfer is advanced by the result
and the host controller exits this state for this queue head.

• Advancing the transfer state may cause other processing events such as retirement of the qTD and
advancement of the queue.

• If the data sequence PID does not match the expected, the entirety of the data received in this split
transaction is ignored, the transfer state is not advanced and this state is exited.

• NAK. The target endpoint Nak'd the full- or low-speed transaction. The state of the transfer is not
advanced, and this state is exited. The host controller must reload Cerr with maximum value on this
response.

• ERR. There was an error during the full- or low-speed transaction. The ERR status bit is set, Cerr
is decremented, the state of the transfer is not advanced, and this state is exited.

• STALL. The queue is halted (an exit condition of the Execute Transaction state). The status field
bits: Active bit is cleared and the Halted bit is set and the qTD is retired. Responses which are not
enumerated in the list or which are received out of sequence are illegal and may result in undefined
host controller behavior. The other possible combinations of tests A, B, C, and D may indicate that
data or response was lost. Table 24-67 lists the possible combinations and the appropriate action.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-102 Freescale Semiconductor

24.9.12.2.8 Managing the QH[FrameTag] Field

The QH[FrameTag] field in a queue head is completely managed by the host controller. The rules for
setting QH[FrameTag] are simple:

• Rule 1: If transitioning from Do Start Split to Do Complete Split and the current value of
FRINDEX[2:0] is 6, QH[FrameTag] is set to FRINDEX[7:3] + 1. This accommodates split
transactions whose start-split and complete-splits are in different H-Frames (case 2a, see
Figure 24-53).

• Rule 2: If the current value of FRINDEX[2:0] is 7, QH[FrameTag] is set to FRINDEX[7:3] + 1.
This accommodates staying in Do Complete Split for cases 2a, 2b, and 2c in Figure 24-53.

• Rule 3: If transitioning from Do_Start Split to Do Complete Split and the current value of
FRINDEX[2:0] is not 6, or currently in Do Complete Split and the current value of
(FRINDEX[2:0]) is not 7, FrameTag is set to FRINDEX[7:3]. This accommodates all other cases
in Figure 24-53.

Table 24-67. Interrupt IN/OUT Do Complete Split State Execution Criteria

Condition Action Description

not(A)
not(D)

Ignore QHD Neither a start nor complete-split is scheduled for the current micro-frame.Host
controller should continue walking the schedule.

A
not(C)

If PIDCode = IN
Halt QHDIf PIDCode = OUT
Retry start-split

Progress bit check failed. These means a complete-split has been missed. There is
the possibility of lost data. If PID Code is an IN, then the Queue head must be
halted.If PID Code is an OUT, then the transfer state is not advanced and the state
exited (for example, start-split is retried). This is a host-induced error and does not
effect Cerr. In either case, set the Missed Micro-frame bit in the status field to a one.

A
not(B)

C

If PIDCode = IN
Halt QHD
If PIDCode = OUT
Retry start-split

QH.FrameTag test failed. This means that exactly one or more H-Frames have been
skipped. This means complete-splits and have missed. There is the possibility of lost
data. If PID Code is an IN, then the Queue head must be halted.If PID Code is an
OUT, then the transfer state is not advanced and the state exited (for example,
start-split is retried). This is a host-induced error and does not effect Cerr. In either
case, set the Missed Micro-frame bit in the status field to a one.

A
B
C

not(D)

Execute complete-split This is the non-error case where the host controller executes a complete-split
transaction.

D If PIDCode = IN
Halt QHDIf PIDCode = OUT
Retry start-split

This is a degenerate case where the start-split was issued, but all of the
complete-splits were skipped and all possible intervening opportunities to detect the
missed data failed to fire. If PID Code is an IN, then the Queue head must be halted.
If PID Code is an OUT, then the transfer state is not advanced and the state exited
(for example, start-split is retried). This is a host-induced error and does not effect
Cerr. In either case, set the Missed Micro-frame bit in the status field to a one.
Note: When executing in the context of a Recovery Path mode, the host controller

is allowed to process the queue head and take the actions indicated above, or
it may wait until the queue head is visited in the normal processing mode.
Regardless, the host controller must not execute a start-split in the context of
a executing in a Recovery Path mode.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-103

24.9.12.2.9 Rebalancing the Periodic Schedule

The system software must occasionally adjust a periodic queue head's S-mask and C-mask fields during
operation. This need occurs when adjustments to the periodic schedule create a new bandwidth budget and
one or more queue head's are assigned new execution footprints (that is, new S-mask and C-mask values).

It is imperative that the system software must not update these masks to new values in the midst of a split
transaction. In order to avoid any race conditions with the update, the host controller provides a simple
assist to the system software. The system software sets the Inactivate-on-next-Transaction (I) bit to signal
the host controller that it intends to update the S-mask and C-mask on this queue head. The system
software then waits for the host controller to observe the I-bit is set and transitions the Active bit to a zero.
The rules for how and when the host controller clears the Active bit are:

• If the Active bit is cleared, no action is taken. The host controller does not attempt to advance the
queue when the I-bit is set.

• If the Active bit is set and the SplitXState is DoStart (regardless of the value of S-mask), the host
controller simply clears the Active bit. The host controller is not required to write the transfer state
back to the current qTD. Note that if the S-mask indicates that a start-split is scheduled for the
current micro-frame, the host controller must not issue the start-split bus transaction; it must clear
the Active bit.

The system software must save transfer state before setting the I-bit. This is required so that it can correctly
determine what transfer progress (if any) occurred after the I-bit was set and the host controller executed
it's final bus-transaction and cleared the Active bit.

After the system software has updated the S-mask and C-mask, it must then reactivate the queue head.
Since the Active bit and the I-bit cannot be updated with the same write, the system software needs to use
the following algorithm to coherently re-activate a queue head that has been stopped using the I-bit.

1. Set the Halted bit, then

2. Clear the I-bit, then

3. Set the Active bit and clear the Halted bit in the same write.

Setting the Halted bit inhibits the host controller from attempting to advance the queue between the time
the I-bit is cleared and the Active bit is set.

24.9.12.3 Split Transaction Isochronous

Full-speed isochronous transfers are managed using the split-transaction protocol through a USB 2.0
transaction translator in a USB 2.0 hub. The host controller utilizes siTD data structure to support the
special requirements of isochronous split-transactions. This data structure uses the scheduling model of
isochronous TDs (see Section 24.9.8, “Managing Isochronous Transfers Using iTDs,” for the operational
model of iTDs) with the contiguous data feature provided by queue heads. This simple arrangement allows
a single isochronous scheduling model and adds the additional feature that all data received from the
endpoint (per split transaction) must land into a contiguous buffer.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-104 Freescale Semiconductor

24.9.12.3.1 Split Transaction Scheduling Mechanisms for Isochronous

Full-speed isochronous transactions are managed through a transaction translator's periodic pipeline. As
with full- and low-speed interrupt, the system software manages each transaction translator's periodic
pipeline by budgeting and scheduling exactly during which micro-frames the start-splits and
complete-splits for each full-speed isochronous endpoint occur. The requirements described in
Section 24.9.12.2.1, “Split Transaction Scheduling Mechanisms for Interrupt” apply. Figure 24-57
illustrates the general scheduling boundary conditions that are supported by the EHCI periodic schedule.
The Sn and Cn labels indicate micro-frames where the software can schedule start- and complete-splits
(respectively). The H-Frame boundaries are marked with a large, solid bold vertical line. The B-Frame
boundaries are marked with a large, bold, dashed line. The bottom of the figure illustrates the relationship
of an siTD to the H-Frame.

Figure 24-57. Split Transaction, Isochronous Scheduling Boundary Conditions

7

C2C1C0S

076543210
Periodic Schedule

Micro-Frame 1

Case 1:
Normal Case

C3C0SCase 2a:
Frame Wrap at

S0

C6C5C4S

6 765432107
HS/FS/LS Bus

Micro-Frame 0

Case 2b:
Start & Complete

B-Frame N B-Frame N+1B-Frame N–1

H-Frame N

S3S2S0

C3

S1

C6 S

C0 C1 C2 C3

C1 C2

S1 S2 S3

H-Frame N+1

siTDx siTDx+1

End of H-Frame

in H-Frame,
Micro-Frame 0

IN

OUT

IN

OUT

IN

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-105

When the endpoint is an isochronous OUT, there are only start-splits, and no complete-splits. When the
endpoint is an isochronous IN, there is at most one start-split and one to N complete-splits. The scheduling
boundary cases are:

• Case 1: The entire split transaction is completely bounded by an H-Frame. For example, the
start-splits and complete-splits are all scheduled to occur in the same H-Frame.

• Case 2a: This boundary case is where one or more (at most two) complete-splits of a split
transaction IN are scheduled across an H-Frame boundary. This can only occur when the split
transaction has the possibility of moving data in B-Frame, micro-frames 6 or 7 (H-Frame
micro-frame 7 or 0). When an H-Frame boundary wrap condition occurs, the scheduling of the split
transaction spans more than one location in the periodic list.(for example, it takes two siTDs in
adjacent periodic frame list locations to fully describe the scheduling for the split transaction).

Although the scheduling of the split transaction may take two data structures, all of the
complete-splits for each full-speed IN isochronous transaction must use only one data pointer. For
this reason, siTDs contain a back pointer.

The software must never schedule full-speed isochronous OUTs across an H-Frame boundary.

• Case 2b: This case can only occur for a very large isochronous IN. It is the only allowed scenario
where a start-split and complete-split for the same endpoint can occur in the same micro-frame.
The software must enforce this rule by scheduling the large transaction first. Large is defined to be
anything larger than 579 byte maximum packet size.

A subset of the same mechanisms employed by full- and low-speed interrupt queue heads are employed in
siTDs to schedule and track the portions of isochronous split transactions. The following fields are
initialized by the system software to instruct the host controller when to execute portions of the split
transaction protocol:

• SplitXState. This is a single bit residing in the Status field of an siTD (see Table 24-47). This bit is
used to track the current state of the split transaction. The rules for managing this bit are described
in Section 24.9.12.3.3, “Split Transaction Execution State Machine for Isochronous.”

• Frame S-mask. This is a bit-field where the system software sets a bit corresponding to the
micro-frame (within an H-Frame) that the host controller should execute a start-split transaction.
This is always qualified by the value of the SplitXState bit. For example, referring to the IN
example in Figure 24-57, case 1, the S-mask would have a value of 0b0000_0001 indicating that if
the siTD is traversed by the host controller, and the SplitXState indicates Do Start Split, and the
current micro-frame as indicated by FRINDEX[2:0] is 0, then execute a start-split transaction.

• Frame C-mask. This is a bit-field where the system software sets one or more bits corresponding
to the micro-frames (within an H-Frame) that the host controller should execute complete-split
transactions. The interpretation of this field is always qualified by the value of the SplitXState bit.
For example, referring to the IN example in Figure 24-57, case 1, the C-mask would have a value
of 0b 0011_1100 indicating that if the siTD is traversed by the host controller, and the SplitXState
indicates Do Complete Split, and the current micro-frame as indicated by FRINDEX[2:0] is 2, 3,
4, or 5, then execute a complete-split transaction.

• Back Pointer. This field in a siTD is used to complete an IN split-transaction using the previous
H-Frame's siTD. This is only used when the scheduling of the complete-splits span an H-Frame
boundary.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-106 Freescale Semiconductor

There exists a one-to-one relationship between a high-speed isochronous split transaction (including all
start- and complete-splits) and one full-speed isochronous transaction. An siTD contains (amongst other
things) buffer state and split transaction scheduling information. An siTD's buffer state always maps to one
full-speed isochronous data payload. This means that for any full-speed transaction payload, a single
siTD's data buffer must be used. This rule applies to both IN an OUTs. An siTD's scheduling information
usually also maps to one high-speed isochronous split transaction. The exception to this rule is the
H-Frame boundary wrap cases mentioned above.

The siTD data structure describes at most, one frame's worth of high-speed transactions and that
description is strictly bounded within a frame boundary. Figure 24-58 illustrates some examples. On the
top are examples of the full-speed transaction footprints for the boundary scheduling cases described
above. In the middle are time-frame references for both the B-Frames (HS/FS/LS Bus) and the H-Frames.
On the bottom is illustrated the relationship between the scope of an siTD description and the time
references. Each H-Frame corresponds to a single location in the periodic frame list. The implication is
that each siTD is reachable from a single periodic frame list location at a time.

Figure 24-58. siTD Scheduling Boundary Examples

Each case is described as follows:

• Case 1: One siTD is sufficient to describe and complete the isochronous split transaction because
the whole isochronous split transaction is tightly contained within a single H-Frame.

• Case 2a, 2b: Although both INs and OUTs can have these footprints, OUTs always take only one
siTD to schedule. However, INs (for these boundary cases) require two siTDs to complete the
scheduling of the isochronous split transaction. siTDX is used to always issue the start-split and the
first N complete-splits. The full-speed transaction (for these cases) can deliver data on the
full-speed bus segment during micro-frame 7 of H-FrameY+1, or micro-frame 0 of H-FrameY+2.
The complete splits are scheduled using siTDX+2 (not shown). The complete-splits to extract this
data must use the buffer pointer from siTDX+1. The only way for the host controller to reach
siTDX+1 from H-FrameY+2 is to use siTDX+2's back pointer.

076543210 07654321 217654

B-Frame Y B-Frame Y+1 B-Frame Y+2B-Frame Y–1

076543210 07654321 21765

H-Frame Y H-Frame Y+1

3

H-Frame Y+2H-Frame Y–1

Case 1 Case 2a Case 2b

siTDX siTDX+1

Back Pointer

Full-Speed Transaction

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-107

The software must apply the following rules when calculating the schedule and linking the schedule data
structures into the periodic schedule:

• The software must ensure that an isochronous split-transaction is started so that it will complete
before the end of the B-Frame.

• The software must ensure that for a single full-speed isochronous endpoint, there is never a
start-split and complete-split in H-Frame, micro-frame 1. This is mandated as a rule so that case 2a
and case 2b can be discriminated. According to the core USB specification, the long isochronous
transaction illustrated in Case 2b, could be scheduled so that the start-split was in micro-frame 1
of H-Frame N and the last complete-split would need to occur in micro-frame 1 of H-Frame N+1.
However, it is impossible to discriminate between cases 2a and case 2b, which has significant
impact on the complexity of the host controller.

24.9.12.3.2 Tracking Split Transaction Progress for Isochronous Transfers

Isochronous endpoints do not employ the concept of a halt on error, however the host controller does
identify and report per-packet errors observed in the data stream. This includes schedule traversal problems
(skipped micro-frames), timeouts and corrupted data received.

In similar kind to interrupt split-transactions, the portions of the split transaction protocol must execute in
the micro-frames they are scheduled. The queue head data structure used to manage full- and low-speed
interrupt has several mechanisms for tracking when portions of a transaction have occurred. Isochronous
transfers use siTDs for their transfers and the data structures are only reachable using the schedule in the
exact micro-frame in which they are required (so all the mechanism employed for tracking in queue heads
is not required for siTDs). The software has the option of reusing siTD several times in the complete
periodic schedule. However, it must ensure that the results of split transaction N are consumed and the
siTD re-initialized (activated) before the host controller gets back to the siTD (in a future micro-frame).

Split-transaction isochronous OUTs utilize a low-level protocol to indicate which portions of the split
transaction data have arrived. Control over the low-level protocol is exposed in an siTD using the fields
Transaction Position (TP) and Transaction Count (T-count). If the entire data payload for the OUT split
transaction is larger than 188 bytes, there will be more than one start-split transaction, each of which
require proper annotation. If host hold-offs occur, then the sequence of annotations received from the host
will not be complete, which is detected and handled by the transaction translator. See Section 24.9.12.3.1,
“Split Transaction Scheduling Mechanisms for Isochronous,” for a description on how these fields are used
during a sequence of start-split transactions.

The fields siTD[T-Count] and siTD[TP] are used by the host controller to drive and sequence the
transaction position annotations. It is the responsibility of the system software to properly initialize these
fields in each siTD. Once the budget for a split-transaction isochronous endpoint is established, S-mask,
T-Count, and TP initialization values for all the siTD associated with the endpoint are constant. They
remain constant until the budget for the endpoint is recalculated by the software and the periodic schedule
adjusted.

For IN-endpoints, the transaction translator simply annotates the response data packets with enough
information to allow the host controller to identify the last data. As with split transaction Interrupt, it is the
host controller's responsibility to detect when it has missed an opportunity to execute a complete-split. The

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-108 Freescale Semiconductor

following field in the siTD is used to track and detect errors in the execution of a split transaction for an
IN isochronous endpoint.

• C-prog-mask. This is an eight-bit bit-vector where the host controller keeps track of which
complete-splits have been executed. Due to the nature of the Transaction Translator periodic
pipeline, the complete-splits need to be executed in-order. The host controller needs to detect when
the complete-splits have not been executed in order. This can only occur due to system hold-offs
where the host controller cannot get to the memory-based schedule. C-prog-mask is a simple
bit-vector that the host controller sets a bit for each complete-split executed. The bit position is
determined by the micro-frame (FRINDEX[2:0]) number in which the complete-split was
executed. The host controller always checks C-prog-mask before executing a complete-split
transaction. If the previous complete-splits have not been executed, then it means one (or more)
have been skipped and data has potentially been lost. The system software is required to initialize
this field to zero before setting an siTD's Active bit to a one.

If a transaction translator returns with the final data before all of the complete-splits have been executed,
the state of the transfer is advanced so that the remaining complete-splits are not executed. It is important
to note that an IN siTD is retired based solely on the responses from the Transaction Translator to the
complete-split transactions. This means, for example, that it is possible for a transaction translator to
respond to a complete-split with an MDATA PID. The number of bytes in the MDATA's data payload could
cause the siTD[Total Bytes to Transfer] field to decrement to zero. This response can occur, before all of
the scheduled complete-splits have been executed. In other interface, data structures (for example,
high-speed data streams through queue heads), the transition of Total Bytes to Transfer to zero signals the
end of the transfer and results in clearing the Active bit. However, in this case, the result has not been
delivered by the Transaction Translator and the host must continue with the next complete-split transaction
to extract the residual transaction state. This scenario occurs because of the pipeline rules for a Transaction
Translator. In summary, the periodic pipeline rules require that on a micro-frame boundary, the Transaction
Translator holds the final two bytes received (if it has not seen an End Of Packet (EOP)) in the full-speed
bus pipe stage and gives the remaining bytes to the high-speed pipeline stage. At the micro-frame
boundary, the Transaction Translator could have received the entire packet (including both CRC bytes) but
not received the packet EOP. In the next micro-frame, the Transaction Translator responds with an MDATA
and sends all of the data bytes (with the two CRC bytes being held in the full-speed pipeline stage). This
could cause the siTD to decrement it's Total Bytes to Transfer field to zero, indicating it has received all
expected data. The host must still execute one more (scheduled) complete-split transaction in order to
extract the results of the full-speed transaction from the Transaction Translator (for example, the
Transaction Translator may have detected a CRC failure, and this result must be forwarded to the host).

If the host experiences hold-offs that cause the host controller to skip one or more (but not all) scheduled
split transactions for an isochronous OUT, then the protocol to the transaction translator is not consistent
and the transaction translator detects and reacts to the problem. Likewise, for host hold-offs that cause the
host controller to skip one or more (but not all) scheduled split transactions for an isochronous IN, the
C-prog-mask is used by the host controller to detect errors. However, if the host experiences a hold-off that
causes it to skip all of an siTD, or an siTD expires during a host hold off (for example, a hold-off occurs
and the siTD is no longer reachable by the host controller in order for it to report the hold-off event), then
the system software must detect that the siTDs have not been processed by the host controller (for example,
state not advanced) and report the appropriate error to the client driver.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-109

24.9.12.3.3 Split Transaction Execution State Machine for Isochronous

In this section, all references to micro-frame are in the context of a micro-frame within an H-Frame.

If the Active bit in the Status byte is a zero, the host controller ignores the siTD and continues traversing
the periodic schedule. Otherwise the host controller processes the siTD as specified below. A split
transaction state machine is used to manage the split-transaction protocol sequence. The host controller
uses the fields defined in Section 24.9.12.3.2, “Tracking Split Transaction Progress for Isochronous
Transfers,” plus the variable cMicroFrameBit defined in Section 24.9.12.2.5, “Split Transaction Execution
State Machine for Interrupt,” to track the progress of an isochronous split transaction. Figure 24-59
illustrates the state machine for managing an siTD through an isochronous split transaction. Bold, dotted
circles denote the state of the Active bit in the Status field of a siTD. The Bold, dotted arcs denote the
transitions between these states. Solid circles denote the states of the split transaction state machine and
the solid arcs denote the transitions between these states. Dotted arcs and boxes reference actions that take
place either as a result of a transition or from being in a state.

Figure 24-59. Split Transaction State Machine for Isochronous

24.9.12.3.4 Periodic Isochronous—Do-Start-Split

Isochronous split transaction OUTs use only this state. An siTD for a split-transaction isochronous IN is
either initialized to this state, or the siTD transitions to this state from Do Complete Split when a case 2a
(IN) or 2b scheduling boundary isochronous split-transaction completes.

Each time the host controller reaches an active siTD in this state, it checks the siTD[S-mask] against
cMicroFrameBit. If there is a one in the appropriate position, the siTD executes a start-split transaction.

Do
Complete-

Split

Do
Start-
Split

Active
Case 2(a,b)

siTD x–1
Complete

NYET
.and.

Not LastMDATA

Not
Active

Active = 0

OUT Split
Transaction
Complete

IN Split
Transaction
Complete

Advance Data

Active = 0

Issue Start-Split
Transaction

siTD.S-Mask & cMicroFrameBit
.and.

Direction .eq. OUT

siTD.S-Mask & cMicroFrameBit
.and.

Direction .eq. IN

Issue Complete-Split
Transaction

CheckPreviousBit(C-prog-mask,
C-Mask, cMicroFrameBit)

Buffer State

Active = 1

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-110 Freescale Semiconductor

By definition, the host controller cannot reach an siTD at the wrong time. If the I/O field indicates an IN,
then the start-split transaction includes only the extended token plus the full-speed token. The software
must initialize the siTD[Total Bytes To Transfer] field to the number of bytes expected. This is usually the
maximum packet size for the full-speed endpoint. The host controller exits this state when the start-split
transaction is complete.

The remainder of this section is specific to an isochronous OUT endpoint (that is, the I/O field indicates
an OUT). When the host controller executes a start-split transaction for an isochronous OUT it includes a
data payload in the start-split transaction. The memory buffer address for the data payload is constructed
by concatenating siTD[Current Offset] with the page pointer indicated by the page select field (siTD[P]).
A zero in this field selects Page 0 and a 1 selects Page 1. During the start-split for an OUT, if the data
transfer crosses a page boundary during the transaction, the host controller must detect the page cross,
update the siTD[P] bit from a zero to a one, and begin using the siTD Page 1 with siTD[Current Offset] as
the memory address pointer. The field siTD[TP] is used to annotate each start-split transaction with the
indication of which part of the split-transaction data the current payload represents (ALL, BEGIN, MID,
END). In all cases, the host controller simply uses the value in siTD[TP] to mark the start-split with the
correct transaction position code.

T-Count is always initialized to the number of start-splits for the current frame. TP is always initialized to
the first required transaction position identifier. The scheduling boundary case (see Figure 24-58) is used
to determine the initial value of TP. The initial cases are summarized in Table 24-68.

After each start-split transaction is complete, the host controller updates T-Count and TP appropriately so
that the next start-split is correctly annotated. Table 24-69 illustrates all of the TP and T-count transitions,
which must be accomplished by the host controller.

Table 24-68. Initial Conditions for OUT siTD's TP and T-Count Fields

Case T-count TP Description

1, 2a =1 ALL When the OUT data payload is less than (or equal to) 188 bytes, only one start-split is
required to move the data. The one start-split must be marked with an ALL.

1, 2a !=1 BEGIN When the OUT data payload is greater than 188 bytes more than one start-split must be
used to move the data. The initial start-split must be marked with a BEGIN.

Table 24-69. Transaction Position (TP)/Transaction Count (T-Count) Transition

TP
T-count

Next
TP Next Description

ALL 0 N/A Transition from ALL, to done.

BEGIN 1 END Transition from BEGIN to END. Occurs when T-count starts at 2.

BEGIN !=1 MID Transition from BEGIN to MID. Occurs when T-count starts at greater than 2.

MID !=1 MID TP stays at MID while T-count is not equal to 1 (for example, greater than 1). This case
can occur for any of the scheduling boundary cases where the T-count starts greater
than 3.

MID 1 END Transition from MID to END. This case can occur for any of the scheduling boundary
cases where the T-count starts greater than 2.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-111

The start-split transactions do not receive a handshake from the transaction translator, so the host controller
always advances the transfer state in the siTD after the bus transaction is complete. To advance the transfer
state the following operations take place:

• The siTD[Total Bytes To Transfer] and the siTD[Current Offset] fields are adjusted to reflect the
number of bytes transferred.

• The siTD[P] (page select) bit is updated appropriately.

• The siTD[TP] and siTD[T-count] fields are updated appropriately as defined in Table 24-69.

These fields are then written back to the memory based siTD. The S-mask is fixed for the life of the current
budget. As mentioned above, TP and T-count are set specifically in each siTD to reflect the data to be sent
from this siTD. Therefore, regardless of the value of S-mask, the actual number of start-split transactions
depends on T-count (or equivalently, Total Bytes to Transfer). The host controller must clear the Active bit
when it detects that all of the schedule data has been sent to the bus. The preferred method is to detect when
T-Count decrements to zero as a result of a start-split bus transaction. Equivalently, the host controller can
detect when Total Bytes to Transfer decrements to zero. Either implementation must ensure that if the
initial condition is Total Bytes to Transfer is equal to zero and T-count is equal to a one, then the host
controller will issue a single start-split, with a zero-length data payload. The software must ensure that TP,
T-count and Total Bytes to Transfer are set to deliver the appropriate number of bus transactions from each
siTD. An inconsistent combination will yield undefined behavior.

If the host experiences hold-offs that cause the host controller to skip start-split transactions for an OUT
transfer, the state of the transfer will not progress appropriately. The transaction translator observes
protocol violations in the arrival of the start-splits for the OUT endpoint (that is, the transaction position
annotation is incorrect as received by the transaction translator).

Example scenarios are described in Section 24.9.12.3.7, “Split Transaction for Isochronous—Processing
Examples.”

The host controller can optionally track the progress of an OUT split transaction by setting appropriate bits
in the siTD[C-prog-mask] as it executes each scheduled start-split. The checkPreviousBit() algorithm
defined in Section 24.9.12.3.5, “Periodic Isochronous—Do Complete Split,” can be used prior to
executing each start-split to determine whether start-splits were skipped. The host controller can use this
mechanism to detect missed micro-frames. It can then clear the siTD's Active bit and stop execution of this
siTD. This saves on both memory and high-speed bus bandwidth.

24.9.12.3.5 Periodic Isochronous—Do Complete Split

This state is only used by a split-transaction isochronous IN endpoint. This state is entered unconditionally
from the Do Start State after a start-split transaction is executed for an IN endpoint. Each time the host
controller visits an siTD in this state, it conducts a number of tests to determine whether it should execute
a complete-split transaction. The individual tests are listed below. The sequence they are applied depends
on which micro-frame the host controller is currently executing which means that the tests might not be
applied until after the siTD referenced from the back pointer has been fetched.

• Test A. cMicroFrameBit is bit-wise ANDed with the siTD[C-mask] field. A non-zero result
indicates that the software scheduled a complete-split for this endpoint, during this micro-frame.
This test is always applied to a newly fetched siTD that is in this state.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-112 Freescale Semiconductor

• Test B. The siTD[C-prog-mask] bit vector is checked to determine whether the previous complete
splits have been executed. An example algorithm is given below (this is slightly different than the
algorithm used in Section 24.9.12.2.7, “Periodic Interrupt—Do-Complete-Split”). The sequence in
which this test is applied depends on the current value of FRINDEX[2:0]. If FRINDEX[2:0] is 0
or 1, it is not applied until the back pointer has been used. Otherwise it is applied immediately.

Algorithm Boolean CheckPreviousBit(siTD.C-prog-mask, siTD.C-mask, cMicroFrameBit)
Begin

Boolean rvalue = TRUE;
previousBit = cMicroFrameBit rotate-right(1)
-- Bit-wise anding previousBit with C-mask indicates whether there
-- was an intent to send a complete split in the previous micro-
-- frame. So, if the 'previous bit' is set in C-mask, check
-- C-prog-mask to make sure it happened.
if previousBit bitAND siTD.C-mask then

if not (previousBit bitAND siTD.C-prog-mask) then
rvalue = FALSE

End if
End if
Return rvalue

End Algorithm

If Test A is true and FRINDEX[2:0] is zero or one, then this is a case 2a or 2b scheduling boundary (see
Figure 24-57). See Section 24.9.12.3.6, “Complete-Split for Scheduling Boundary Cases 2a, 2b,” for
details in handling this condition.

If Test A and Test B evaluate to true, then the host controller executes a complete-split transaction using
the transfer state of the current siTD. When the host controller commits to executing the complete-split
transaction, it updates QH[C-prog-mask] by bit-ORing with cMicroFrameBit. The transfer state is
advanced based on the completion status of the complete-split transaction. To advance the transfer state of
an IN siTD, the host controller must:

• Decrement the number of bytes received from siTD[Total Bytes To Transfer]

• Adjust siTD[Current Offset] by the number of bytes received

• Adjust the siTD[P] (page select) field if the transfer caused the host controller to use the next page
pointer

• Set any appropriate bits in the siTD[Status] field, depending on the results of the transaction.

Note that if the host controller encounters a condition where siTD[Total Bytes To Transfer] is zero, and it
receives more data, the host controller must not write the additional data to memory. The
siTD[Status-Active] bit must be cleared and the siTD[Status-Babble Detected] bit must be set. The fields
siTD[Total Bytes To Transfer], siTD[Current Offset], and siTD[P] are not required to be updated as a result
of this transaction attempt.

The host controller accepts (assuming good data packet CRC and sufficient room in the buffer as indicated
by the value of siTD[Total Bytes To Transfer]) MDATA and DATA0/1 data payloads up to and including
192 bytes. The host controller may optionally clear siTD[Status-Active] and set siTD[Status-Babble
Detected] when it receives MDATA or DATA0/1 with a data payload of more than 192 bytes.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-113

The following responses have the noted effects:

• ERR. The full-speed transaction completed with a time-out or bad CRC and this is a reflection of
that error to the host. The host controller sets the ERR bit in the siTD[Status] field and clears the
Active bit.

• Transaction Error (XactErr). The complete-split transaction encounters a Timeout, CRC16 failure,
etc. The siTD[Status] field XactErr field is set and the complete-split transaction must be retried
immediately. The host controller must use an internal error counter to count the number of retries
as a counter field is not provided in the siTD data structure. The host controller will not retry more
than two times. If the host controller exhausts the retries or the end of the micro-frame occurs, the
Active bit is cleared.

• DATAx (0 or 1). This response signals that the final data for the split transaction has arrived. The
transfer state of the siTD is advanced and the Active bit is cleared. If the Bytes To Transfer field
has not decremented to zero (including the reception of the data payload in the DATAx response),
then less data than was expected, or allowed for was actually received. This short packet event does
not set the USBINT status bit in the USBSTS register to a one. The host controller will not detect
this condition.

• NYET (and Last). On each NYET response, the host controller also checks to determine whether
this is the last complete-split for this split transaction. Last was defined in Section 24.9.12.2.7,
“Periodic Interrupt—Do-Complete-Split.” If it is the last complete-split (with a NYET response),
then the transfer state of the siTD is not advanced (never received any data) and the Active bit is
cleared. No bits are set in the Status field because this is essentially a skipped transaction. The
transaction translator must have responded to all the scheduled complete-splits with NYETs,
meaning that the start-split issued by the host controller was not received. This result should be
interpreted by the system software as if the transaction was completely skipped. The test for
whether this is the last complete split can be performed by XORing C-mask with C-prog-mask. A
zero result indicates that all complete-splits have been executed.

• MDATA (and Last). See above description for testing for Last. This can only occur when there is
an error condition. Either there has been a babble condition on the full-speed link, which delayed
the completion of the full-speed transaction, or the software set up the S-mask and/or C-masks
incorrectly. The host controller must set the XactErr bit and clear the Active bit.

• NYET (and not Last). See above description for testing for Last. The complete-split transaction
received a NYET response from the transaction translator. Do not update any transfer state (except
for C-prog-mask) and stay in this state.

• MDATA (and not Last). The transaction translator responds with an MDATA when it has partial
data for the split transaction. For example, the full-speed transaction data payload spans from
micro-frame X to X+1 and during micro-frame X, the transaction translator responds with an
MDATA and the data accumulated up to the end of micro-frame X. The host controller advances
the transfer state to reflect the number of bytes received.

If Test A succeeds, but Test B fails, it means that one or more of the complete-splits have been skipped.
The host controller sets the Missed Micro-Frame status bit and clears the Active bit.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-114 Freescale Semiconductor

24.9.12.3.6 Complete-Split for Scheduling Boundary Cases 2a, 2b

Boundary cases 2a and 2b (INs only) (see Figure 24-57) require that the host controller use the transaction
state context of the previous siTD to finish the split transaction. Table 24-70 enumerates the transaction
state fields.

NOTE
TP and T-count are used only for Host to Device (OUT) endpoints.

If the software has budgeted the schedule of this data stream with a frame wrap case, then it must initialize
the siTD[Back Pointer] field to reference a valid siTD and have the T bit in the siTD[Back Pointer] field
cleared. Otherwise, the software must set the T bit in siTD[Back Pointer]. The host controller's rules for
interpreting when to use the siTD[Back Pointer] field are listed below. These rules apply only when the
siTD's Active bit is a one and the SplitXState is Do Complete Split.

• When cMicroFrameBit is a 0x1 and the siTDX[Back Pointer] T-bit is zero, or

• If cMicroFrameBit is a 0x2 and siTDX[S-mask[0]] is zero

When either of these conditions apply, then the host controller must use the transaction state from siTDX-1.

In order to access siTDX-1, the host controller reads on-chip the siTD referenced from siTDX[Back
Pointer].

The host controller must save the entire state from siTDX while processing siTDX-1. This is to
accommodate for case 2b processing. The host controller must not recursively walk the list of siTD[Back
Pointers].

If siTDX-1 is active (Active bit is set and SplitXStat is Do Complete Split), then both Test A and Test B are
applied as described above. If these criteria to execute a complete-split are met, the host controller executes
the complete split and evaluates the results as described above. The transaction state (see Table 24-70) of
siTDX-1 is appropriately advanced based on the results and written back to memory. If the resultant state
of siTDX-1's Active bit is a one, then the host controller returns to the context of siTDX, and follows its
next pointer to the next schedule item. No updates to siTDX are necessary.

If siTDX-1 is active (Active bit is set and SplitXStat is Do Start Split), then the host controller must clear
the Active bit and set the Missed Micro-Frame status bit and the resultant status is written back to memory.

If siTDX-1's Active bit is cleared, (because it was cleared when the host controller first visited siTDX-1 via
siTDX's back pointer, it transitioned to zero as a result of a detected error, or the results of siTDX-1's
complete-split transaction cleared it), then the host controller returns to the context of siTDX and
transitions its SplitXState to Do Start Split. The host controller then determines whether the case 2b start
split boundary condition exists (that is, if cMicroframeBit is 1 and siTDX[S-mask[0]] is 1). If this criterion

Table 24-70. Summary siTD Split Transaction State

Buffer State Status Execution Progress

Total Bytes To Transfer
P (page select)
Current Offset
TP (transaction position)
T-count (transaction count)

All bits in the status field C-prog-mask

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-115

is met the host controller immediately executes a start-split transaction and appropriately advances the
transaction state of siTDX, then follows siTDX[Next Pointer] to the next schedule item. If the criterion is
not met, the host controller simply follows siTDX[Next Pointer] to the next schedule item. Note that in the
case of a 2b boundary case, the split-transaction of siTDX-1 will have its Active bit cleared when the host
controller returns to the context of siTDX. Also, note that the software should not initialize an siTD with
C-mask bits 0 and 1 set and an S-mask with bit 0 set. This scheduling combination is not supported and
the behavior of the host controller is undefined.

24.9.12.3.7 Split Transaction for Isochronous—Processing Examples

There is an important difference between how the hardware/software manages the isochronous split
transaction state machine and how it manages the asynchronous and interrupt split transaction state
machines. The asynchronous and interrupt split transaction state machines are encapsulated within a single
queue head. The progress of the data stream depends on the progress of each split transaction. In some
respects, the split-transaction state machine is sequenced using the Execute Transaction queue head
traversal state machine.

Isochronous is a pure time-oriented transaction/data stream. The interface data structures are optimized to
efficiently describe transactions that need to occur at specific times. The isochronous split-transaction state
machine must be managed across these time-oriented data structures. This means that the system software
must correctly describe the scheduling of split-transactions across more than one data structure.

Then the host controller must make the appropriate state transitions at the appropriate times, in the correct
data structures.

For example, Table 24-71 illustrates a few frames worth of scheduling required to schedule a case 2a
full-speed isochronous data stream.

This example shows the first three siTDs for the transaction stream. Since this is the case-2a frame-wrap
case, S-masks of all siTDs for this endpoint have a value of 0x10 (a one bit in micro-frame 4) and C-mask
value of 0xC3 (one-bits in micro-frames 0,1, 6 and 7). Additionally, the software ensures that the Back

Table 24-71. Example Case 2a—Software Scheduling siTDs for an IN Endpoint

siTDX Micro-Frames InitialSplitXState

Masks 0 1 2 3 4 5 6 7

X S-Mask 1 Do Start Split

C-Mask 1 1 1 1

X+1 S-Mask 1 Do Complete Split

C-Mask 1 1 1 1

 X+2 S-Mask 1 Do Complete Split

C-Mask 1 1 1 1

X+3 S-Mask Repeats previous pattern Do Complete Split

C-Mask

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-116 Freescale Semiconductor

Pointer field of each siTD references the appropriate siTD data structure (and the Back Pointer T-bits are
cleared).

The initial SplitXState of the first siTD is Do Start Split. The host controller will visit the first siTD eight
times during frame X. The C-mask bits in micro-frames 0 and 1 are ignored because the state is Do Start
Split. During micro-frame 4, the host controller determines that it can run a start-split (and does) and
changes SplitXState to Do Complete Split. During micro-frames 6 and 7, the host controller executes
complete-splits. Notice the siTD for frame X+1 has it's SplitXState initialized to Do Complete Split. As
the host controller continues to traverse the schedule during H-Frame X+1, it will visit the second siTD
eight times. During micro-frames 0 and 1 it will detect that it must execute complete-splits.

During H-Frame X+1, micro-frame 0, the host controller detects that siTDX+1's Back Pointer[T] bit is a
zero, saves the state of siTDX+1 and fetches siTDX. It executes the complete split transaction using the
transaction state of siTDX. If the siTDX split transaction is complete, siTD's Active bit is cleared and
results written back to siTDX. The host controller retains the fact that siTDX is retired and transitions the
SplitXState in siTDX+1 to Do Start Split. At this point, the host controller is prepared to execute the
start-split for siTDX+1 when it reaches micro-frame 4. If the split-transaction completes early
(transaction-complete is defined in Section 24.9.12.3.5, “Periodic Isochronous—Do Complete Split”),
that is, before all the scheduled complete-splits have been executed, the host controller changes
siTDX[SplitXState] to Do Start Split early and naturally skips the remaining scheduled complete-split
transactions. For this example, siTDX+1 does not receive a DATA0 response until H-Frame X+2,
micro-frame 1.

During H-Frame X+2, micro-frame 0, the host controller detects that siTDX+2's Back Pointer[T] bit is zero,
saves the state of siTDX+2 and fetches siTDX+1. As described above, it executes another split transaction,
receives an MDATA response, updates the transfer state, but does not modify the Active bit. The host
controller returns to the context of siTDX+2, and traverses it's next pointer without any state change updates
to siTDX+2.

During H-Frame X+2, micro-frame 1, the host controller detects siTDX+2's S-mask[0] bit is zero, saves the
state of siTDX+2 and fetches siTDX+1. It executes another complete-split transaction, receives a DATA0
response, updates the transfer state and clears the Active bit. It returns to the state of siTDX+2 and changes
its SplitXState to Do Start Split. At this point, the host controller is prepared to execute start-splits for
siTDX+2 when it reaches micro-frame 4.

24.9.13 Port Test Modes

EHCI host controllers implement the port test modes Test J_State, Test K_State, Test_Packet, Test
Force_Enable, and Test SE0_NAK as described in the USB Specification Revision 2.0. The required, port
test sequence is (assuming the CF-bit in the CONFIGFLAG register is set):

• Disable the periodic and asynchronous schedules by clearing the Asynchronous Schedule Enable
and Periodic Schedule Enable bits in the USBCMD register.

• Place all enabled root ports into the suspended state by setting the Suspend bit in each appropriate
PORTSC register.

• Clear the Run/Stop bit in the USBCMD register and wait for the HCHalted bit in the USBSTS
register, to transition to a one. Note that an EHCI host controller implementation may optionally

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-117

allow port testing with the Run/Stop bit set. However, all host controllers must support port testing
with Run/Stop cleared and HCHalted set.

• Set the Port Test Control field in the port under test PORTSC register to the value corresponding
to the desired test mode. If the selected test is Test_Force_Enable, then the Run/Stop bit in the
USBCMD register must then be transitioned back to one, in order to enable transmission of SOFs
out of the port under test.

• When the test is complete, the system software must ensure the host controller is halted (HCHalted
bit is a one) then it terminates and exits test mode by setting HCReset.

24.9.14 Interrupts

The EHCI host controller hardware provides interrupt capability based on a number of sources. There are
several general groups of interrupt sources:

• Interrupts as a result of executing transactions from the schedule (success and error conditions),

• Host controller events (Port change events, etc.), and

• Host controller error events

All transaction-based sources are maskable through the host controller's Interrupt Enable register
(USBINTR). Additionally, individual transfer descriptors can be marked to generate an interrupt on
completion. This section describes each interrupt source and the processing that occurs in response to the
interrupt.

During normal operation, interrupts may be immediate or deferred until the next interrupt threshold occurs.
The interrupt threshold is a tunable parameter via the Interrupt Threshold Control field in the USBCMD
register. The value of this register controls when the host controller generates an interrupt on behalf of
normal transaction execution. When a transaction completes during an interrupt interval period, the
interrupt signaling the completion of the transfer will not occur until the interrupt threshold occurs. For
example, the default value is eight micro-frames. This means that the host controller will not generate
interrupts any more frequently than once every eight micro-frames.

Section 24.9.14.2.4, “Host System Error” details effects of a host system error.

If an interrupt has been scheduled to be generated for the current interrupt threshold interval, the interrupt
is not signaled until after the status for the last complete transaction in the interval has been written back
to system memory. This may sometimes result in the interrupt not being signaled until the next interrupt
threshold.

Initial interrupt processing is the same, regardless of the reason for the interrupt. When an interrupt is
signaled by the hardware, CPU control is transferred to host controller's USB interrupt handler. The precise
mechanism to accomplish the transfer is OS specific. For this discussion it is just assumed that control is
received. When the interrupt handler receives control, its first action is to reads the USBSTS. It then
acknowledges the interrupt by clearing all of the interrupt status bits by writing ones to these bit positions.
The handler then determines whether the interrupt is due to schedule processing or some other event. After
acknowledging the interrupt, the handler (via an OS-specific mechanism), schedules a deferred procedure
call (DPC) which will execute later. The DPC routine processes the results of the schedule execution. The
precise mechanisms used are beyond the scope of this document.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-118 Freescale Semiconductor

NOTE
The only method the software should use for acknowledging an interrupt is
by transitioning the appropriate status bits in the USBSTS register from a
one to a zero.

24.9.14.1 Transfer/Transaction Based Interrupts

These interrupt sources are associated with transfer and transaction progress. They are all dependent on
the next interrupt threshold.

24.9.14.1.1 Transaction Error

A transaction error is any error that caused the host controller to think that the transfer did not complete
successfully. Table 24-72 lists the events/responses that the host can observe as a result of a transaction.
The effects of the error counter and interrupt status are summarized in the following paragraphs. Most of
these errors set the XactErr status bit in the appropriate interface data structure.

There is a small set of protocol errors that relate only when executing a queue head and fit under the
umbrella of a WRONG PID error that are significant to explicitly identify. When these errors occur, the
XactErr status bit in the queue head is set and the Cerr field is decremented. When the PID Code indicates
a SETUP, the following responses are protocol errors and result in XactErr bit being set and the Cerr field
being decremented.

• EPS field indicates a high-speed device and it returns a Nak handshake to a SETUP.

• EPS field indicates a high-speed device and it returns a Nyet handshake to a SETUP.

• EPS field indicates a low- or full-speed device and the complete-split receives a Nak handshake.

24.9.14.1.2 Serial Bus Babble

When a device transmits more data on the USB than the host controller is expecting for this transaction, it
is defined to be babbling. In general, this is called a Packet Babble. When a device sends more data than
the Maximum Length number of bytes, the host controller sets the Babble Detected bit to a one and halts

Table 24-72. Summary of Transaction Errors

Event/
Result

Queue Head/qTD/iTD/siTD Side Effects
USBSTS[USBERRINT]

Cerr Status Field

CRC -1 XactErr set 11

1 If occurs in a queue head, then USBERRINT is asserted only when Cerr counts down from a one to a
zero. In addition the queue is halted.

Timeout -1 XactErr set 11

Bad PID2

2 The host controller received a response from the device, but it could not recognize the PID as a valid PID.

-1 XactErr set 11

Babble N/A See Section 24.9.14.1.2, “Serial Bus Babble” 1

Buffer Error N/A See Section 24.9.14.1.3, “Data Buffer Error” –

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-119

the endpoint if it is using a queue head. Maximum Length is defined as the minimum of Total Bytes to
Transfer and Maximum Packet Size. The Cerr field is not decremented for a packet babble condition (only
applies to queue heads). A babble condition also exists if IN transaction is in progress at High-speed EOF2
point. This is called a frame babble. A frame babble condition is recorded into the appropriate schedule
data structure. In addition, the host controller must disable the port to which the frame babble is detected.

The USBERRINT bit in the USBSTS register is set and if the USB Error Interrupt Enable bit in the
USBINTR register is set, then a hardware interrupt is signaled to the system at the next interrupt threshold.
The host controller must never start an OUT transaction that babbles across a micro-frame EOF.

NOTE
When a host controller detects a data PID mismatch, it must either: disable
the packet babble checking for the duration of the bus transaction or do
packet babble checking based solely on Maximum Packet Size. The USB
core specification defines the requirements on a data receiver when it
receives a data PID mismatch (for example, expects a DATA0 and gets a
DATA1 or visa-versa). In summary, it must ignore the received data and
respond with an ACK handshake, in order to advance the transmitter's data
sequence.The EHCI interface allows the system software to provide buffers
for a Control, Bulk or Interrupt IN endpoint that are not an even multiple of
the maximum packet size specified by the device. Whenever a device misses
an ACK for an IN endpoint, the host and device are out of synchronization
with respect to the progress of the data transfer. The host controller may
have advanced the transfer to a buffer that is less than maximum packet size.
The device re-sends its maximum packet size data packet, with the original
data PID, in response to the next IN token. In order to properly manage the
bus protocol, the host controller must disable the packet babble check when
it observes the data PID mismatch.

24.9.14.1.3 Data Buffer Error

This event indicates that an overrun of incoming data or a underrun of outgoing data has occurred for this
transaction. This would generally be caused by the host controller not being able to access required data
buffers in memory within necessary latency requirements. These conditions are not considered transaction
errors, and do not effect the error count in the queue head. When these errors do occur, the host controller
records the fact the error occurred by setting the Data Buffer Error bit in the queue head, iTD or siTD.

If the data buffer error occurs on a non-isochronous IN, the host controller will not issue a handshake to
the endpoint. This forces the endpoint to resend the same data (and data toggle) in response to the next IN
to the endpoint.

If the data buffer error occurs on an OUT, the host controller must corrupt the end of the packet so that it
cannot be interpreted by the device as a good data packet. Simply truncating the packet is not considered
acceptable. An acceptable implementation option is to 1's complement the CRC bytes and send them.
There are other options suggested in the Transaction Translator section of the USB Specification
Revision 2.0.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-120 Freescale Semiconductor

24.9.14.1.4 USB Interrupt (Interrupt on Completion (IOC))

Transfer Descriptors (iTDs, siTDs, and queue heads (qTDs)) contain a bit that can be set to cause an
interrupt on their completion. The completion of the transfer associated with that schedule item causes the
USB Interrupt (USBINT) bit in the USBSTS register to be set. In addition, if a short packet is encountered
on an IN transaction associated with a queue head, then this event also causes USBINT to be set. If the
USB Interrupt Enable bit in the USBINTR register is set, a hardware interrupt is signaled to the system at
the next interrupt threshold. If the completion is because of errors, the USBERRINT bit in the USBSTS
register is also set.

24.9.14.1.5 Short Packet

Reception of a data packet that is less than the endpoint's Max Packet size during Control, Bulk or Interrupt
transfers signals the completion of the transfer. Whenever a short packet completion occurs during a queue
head execution, the USBINT bit in the USBSTS register is set. If the USB Interrupt Enable bit is set in the
USBINTR register, a hardware interrupt is signaled to the system at the next interrupt threshold.

24.9.14.2 Host Controller Event Interrupts

These interrupt sources are independent of the interrupt threshold (with the one exception being the
Interrupt on Async Advance.

24.9.14.2.1 Port Change Events

Port registers contain status and status change bits. When the status change bits are set, the host controller
sets the Port Change Detect bit in the USBSTS register. If the Port Change Interrupt Enable bit in the
USBINTR register is set, then the host controller issues a hardware interrupt. The port status change bits
include:

• Connect Status Change

• Port Enable/Disable Change

• Over-current Change

• Force Port Resume

24.9.14.2.2 Frame List Rollover

This event indicates that the host controller has wrapped the frame list. The current programmed size of
the frame list effects how often this interrupt occurs. If the frame list size is 1024, then the interrupt occurs
every 1024 milliseconds, if it is 512, then it occurs every 512 milliseconds, etc. When a frame list rollover
is detected, the host controller sets the Frame List Rollover bit in the USBSTS register. If the Frame List
Rollover Enable bit in the USBINTR register is set, the host controller issues a hardware interrupt. This
interrupt is not delayed to the next interrupt threshold.

24.9.14.2.3 Interrupt on Async Advance

This event is used for deterministic removal of queue heads from the asynchronous schedule. Whenever
the host controller advances the on-chip context of the asynchronous schedule, it evaluates the value of the
Interrupt on Async Advance Doorbell bit in the USBCMD register. If it is set, it sets the Interrupt on Async

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-121

Advance bit in the USBSTS register. If the Interrupt on Async Advance Enable bit in the USBINTR
register is set, the host controller issues a hardware interrupt at the next interrupt threshold. A detailed
explanation of this feature is described in Section 24.9.9.2, “Removing Queue Heads from Asynchronous
Schedule.”

24.9.14.2.4 Host System Error

The host controller is a bus master and any interaction between the host controller and the system may
experience errors. The type of host error may be catastrophic to the host controller making it impossible
for the host controller to continue in a coherent fashion. Behavior for these types of errors is to halt the
host controller. Host-based error must result in the following actions:

• The Run/Stop bit in the USBCMD register is cleared.

• The Host System Error and HCHalted bits in the USBSTS register are set:

• If the Host System Error Enable bit in the USBINTR register is set, then the host controller issues
a hardware interrupt. This interrupt is not delayed to the next interrupt threshold.

Table 24-73 summarizes the required actions taken on the various host errors.

NOTE
After a Host System Error, the software must reset the host controller using
HCReset in the USBCMD register before re-initializing and restarting the
host controller.

24.10 Device Data Structures
This section defines the interface data structures used to communicate control, status, and data between
Device Controller Driver (DCD) software and the Device Controller. The data structure definitions in this
chapter support a 32-bit memory buffer address space. The interface consists of device Queue Heads and
Transfer Descriptors.

Table 24-73. Summary Behavior on Host System Errors

Cycle Type Master Abort Target Abort Data Phase Parity

Frame list pointer fetch (read) Fatal Fatal Fatal

siTD fetch (read) Fatal Fatal Fatal

siTD status write-back (write) Fatal Fatal Fatal

iTD fetch (read) Fatal Fatal Fatal

iTD status write-back (write) Fatal Fatal Fatal

qTD fetch (read) Fatal Fatal Fatal

qHD status write-back (write) Fatal Fatal Fatal

Data write Fatal Fatal Fatal

Data read Fatal Fatal Fatal

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-122 Freescale Semiconductor

NOTE
The software must ensure that no interface data structure reachable by the
Device Controller spans a 4K-page boundary.

The data structures defined in the section are (from the device controller's perspective) a mix of read-only
and read/ writable fields. The device controller must preserve the read-only fields on all data structure
writes.

The USB_DR core includes DCD software called the USB 2.0 Device API. The Device API provides an
easy to use Application Program Interface for developing device (peripheral) applications. The Device API
incorporates and abstracts for the application developer all of the elements of the program interface.

Figure 24-60. End Point Queue Head Organization

Device queue heads are arranged in an array in a continuous area of memory pointed to by the
ENDPOINTLISTADDR pointer. The even –numbered device queue heads in the list support receive
endpoints (OUT/SETUP) and the odd-numbered queue heads in the list are used for transmit endpoints
(IN/INTERRUPT). The device controller will index into this array based upon the endpoint number
received from the USB bus. All information necessary to respond to transactions for all primed transfers
is contained in this list so the Device Controller can readily respond to incoming requests without having
to traverse a linked list.

NOTE
The Endpoint Queue Head List must be aligned to a 2k boundary.

24.10.1 Endpoint Queue Head

The device Endpoint Queue Head (dQH) is where all transfers are managed. The dQH is a 48-byte data
structure, but must be aligned on 64-byte boundaries. During priming of an endpoint, the dTD (device

Up to
32 elements

Endpoint QH 0 – In

ENDPOINTLISTADDR

Endpoint QH 1 – Out

Endpoint
Transfer
Descriptor

Endpoint Queue Heads

Transfer Buffer Pointer
Transfer
Buffer

Transfer
Buffer

Transfer
Buffer

Transfer
Buffer

Transfer Buffer Pointer

Transfer Buffer
Pointer

Transfer
Buffer
Pointer

Endpoint QH 0 – Out

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-123

transfer descriptor) is copied into the overlay area of the dQH, which starts at the nextTD pointer DWord
and continues through the end of the buffer pointers DWords. After a transfer is complete, the dTD status
DWord is updated in the dTD pointed to by the currentTD pointer. While a packet is in progress, the
overlay area of the dQH is used as a staging area for the dTD so that the Device Controller can access
needed information with little minimal latency.

Figure 24-61 shows the Endpoint Queue Head structure.

24.10.1.1 Endpoint Capabilities/Characteristics

This DWord specifies static information about the endpoint, in other words, this information does not
change over the lifetime of the endpoint. Device Controller software should not attempt to modify this
information while the corresponding endpoint is enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Offset

Mult zlt 00 Maximum Packet Length ios 000_0000_0000_0000 0x00

Current dTD Pointer1

1 Device controller read/write; all others read-only.

0_0000 0x04

Next dTD Pointer1 0000 T1 0x082

2 Offsets 0x08 through 0x20 contain the transfer overlay.

00 Total Bytes1 ioc1 000 MultO1 00 Status1 0x0C2

Buffer Pointer (Page 0)1 Current Offset1 0x102

Buffer Pointer (Page 1)1 Reserved 0x142

Buffer Pointer (Page 2)1 Reserved 0x182

Buffer Pointer (Page 3)1 Reserved 0x1C2

Buffer Pointer (Page 4)1 Reserved 0x202

Reserved 0x24

Set-up Buffer Bytes 3–01 0x28

Set-up Buffer Bytes 7–41 0x2C

Figure 24-61. Endpoint Queue Head Layout

Table 24-74. Endpoint Capabilities/Characteristics

Bit Name Description

31–30 Mult Mult. This field is used to indicate the number of packets executed per transaction description as given by
the following:
00 Execute N Transactions as demonstrated by the USB variable length packet protocol where N is

computed using the Maximum Packet Length (dQH) and the Total Bytes field (dTD)
01 Execute 1 Transaction.
10 Execute 2 Transactions.
11 Execute 3 Transactions.

Note: Non-ISO endpoints must set Mult = 00.
Note: ISO endpoints must set Mult = 01, 10, or 11 as needed.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-124 Freescale Semiconductor

24.10.1.2 Transfer Overlay

The seven DWords in the overlay area represent a transaction working space for the device controller. The
general operational model is that the device controller can detect whether the overlay area contains a
description of an active transfer. If it does not contain an active transfer, then it will not read the associated
endpoint.

After an endpoint is readied, the dTD will be copied into this queue head overlay area by the device
controller. Until a transfer is expired, the software must not write the queue head overlay area or the
associated transfer descriptor. When the transfer is complete, the device controller will write the results
back to the original transfer descriptor and advance the queue.

See dTD for a description of the overlay fields.

24.10.1.3 Current dTD Pointer

The current dTD pointer is used by the device controller to locate the transfer in progress. This word is for
USB_DR (hardware) use only and should not be modified by DCD software.

24.10.1.4 Set-Up Buffer

The set-up buffer is dedicated storage for the 8-byte data that follows a set-up PID.

NOTE
Each endpoint has a TX and an RX dQH associated with it, and only the RX
queue head is used for receiving setup data packets.

29 zlt Zero length termination select. This bit is used to indicate when a zero length packet is used to terminate
transfers where to total transfer length is a multiple. This bit is not relevant for Isochronous transfers.

0 Enable zero length packet to terminate transfers equal to a multiple of the Maximum Packet Length.
(default).

1 Disable the zero length packet on transfers that are equal in length to a multiple Maximum Packet
Length.

28–27 – Reserved. These bit reserved for future use and should be cleared.

26–16 Maximum
Packet
Length

Maximum packet length. This directly corresponds to the maximum packet size of the associated endpoint
(wMaxPacketSize). The maximum value this field may contain is 0x400 (1024).

15 ios Interrupt on setup (IOS). This bit is used on control type endpoints to indicate if USBINT is set in response
to a setup being received.

14–0 Reserved. Bits reserved for future use and should be cleared.

Table 24-75. Current dTD Pointer

Bit Description

31–5 Current dtd. This field is a pointer to the dTD that is represented in the transfer overlay area. This field will be
modified by the Device Controller to next dTD pointer during endpoint priming or queue advance.

4–0 Reserved. Bit reserved for future use and should be cleared.

Table 24-74. Endpoint Capabilities/Characteristics (continued)

Bit Name Description

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-125

24.10.2 Endpoint Transfer Descriptor (dTD)

The dTD describes to the device controller the location and quantity of data to be sent/received for given
transfer. The DCD should not attempt to modify any field in an active dTD except the Next Link Pointer,
which should only be modified as described in Section 24.11.5, “Managing Transfers with Transfer
Descriptors.”

Table 24-76. Multiple Mode Control

DWord Bits Description

1 31–0 Setup Buffer 0. This buffer contains bytes 3 to 0 of an incoming setup buffer packet and is written by the
device controller to be read by the software.

2 31–0 Setup Buffer 1. This buffer contains bytes 7 to 4 of an incoming setup buffer packet and is written by the
device controller to be read by the software.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Offset

Next Link Pointer 0000 T 0x00

00 Total Bytes1

1 Device controller read/write; all others read-only.

ioc 000 MultO 00 Status1 0x04

Buffer Pointer (Page 0) Current Offset1 0x08

Buffer Pointer (Page 1) 0 Frame Number1 0x0C

Buffer Pointer (Page 2) 0000_0000_0000 0x10

Buffer Pointer (Page 3) 0000_0000_0000 0x14

Buffer Pointer (Page 4) 0000_0000_0000 0x18

Figure 24-62. Endpoint Transfer Descriptor (dTD)

Table 24-77. Next dTD Pointer

Bit Description

31–5 Next transfer element pointer. This field contains the physical memory address of the next dTD to be processed. The
field corresponds to memory address signals [31–5], respectively.

4–1 Reserved. Bits reserved for future use and should be cleared.

0 Terminate (T). 1=pointer is invalid. 0=Pointer is valid (points to a valid Transfer Element Descriptor). This bit indicates
to the Device Controller that there are no more valid entries in the queue.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-126 Freescale Semiconductor

Table 24-78. dTD Token

Bit Description

31 Reserved. Bit reserved for future use and should be cleared.

30–16 Total Bytes. This field specifies the total number of bytes to be moved with this transfer descriptor. This field is
decremented by the number of bytes actually moved during the transaction and only on the successful completion of
the transaction.

The maximum value the software may store in the field is 5*4K(5000H). This is the maximum number of bytes 5 page
pointers can access. Although it is possible to create a transfer up to 20K this assumes the 1st offset into the first page
is 0. When the offset cannot be predetermined, crossing past the 5th page can be guaranteed by limiting the total bytes
to 16K**. Therefore, the maximum recommended transfer is 16K(4000H).

If the value of the field is zero when the host controller fetches this transfer descriptor (and the active bit is set), the
device controller executes a zero-length transaction and retires the transfer descriptor.

It is not a requirement for IN transfers that Total Bytes To Transfer be an even multiple of Maximum Packet Length. If
the software builds such a transfer descriptor for an IN transfer, the last transaction will always be less that Maximum
Packet Length.

15 Interrupt On Complete (IOC). This bit is used to indicate if USBINT is to be set in response to device controller being
finished with this dTD.

14–12 Reserved. Bits reserved for future use and should be cleared.

11–10 Multiplier Override (MultO). This field can be used for transmit ISO's (that is, ISO-IN) to override the multiplier in the
QH. This field must be zero for all packet types that are not transmit-ISO.

Example:

If QH.multiplier = 3; Maximum packet size = 8; Total Bytes = 15; MultiO = 0 [default]
Three packets are sent: {Data2(8); Data1(7); Data0(0)}

If QH.multiplier = 3; Maximum packet size = 8; Total Bytes = 15; MultiO = 2
Two packets are sent: {Data1(8); Data0(7)}

For maximal efficiency, the software should compute MultO = greatest integer of (Total Bytes / Max. Packet Size)
except for the case when Total Bytes = 0; then MultO should be 1.

Note: Non-ISO and Non-TX endpoints must set MultO= 00.

9–8 Reserved. Bits reserved for future use and should be cleared.

7–0 Status. This field is used by the Device Controller to communicate individual command execution states back to the
Device Controller software. This field contains the status of the last transaction performed on this qTD. The bit
encodings are:
Bit Status Field Description
7 Active.
6 Halted.
5 Data Buffer Error.
3 Transaction Error.
4,2,0 Reserved.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-127

24.11 Device Operational Model
The function of the device operation is to transfer a request in the memory image to and from the Universal
Serial Bus. Using a set of linked list transfer descriptors, pointed to by a queue head, the device controller
will perform the data transfers. The following sections explain the use of the device controller from the
device controller driver (DCD) point-of-view and further describe how specific USB bus events relate to
status changes in the device controller programmer's interface.

24.11.1 Device Controller Initialization

After a hardware reset, the USB OTG controller is disabled until the Run/Stop bit is set to a '1'. In the
disabled state, the pull-up on the USB D+ is not active which prevents an attach event from occurring. At
a minimum, it is necessary to have the queue heads setup for endpoint zero before the device attach occurs.
Shortly after the device is enabled, a USB reset will occur followed by setup packet arriving at endpoint 0.
A Queue head must be prepared so that the device controller can store the incoming setup packet.

In order to initialize a device, the software should perform the following steps:

1. Set Controller Mode to device mode. Optionally set Streaming Disable in the USBMODE register.

NOTE
Transitioning from host mode to device mode requires a device controller
reset before modifying USBMODE.

2. Optionally modify the BURSTSIZE register.

3. Allocate and Initialize device queue heads in system memory Minimum: Initialize device queue
heads 0 Tx and 0 Rx.

NOTE
All device queue heads must be initialized for control endpoints before the
endpoint is enabled. Device queue heads for non-control endpoints must be
initialized before the endpoint can be used.

For information on device queue heads, refer to Section 24.10, “Device Data Structures.”

4. Configure ENDPOINTLISTADDR Pointer.

For additional information on ENDPOINTLISTADDR, refer Table 24-23.

5. Enable the microprocessor interrupt associated with the USB OTG and optionally change setting
of ITC field in USBCMD register.

Table 24-79. Buffer Page Pointer List

Bit Description

31–12 Buffer Pointer. Selects the page offset in memory for the packet buffer. Non virtual memory systems will
typically set the buffer pointers to a series of incrementing integers.

0;11–0 Current Offset. Offset into the 4kb buffer where the packet is to begin.

1;10–0 Frame Number. Written by the device controller to indicate the frame number in which a packet finishes. This
is typically be used to correlate relative completion times of packets on an ISO endpoint.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-128 Freescale Semiconductor

Recommended: enable all device interrupts including: USBINT, USBERRINT, Port Change
Detect, USB Reset Received, DCSuspend.

For a list of available interrupts refer to USBINTR register description Table 24-17 and the
USBSTS register description Table 24-16.

6. Set Run/Stop bit to Run Mode.

After the Run bit is set, a device reset will occur. The DCD must monitor the reset event and set
the DEVICEADDR register, set the ENDPTCTRLx registers, and adjust the software state as
described in Section 24.11.2.1, “Bus Reset.

NOTE
Endpoint 0 is designed as a control endpoint only and does not need to be
configured using ENDPTCTRL0 register.

It is also not necessary to initially prime Endpoint 0 because the first packet received will always be a setup
packet. The contents of the first setup packet will require a response in accordance with the USB 2.0
Specification, Chapter 9, Device Framework, command set.

24.11.2 Port State and Control

From a chip or system reset, the USB_DR enters the powered state. A transition from the powered state to
the attach state occurs when the Run/Stop bit is set to a '1'. After receiving a reset on the bus, the port will
enter the defaultFS or defaultHS state in accordance with the protocol reset described in Appendix C.2 of
the USB Specification Rev. 2.0. The following state diagram depicts the state of a USB 2.0 device.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-129

Figure 24-63. USB 2.0 Device States

States powered, attach, defaultFS/HS, suspendFS/HS are implemented in the USB_DR and are
communicated to the DCD using the status bits identified in Table 24-79.

Device
Configured

Address
Assigned

Reset

When the host
resets the device

returns to the
default state.

Power
Interruption

Bus Activity

Bus Activity

Bus Activity

Bus Inactive

Bus Inactive

Bus Inactive

Attach

Default
FS/HS

Configured
FS/HS

Address
FS/HS

Suspend
FS/HS

Suspend
FS/HS

Suspend
FS/HS

Device
Deconfigured

Software Only State

Powered

Active State Inactive State

Set Run/Stop
bit to Run
Mode

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-130 Freescale Semiconductor

It is the responsibility of the DCD to maintain a state variable to differentiate between the DefaultFS/HS
state and the Address/Configured states. Change of state from Default to Address and the Configured states
is part of the enumeration process described in the USB 2.0 Specification, Chapter 9, Device Framework.

As a result of entering the Address state, the device address register (DEVICEADDR) must be
programmed by the DCD.

Entry into the Configured indicates that all endpoints to be used in the operation of the device have been
properly initialized by programming the ENDPTCTRLn registers and initializing the associated queue
heads.

24.11.2.1 Bus Reset

A bus reset is used by the host to initialize downstream devices. When a bus reset is detected, the
USB_controller will renegotiate its attachment speed, reset the device address to 0, and notify the DCD by
interrupt (assuming the USB Reset Interrupt Enable is set). After a reset is received, all endpoints (except
endpoint 0) are disabled and any primed transactions will be cancelled by the device controller. The
concept of priming will be clarified below, but the DCD must perform the following tasks when a reset is
received:

• Clear all setup token semaphores by reading the ENDPTSETUPSTAT register and writing the
same value back to the ENDPTSETUPSTAT register.

• Clear all the endpoint complete status bits by reading the ENDPTCOMPLETE register and writing
the same value back to the ENDPTCOMPLETE register.

• Cancel all primed status by waiting until all bits in the ENDPTPRIME are 0 and then writing
0xFFFF_FFFF to ENDPTFLUSH.

Read the reset bit in the PORTSCn register and make sure that it is still active. A USB reset will occur for
a minimum of 3 ms and the DCD must reach this point in the reset cleanup before end of the reset occurs,
otherwise a hardware reset of the device controller is recommended (rare.)

• A hardware reset can be performed by writing a one to the USB_DR reset bit in the USBCMD
reset. Note: a hardware reset will cause the device to detach from the bus by clearing the Run/Stop
bit. Thus, the DCD must completely re-initialize the USB_DR after a hardware reset.

Free all allocated dTDs because they will no longer be executed by the device controller. If this is the first
time the DCD is processing a USB reset event, then it is likely that no dTDs have been allocated.

At this time, the DCD may release control back to the OS because no further changes to the device
controller are permitted until a Port Change Detect is indicated.

Table 24-80. Device Controller State Information Bits

Bit Register

DCSuspend USBSTS

USB Reset Received USBSTS

Port Change Detect USBSTS

High-Speed Port PORTSC

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-131

After a Port Change Detect, the device has reached the default state and the DCD can read the PORTSCn
to determine if the device is operating in FS or HS mode. At this time, the device controller has reached
normal operating mode and DCD can begin enumeration according to the USB 2.0 Specification,
Chapter 9, Device Framework.

NOTE
The device DCD may use the FS/HS mode information to determine the
bandwidth mode of the device.

In some applications, it may not be possible to enable one or more pipes while in FS mode. Beyond the
data rate issue, there is no difference in DCD operation between FS and HS modes.

24.11.2.2 Suspend/Resume

24.11.2.2.1 Suspend Description

In order to conserve power, USB_DR automatically enters the suspended state when no bus traffic has been
observed for a specified period. When suspended, the USB_DR maintains any internal status, including its
address and configuration. Attached devices must be prepared to suspend at any time they are powered,
regardless of if they have been assigned a non-default address, are configured, or neither. Bus activity may
cease due to the host entering a suspend mode of its own. In addition, a USB device shall also enter the
suspended state when the hub port it is attached to is disabled.

The USB_DR exits suspend mode when there is bus activity. It may also request the host to exit suspend
mode or selective suspend by using electrical signaling to indicate remote wake-up. The ability of a device
to signal remote wake-up is optional. The USB_DR is capable of remote wake-up signaling. When the
USB_DR is reset, remote wake-up signaling must be disabled.

24.11.2.2.2 Suspend Operational Model

The USB OTG moves into the suspend state when suspend signaling is detected or activity is missing on
the upstream port for more than a specific period. After the device controller enters the suspend state, the
DCD is notified by an interrupt (assuming DC Suspend Interrupt is enabled). When the DCSuspend bit in
the PORTSCn is set to a '1', the device controller is suspended.

DCD response when the device controller is suspended is application specific and may involve switching
to low power operation.

Information on the bus power limits in suspend state can be found in USB 2.0 specification.

24.11.2.2.3 Resume

If the USB_DR is suspended, its operation is resumed when any non-idle signaling is received on its
upstream facing port. In addition, the USB_DR can signal the system to resume operation by forcing
resume signaling to the upstream port. Resume signaling is sent upstream by writing a '1' to the Resume
bit in the in the PORTSCn while the device is in suspend state. Sending resume signal to an upstream port
should cause the host to issue resume signaling and bring the suspended bus segment (one more devices)
back to the active condition.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-132 Freescale Semiconductor

NOTE
Before resume signaling can be used, the host must enable it by using the
Set Feature command defined in USB 2.0 Specification, Chapter 9, Device
Framework.

24.11.3 Managing Endpoints

The USB 2.0 specification defines an endpoint, also called a device endpoint or an address endpoint as a
uniquely addressable portion of a USB device that can source or sink data in a communications channel
between the host and the device. The endpoint address is specified by the combination of the endpoint
number and the endpoint direction.

The channel between the host and an endpoint at a specific device represents a data pipe. Endpoint 0 for a
device is always a control type data channel used for device discovery and enumeration. Other types of
endpoints support by USB include bulk, interrupt, and isochronous. Each endpoint type has specific
behavior related to packet response and error handling. More detail on endpoint operation can be found in
the USB 2.0 specification.

The USB_DR supports up to six(6) endpoint specified numbers. The DCD can enable, disable and
configure each endpoint.

Each endpoint direction is essentially independent and can be configured with differing behavior in each
direction. For example, the DCD can configure endpoint 1-IN to be a bulk endpoint and endpoint 1-OUT
to be an isochronous endpoint. This helps to conserve the total number of endpoints required for device
operation. The only exception is that control endpoints must use both directions on a single endpoint
number to function as a control endpoint. Endpoint 0 is, for example, is always a control endpoint and uses
the pair of directions.

Each endpoint direction requires a queue head allocated in memory. If the maximum of 6 endpoint
numbers, one for each endpoint direction are being used by the device controller, then 12 queue heads are
required. The operation of an endpoint and use of queue heads are described later in this document.

24.11.3.1 Endpoint Initialization

After a hardware reset, all endpoints except endpoint zero are uninitialized and disabled. The DCD must
configure and enable each endpoint by writing to configuration bit in the ENDPTCTRLn register. Each
32-bit ENDPTCTRLn is split into an upper and lower half. The lower half of ENDPTCTRLn is used to
configure the receive or OUT endpoint and the upper half is likewise used to configure the corresponding
transmit or IN endpoint. Control endpoints must be configured the same in both the upper and lower half
of the ENDPTCTRLn register otherwise the behavior is undefined. Table 24-81 shows how to construct a
configuration word for endpoint initialization.

Table 24-81. Device Controller Endpoint Initialization

Field Value

Data Toggle Reset 1

Data Toggle Inhibit 0

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-133

24.11.3.1.1 Stalling

There are two occasions where the USB_DR may need to return to the host a STALL.

The first occasion is the functional stall, which is a condition set by the DCD as described in the USB 2.0
Specification, Chapter 9, Device Framework. A functional stall is only used on non-control endpoints and
can be enabled in the device controller by setting the endpoint stall bit in the ENDPTCTRLn register
associated with the given endpoint and the given direction. In a functional stall condition, the device
controller will continue to return STALL responses to all transactions occurring on the respective endpoint
and direction until the endpoint stall bit is cleared by the DCD.

A protocol stall, unlike a function stall, is used on control endpoints is automatically cleared by the device
controller at the start of a new control transaction (setup phase). When enabling a protocol stall, the DCD
should enable the stall bits (both directions) as a pair. A single write to the ENDPTCTRLn register can
ensure that both stall bits are set at the same instant.

NOTE
Any write to the ENDPTCTRLn register during operational mode must
preserve the endpoint type field (that is, perform a read-modify-write).

24.11.3.2 Data Toggle

Data toggle is a mechanism to maintain data coherency between host and device for any given data pipe.
For more information on data toggle, refer to the USB 2.0 specification.

24.11.3.2.1 Data Toggle Reset

The DCD may reset the data toggle state bit and cause the data toggle sequence to reset in the device
controller by writing a '1' to the data toggle reset bit in the ENDPTCTRLn register. This should only be
necessary when configuring/initializing an endpoint or returning from a STALL condition.

Endpoint Type 00 Control
01 Isochronous
10 Bulk
11 Interrupt

Endpoint Stall 0

Table 24-82. Device Controller Stall Response Matrix

USB Packet
Endpoint
Stall Bit

Effect on
STALL Bit

USB Response

SETUP packet received by a non-control endpoint. N/A None STALL

IN/OUT/PING packet received by a non-control endpoint. 1 None STALL

IN/OUT/PING packet received by a non-control endpoint. 0 None ACK/NAK/NYET

SETUP packet received by a control endpoint. N/A Cleared ACK

IN/OUT/PING packet received by a control endpoint 1 None STALL

IN/OUT/PING packet received by a control endpoint. 0 None ACK/NAK/NYET

Table 24-81. Device Controller Endpoint Initialization (continued)

Field Value

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-134 Freescale Semiconductor

24.11.3.2.2 Data Toggle Inhibit

This feature is for test purposes only and should never be used during normal device controller operation.

Setting the data toggle Inhibit bit active ('1') causes the USB_DR to ignore the data toggle pattern that is
normally sent and accept all incoming data packets regardless of the data toggle state.

In normal operation, the USB_DR checks the DATA0/DATA1 bit against the data toggle to determine if
the packet is valid. If Data PID does not match the data toggle state bit maintained by the device controller
for that endpoint, the Data toggle is considered not valid. If the data toggle is not valid, the device controller
assumes the packet was already received and discards the packet (not reporting it to the DCD). To prevent
the USB_DR from re-sending the same packet, the device controller will respond to the error packet by
acknowledging it with either an ACK or NYET response.

24.11.3.3 Device Operational Model For Packet Transfers

All transactions on the USB bus are initiated by the host and in turn, the device must respond to any request
from the host within the turnaround time stated in the USB 2.0 Specification.

A USB host will send requests to the USB_DR in an order that can not be precisely predicted as a single
pipeline, so it is not possible to prepare a single packet for the device controller to execute. However, the
order of packet requests is predictable when the endpoint number and direction is considered. For example,
if endpoint 3 (transmit direction) is configured as a bulk pipe, then we can expect the host will send IN
requests to that endpoint. This USB_DR prepares packets for each endpoint/direction in anticipation of the
host request. The process of preparing the device controller to send or receive data in response to host
initiated transaction on the bus is referred to as ‘priming’ the endpoint. This term will be used throughout
the following documentation to describe the USB_DR operation so the DCD can be architected properly
use priming. Further, note that the term ‘flushing’ is used to describe the action of clearing a packet that
was queued for execution.

24.11.3.3.1 Priming Transmit Endpoints

Priming a transmit endpoint will cause the device controller to fetch the device transfer descriptor (dTD)
for the transaction pointed to by the device queue head (dQH). After the dTD is fetched, it will be stored
in the dQH until the device controller completes the transfer described by the dTD. Storing the dTD in the
dQH allows the device controller to fetch the operating context needed to handle a request from the host
without the need to follow the linked list, starting at the dQH when the host request is received.

After the device has loaded the dTD, the leading data in the packet is stored in a FIFO in the device
controller. This FIFO is split into virtual channels so that the leading data can be stored for any endpoint
up to the maximum number of endpoints configured at device synthesis time.

After a priming request is complete, an endpoint state of primed is indicated in the ENDPTSTATUS
register. For a primed transmit endpoint, the device controller can respond to an IN request from the host
and meet the stringent bus turnaround time of High Speed USB.

Since only the leading data is stored in the device controller FIFO, it is necessary for the device controller
to begin filling in behind leading data after the transaction starts. The FIFO must be sized to account for
the maximum latency that can be incurred by the system memory bus.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-135

24.11.3.3.2 Priming Receive Endpoints

Priming receive endpoints is identical to priming of transmit endpoints from the point of view of the DCD.
At the device controller the major difference in the operational model is that there is no data movement of
the leading packet data simply because the data is to be received from the host.

Note as part of the architecture, the FIFO for the receive endpoints is not partitioned into multiple channels
like the transmit FIFO. Thus, the size of the RX FIFO does not scale with the number of endpoints.

24.11.3.4 Interrupt/Bulk Endpoint Operational Model

The behaviors of the device controller for interrupt and bulk endpoints are identical. All valid IN and OUT
transactions to bulk pipes will handshake with a NAK unless the endpoint had been primed. Once the
endpoint has been primed, data delivery will commence.

A dTD will be retired by the device controller when the packets described in the transfer descriptor have
been completed. Each dTD describes N packets to be transferred according to the USB Variable Length
transfer protocol. The Equation and Equation and Table 24-83 and Table 24-84 describe how the device
controller computes the number and length of the packets to be sent/received by the USB vary according
to the total number of bytes and maximum packet length.

Eqn. 24-1

Eqn. 24-2

NOTE
The MULT field in the dQH must be set to ‘00’ for bulk, interrupt, and
control endpoints.

TX-dTD is complete when:

Table 24-83. Variable Length Transfer Protocol Example (ZLT=0)

Bytes (dTD) Max. Packet Length (dQH) N P1 P2 P3

511 256 2 256 255 –

512 256 3 256 256 0

512 512 2 512 0 –

Table 24-84. Variable Length Transfer Protocol Example (ZLT=1)

Bytes (dTD) Max. Packet Length (dQH) N P1 P2 P3

511 256 2 256 255 –

512 256 2 256 256 –

512 512 1 512 – –

With Zero Length Termination (ZLT) = 0

N = INT (Number of Bytes/Maximum Packet Length) + 1

With Zero Length Termination (ZLT) = 1

N = MAXINT (Number of Bytes/Maximum Packet Length)

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-136 Freescale Semiconductor

• All packets described dTD were successfully transmitted. *** Total bytes in dTD will equal zero
when this occurs.

RX-dTD is complete when:

• All packets described in dTD were successfully received. *** Total bytes in dTD will equal zero
when this occurs.

• A short packet (number of bytes < maximum packet length) was received. *** This is a successful
transfer completion; DCD must check Total Bytes in dTD to determine the number of bytes that
are remaining. From the total bytes remaining in the dTD, the DCD can compute the actual bytes
received.

• A long packet was received (number of bytes > maximum packet size) OR (total bytes received >
total bytes specified). *** This is an error condition. The device controller will discard the
remaining packet, and set the Buffer Error bit in the dTD. In addition, the endpoint will be flushed
and the USBERR interrupt will become active.

On the successful completion of the packet(s) described by the dTD, the active bit in the dTD will be
cleared and the next pointer will be followed when the Terminate bit is clear. When the Terminate bit is
set, the USB_DR will flush the endpoint/direction and cease operations for that endpoint/direction.

On the unsuccessful completion of a packet (see long packet above), the dQH will be left pointing to the
dTD that was in error. In order to recover from this error condition, the DCD must properly re-initialize
the dQH by clearing the active bit and update the nextTD pointer before attempting to re-prime the
endpoint.

NOTE
All packet level errors such as a missing handshake or CRC error will be
retried automatically by the device controller.

There is no required interaction with the DCD for handling such errors.

24.11.3.4.1 Interrupt/Bulk Endpoint Bus Response Matrix

Table 24-85. Interrupt/Bulk Endpoint Bus Response Matrix

Stall Not Primed Primed Underflow Overflow

Setup Ignore Ignore Ignore N/A N/A

In STALL NAK Transmit BS Error1

1 Force Bit Stuff Error.

N/A

Out STALL NAK Receive + NYET/ACK2

2 NYET/ACK— NYET unless the Transfer Descriptor has packets remaining according to
the USB variable length protocol then ACK.

SYSERR—System error should never occur when the latency FIFOs are correctly sized
and the DCD is responsive.

N/A NAK

Ping STALL NAK ACK N/A N/A

Invalid Ignore Ignore Ignore Ignore Ignore

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-137

24.11.3.5 Control Endpoint Operation Model

24.11.3.5.1 Setup Phase

All requests to a control endpoint begin with a setup phase followed by an optional data phase and a
required status phase. The USB_DR will always accept the setup phase unless the setup lockout is
engaged.

The setup lockout will engage so that future setup packets are ignored. Lockout of setup packets ensures
that while the software is reading the setup packet stored in the queue head, that data is not written as it is
being read potentially causing an invalid setup packet.

The setup lockout mechanism can be disabled and a tripwire type semaphore will ensure that the setup
packet payload is extracted from the queue head without being corrupted be an incoming setup packet.
This is the preferred behavior because ignoring repeated setup packets due to long software interrupt
latency would be a compliance issue.

Setup Packet Handling

• Disable Setup Lockout by writing '1' to Setup Lockout Mode (SLOM) in USBMODE. (once at
initialization). Setup lockout is not necessary when using the tripwire as described below.

NOTE
Leaving the Setup Lockout Mode As '0' will result in a potential compliance
issue.

• After receiving an interrupt and inspecting ENDPTSETUPSTAT to determine that a setup packet
was received on a particular pipe:

— Write '1' to clear corresponding bit ENDPTSETUPSTAT.

— Write '1' to Setup Tripwire (SUTW) in USBCMD register.

— Duplicate contents of dQH.SetupBuffer into the local software byte array.

— Read Setup TripWire (SUTW) in USBCMD register. (if set—continue; if cleared—goto 2)

— Write '0' to clear Setup Tripwire (SUTW) in USBCMD register.

— Process setup packet using the local software byte array copy and execute status/handshake
phases.

Note: After receiving a new setup packet the status and/or handshake phases may still be pending
from a previous control sequence. These should be flushed and de-allocated before linking a new
status and/or handshake dTD for the most recent setup packet.

24.11.3.5.2 Data Phase

Following the setup phase, the DCD must create a device transfer descriptor for the data phase and prime
the transfer.

After priming the packet, the DCD must verify a new setup packet has not been received by reading the
ENDPTSETUPSTAT register immediately verifying that the prime had completed. A prime will complete
when the associated bit in the ENDPTPRIME register is zero and the associated bit in the ENDPTSTATUS
register is a one. If a prime fails, that is, The ENDPTPRIME bit goes to zero and the ENDPTSTATUS bit

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-138 Freescale Semiconductor

is not set, then the prime has failed. This can only be due to improper setup of the dQH, dTD or a setup
arriving during the prime operation. If a new setup packet is indicated after the ENDPTPRIME bit is
cleared, then the transfer descriptor can be freed and the DCD must reinterpret the setup packet.

Should a setup arrive after the data stage is primed, the device controller will automatically clear the prime
status (ENDPTSTATUS) to enforce data coherency with the setup packet.

NOTE
The MULT field in the dQH must be set to ‘00’ for bulk, interrupt, and
control endpoints.

NOTE
Error handling of data phase packets is the same as bulk packets described
previously.

24.11.3.5.3 Status Phase

Similar to the data phase, the DCD must create a transfer descriptor (with byte length equal zero) and prime
the endpoint for the status phase. The DCD must also perform the same checks of the ENDPTSETUPSTAT
as described above in the data phase.

NOTE
The MULT field in the dQH must be set to ‘00’ for bulk, interrupt, and
control endpoints.

NOTE
Error handling of data phase packets is the same as bulk packets described
previously.

24.11.3.5.4 Control Endpoint Bus Response Matrix

Table 24-86 shows the device controller response to packets on a control endpoint according to the device
controller state.

Table 24-86. Control Endpoint Bus Response Matrix

Token
Type

Endpoint State Setup
LockoutStall Not Primed Primed Underflow Overflow

Setup ACK ACK ACK N/A SYSERR1

1 SYSERR—System error should never occur when the latency FIFOs are correctly sized and the DCD is responsive.

In STALL NAK Transmit BS Error2

2 Force Bit Stuff Error.

N/A N/A

Out STALL NAK Receive + NYET/ACK3

3 NYET/ACK—NYET unless the Transfer Descriptor has packets remaining according to the USB variable length protocol then
ACK.

N/A NAK N/A

Ping STALL NAK ACK N/A N/A N/A

Invalid Ignore Ignore Ignore Ignore Ignore Ignore

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-139

24.11.3.6 Isochronous Endpoint Operational Model

Isochronous endpoints are used for real-time scheduled delivery of data and their operational model is
significantly different than the host throttled Bulk, Interrupt, and Control data pipes. Real time delivery by
the USB_DR will is accomplished by the following:

• Exactly MULT Packets per (micro)Frame are transmitted/received. Note: MULT is a two-bit field
in the device Queue Head. The variable length packet protocol is not used on isochronous
endpoints.

• NAK responses are not used. Instead, zero length packets and sent in response to an IN request to
an unprimed endpoints. For unprimed RX endpoints, the response to an OUT transaction is to
ignore the packet within the device controller.

• Prime requests always schedule the transfer described in the dTD for the next (micro)frame. If the
ISO-dTD is still active after that frame, then the ISO-dTD will be held ready until executed or
canceled by the DCD.

The USB_DR in host mode uses the periodic frame list to schedule data exchanges to Isochronous
endpoints. The operational model for device mode does not use such a data structure. Instead, the same
dTD used for Control/Bulk/Interrupt endpoints is also used for isochronous endpoints. The difference is
in the handling of the dTD.

The first difference between bulk and ISO-endpoints is that priming an ISO-endpoint is a delayed
operation such that an endpoint will become primed only after a SOF is received. After the DCD writes
the prime bit, the prime bit will be cleared as usual to indicate to the software that the device controller
completed a priming the dTD for transfer. Internal to the design, the device controller hardware masks that
prime start until the next frame boundary. This behavior is hidden from the DCD but occurs so that the
device controller can match the dTD to a specific (micro)frame.

Another difference with isochronous endpoints is that the transaction must wholly complete in a
(micro)frame. Once an ISO transaction is started in a (micro)frame it will retire the corresponding dTD
when MULT transactions occur or the device controller finds a fulfillment condition.

The transaction error bit set in the status field indicates a fulfillment error condition. When a fulfillment
error occurs, the frame after the transfer failed to complete wholly, the device controller will force retire
the ISO-dTD and move to the next ISO-dTD.

It is important to note that fulfillment errors are only caused due to partially completed packets. If no
activity occurs to a primed ISO-dTD, the transaction will stay primed indefinitely. This means it is up to
the software discard transmit ISO-dTDs that pile up from a failure of the host to move the data.

Finally, the last difference with ISO packets is in the data level error handling. When a CRC error occurs
on a received packet, the packet is not retried similar to bulk and control endpoints. Instead, the CRC is
noted by setting the Transaction Error bit and the data is stored as usual for the application software to sort
out.

• TX Packet Retired

— MULT counter reaches zero.

— Fulfillment Error [Transaction Error bit is set]

— #Packets Occurred > 0 AND # Packets Occurred < MULT

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-140 Freescale Semiconductor

NOTE
For TX-ISO, MULT Counter can be loaded with a lesser value in the dTD
Multiplier Override field. If the Multiplier Override is zero, the MULT
Counter is initialized to the Multiplier in the QH.

• RX Packet Retired:

— MULT counter reaches zero

— Non-MDATA Data PID is received

— Overflow Error:

— Packet received is > maximum packet length. [Buffer Error bit is set]

— Packet received exceeds total bytes allocated in dTD. [Buffer Error bit is set]

— Fulfillment Error [Transaction Error bit is set]

— # Packets Occurred > 0 AND # Packets Occurred < MULT

— CRC Error [Transaction Error bit is set]

NOTE
For ISO, when a dTD is retired, the next dTD is primed for the next frame.
For continuous (micro)frame to (micro)frame operation the DCD should
ensure that the dTD linked-list is out ahead of the device controller by at
least two (micro)frames.

24.11.3.6.1 Isochronous Pipe Synchronization

When it is necessary to synchronize an isochronous data pipe to the host, the (micro)frame number
(FRINDEX register) can be used as a marker. To cause a packet transfer to occur at a specific (micro)frame
number [N], the DCD should interrupt on SOF during frame N-1. When the FRINDEX=N-1, the DCD
must write the prime bit. The USB_DR will prime the isochronous endpoint in (micro)frame N-1 so that
the device controller will execute delivery during (micro)frame N.

CAUTION
Priming an endpoint towards the end of (micro)frame N-1 will not guarantee
delivery in (micro)frame N. The delivery may actually occur in
(micro)frame N+1 if device controller does not have enough time to
complete the prime before the SOF for packet N is received.

24.11.3.6.2 Isochronous Endpoint Bus Response Matrix

Table 24-87. Isochronous Endpoint Bus Response Matrix

Stall Not Primed Primed Underflow Overflow

Setup STALL STALL STALL N/A N/A

In
NULL1
Packet

NULL Packet Transmit BS Error2 N/A

Out Ignore Ignore Receive N/A Drop Packet

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-141

24.11.4 Managing Queue Heads

The device queue head (dQH) points to the linked list of transfer tasks, each depicted by the device
Transfer Descriptor (dTD). An area of memory pointed to by ENDPOINTLISTADDR contains a group of
all dQH's in a sequential list as shown in Figure 24-64. The even elements in the list of dQH's are used for
receive endpoints (OUT/SETUP) and the odd elements are used for transmit endpoints (IN/INTERRUPT).
Device transfer descriptors are linked head to tail starting at the queue head and ending at a terminate bit.
Once the dTD has been retired, it will no longer be part of the linked list from the queue head. Therefore,
the software is required to track all transfer descriptors since pointers will no longer exist within the queue
head once the dTD is retired (see Section 24.11.5.1, “Software Link Pointers”).

In addition to the current and next pointers and the dTD overlay examined in Section 24.11.3.3, “Device
Operational Model For Packet Transfers”, the dQH also contains the following parameters for the
associated endpoint: Multipler, Maximum Packet Length, Interrupt On Setup. The complete initialization
of the dQH including these fields is demonstrated in the next section.

Ping Ignore Ignore Ignore Ignore Ignore

Invalid Ignore Ignore Ignore Ignore Ignore

1 Zero Length Packet
2 Force Bit Stuff Error

Table 24-87. Isochronous Endpoint Bus Response Matrix (continued)

Stall Not Primed Primed Underflow Overflow

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-142 Freescale Semiconductor

Figure 24-64. Endpoint Queue Head Diagram

24.11.4.1 Queue Head Initialization

One pair of device queue heads must be initialized for each active endpoint. To initialize a device queue
head:

• Write the wMaxPacketSize field as required by the USB Chapter 9 or application specific protocol.

• Write the multiplier field to 0 for control, bulk, and interrupt endpoints. For ISO endpoints, set the
multiplier to 1,2, or 3 as required bandwidth an in conjunction with the USB Chapter 9 protocol.
Note: In FS mode, the multiplier field can only be 1 for ISO endpoints.

• Write the next dTD Terminate bit field to ‘1.’

• Write the Active bit in the status field to ‘0.’

• Write the Halt bit in the status field to ‘0.’

NOTE
The DCD must only modify dQH if the associated endpoint is not primed
and there are no outstanding dTD's.

Up to
32 elements

Endpoint QH 0 – In

Endpoint QH 0 – Out

ENDPOINTLISTADDR

Endpoint QH 1 – Out

Endpoint
Transfer
Descriptor

Endpoint Queue Heads

Transfer Buffer Pointer Transfer
Buffer

Transfer
Buffer

Transfer
Buffer

Transfer
Buffer

Transfer Buffer Pointer

Transfer Buffer
Pointer Transfer

Buffer
Pointer

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-143

24.11.4.2 Operational Model For Setup Transfers

As discussed in Section 24.11.3.5, “Control Endpoint Operation Model,” setup transfer requires special
treatment by the DCD. A setup transfer does not use a dTD but instead stores the incoming data from a
setup packet in an 8-byte buffer within the dQH.

Upon receiving notification of the setup packet, the DCD should handle the setup transfer as demonstrated
here:

1. Copy setup buffer contents from dQH—RX to the software buffer.

2. Acknowledge setup backup by writing a 1 to the corresponding bit in ENDPTSETUPSTAT.

NOTE
The acknowledge must occur before continuing to process the setup packet.

NOTE
After the acknowledge has occurred, the DCD must not attempt to access
the setup buffer in the dQH—RX. Only the local software copy should be
examined.

3. Check for pending data or status dTD's from previous control transfers and flush if any exist as
discussed in Section 24.11.5.5, “Flushing/De-Priming an Endpoint.”

NOTE
It is possible for the device controller to receive setup packets before
previous control transfers complete. Existing control packets in progress
must be flushed and the new control packet completed.

4. Decode setup packet and prepare data phase [optional] and status phase transfer as required by the
USB Chapter 9 or application specific protocol.

24.11.5 Managing Transfers with Transfer Descriptors

24.11.5.1 Software Link Pointers

It is necessary for the DCD software to maintain head and tail pointers to the for the linked list of dTDs
for each respective queue head. This is necessary because the dQH only maintains pointers to the current
working dTD and the next dTD to be executed. The operations described in next section for managing dTD
will assume the DCD can use reference the head and tail of the dTD linked list.

NOTE
To conserve memory, the reserved fields at the end of the dQH can be used
to store the Head and Tail pointers but it still remains the responsibility of
the DCD to maintain the pointers.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-144 Freescale Semiconductor

Figure 24-65. Software Link Pointers

24.11.5.2 Building a Transfer Descriptor

Before a transfer can be executed from the linked list, a dTD must be built to describe the transfer. Use the
following procedure for building dTDs.

Allocate 8-DWord dTD block of memory aligned to 8-DWord boundaries. Example: bit address 4–0 would
be equal to ‘00000’.

Write the following fields:

1. Initialize first 7 DWords to 0.

2. Set the terminate bit to ‘1.’

3. Fill in total bytes with transfer size.

4. Set the interrupt on complete if desired.

5. Initialize the status field with the active bit set to ‘1’ and all remaining status bits set to ‘0.’

6. Fill in buffer pointer page 0 and the current offset to point to the start of the data buffer.

7. Initialize buffer pointer page 1 through page 4 to be one greater than each of the previous buffer
pointer.

24.11.5.3 Executing A Transfer Descriptor

To safely add a dTD, the DCD must be follow this procedure which will handle the event where the device
controller reaches the end of the dTD list at the same time a new dTD is being added to the end of the list.

Determine whether the link list is empty:

Check DCD driver to see if pipe is empty (internal representation of linked-list should indicate if
any packets are outstanding).

Case 1: Link list is empty

1. Write dQH next pointer AND dQH terminate bit to 0 as a single DWord operation.

2. Clear active and halt bit in dQH (in case set from a previous error).

3. Prime endpoint by writing '1' to correct bit position in ENDPTPRIME.

Endpoint
QH

next

current

Completed dTDs Queued dTDs

Head Pointer Tail Pointer

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-145

Case 2: Link list is not empty

1. Add dTD to end of linked list.

2. Read correct prime bit in ENDPTPRIME—if 1 DONE.

3. Set ATDTW bit in USBCMD register to 1.

4. Read correct status bit in ENDPTSTATUS. (store in tmp. variable for later)

5. Read ATDTW bit in USBCMD register.

If 0 goto 3.

If 1 continue to 6.

6. Write ATDTW bit in USBCMD register to '0'.

7. If status bit read in (3) is '1' DONE.

8. If status bit read in (3) is '0' then Goto Case 1: Step 1.

24.11.5.4 Transfer Completion

After a dTD has been initialized and the associated endpoint primed the device controller will execute the
transfer upon the host-initiated request. The DCD will be notified with a USB interrupt if the Interrupt On
Complete bit was set or alternately, the DCD can poll the endpoint complete register to find when the dTD
had been executed. After a dTD has been executed, DCD can check the status bits to determine success or
failure.

CAUTION
Multiple dTD can be completed in a single endpoint complete notification.
After clearing the notification, DCD must search the dTD linked list and
retire all dTDs that have finished (Active bit cleared).

By reading the status fields of the completed dTDs, the DCD can determine if the transfers completed
successfully. Success is determined with the following combination of status bits:

• Active = 0

• Halted = 0

• Transaction Error = 0

• Data Buffer Error = 0

Should any combination other than the one shown above exist, the DCD must take proper action. Transfer
failure mechanisms are indicated in the Device Error Matrix.

In addition to checking the status bit the DCD must read the Transfer Bytes field to determine the actual
bytes transferred. When a transfer is complete, the Total Bytes transferred is by decremented by the actual
bytes transferred. For Transmit packets, a packet is only complete after the actual bytes reaches zero, but
for receive packets, the host may send fewer bytes in the transfer according the USB variable length packet
protocol.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-146 Freescale Semiconductor

24.11.5.5 Flushing/De-Priming an Endpoint

It is necessary for the DCD to flush to de-prime one more endpoints on a USB device reset or during a
broken control transfer. There may also be application specific requirements to stop transfers in progress.
The following procedure can be used by the DCD to stop a transfer in progress:

1. Write a '1' to the corresponding bit(s) in ENDPTFLUSH.

2. Wait until all bits in ENDPTFLUSH are '0'.

3. Software note: this operation may take a large amount of time depending on the USB bus activity.
It is not desirable to have this wait loop within an interrupt service routine.

4. Read ENDPTSTATUS to ensure that for all endpoints commanded to be flushed, that the
corresponding bits are now '0'. If the corresponding bits are '1' after step #2 has finished, then the
flush failed as described in the following:

Explanation: In very rare cases, a packet is in progress to the particular endpoint when commanded
flush using ENDPTFLUSH. A safeguard is in place to refuse the flush to ensure that the packet in
progress completes successfully. The DCD may need to repeatedly flush any endpoints that fail to
flush be repeating steps 1-3 until each endpoint is successfully flushed.

24.11.5.6 Device Error Matrix

Table 24-88 summarizes packet errors that are not automatically handled by the USB_DR.

Notice that the device controller handles all errors on Bulk/Control/Interrupt Endpoints except for a data
buffer overflow. However, for ISO endpoints, errors packets are not retried and errors are tagged as
indicated.

Table 24-88. Device Error Matrix

Error Direction
Packet
Type

Data Buffer
Error Bit

Transaction
Error Bit

Overflow ** RX Any 1 0

ISO Packet Error RX ISO 0 1

ISO Fulfillment Error Both ISO 0 1

Table 24-89. Error Descriptions

Error Description

Overflow Number of bytes received exceeded max. packet size or total buffer length.

** This error will also set the Halt bit in the dQH and if there are dTDs remaining in the linked list for the
endpoint, then those will not be executed.

ISO Packet Error CRC Error on received ISO packet. Contents not guaranteed to be correct.

ISO Fulfillment Error Host failed to complete the number of packets defined in the dQH mult field within the given
(micro)frame. For scheduled data delivery the DCD may need to readjust the data queue because a
fulfillment error will cause Device Controller to cease data transfers on the pipe for one (micro)frame.
During the ‘dead’(micro)frame, the Device Controller reports error on the pipe and primes for the
following frame.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-147

24.11.6 Servicing Interrupts

The interrupt service routine must consider that there are high-frequency, low-frequency operations, and
error operations and order accordingly.

24.11.6.1 High-Frequency Interrupts

High frequency interrupts in particular should be handed in the order below. The most important of these
is listed first because the DCD must acknowledge a setup buffer in the timeliest manner possible.

24.11.6.2 Low-Frequency Interrupts

The low frequency events include the following interrupts. These interrupt can be handled in any order
since they don't occur often in comparison to the high-frequency interrupts.

24.11.6.3 Error Interrupts

Error interrupts will be least frequent and should be placed last in the interrupt service routine.

Table 24-90. Interrupt Handling Order

Execution
Order

Interrupt Action

1a USB Interrupt1

ENDPTSETUPSTATUS

1 It is likely that multiple interrupts to stack up on any call to the Interrupt Service Routine AND during the Interrupt Service
Routine.

Copy contents of setup buffer and acknowledge setup packet (as indicated in
Section 24.11.4, “Managing Queue Heads”). Process setup packet according to USB
2.0 Chapter 9 or application specific protocol.

1b USB Interrupt
ENDPTCOMPLETE

Handle completion of dTD as indicated in Section 24.11.4, “Managing Queue Heads”.

2 SOF Interrupt Action as deemed necessary by application. This interrupt may not have a use in all
applications.

Table 24-91. Low Frequency Interrupt Events

Interrupt Action

Port Change Change the software state information.

Sleep Enable (Suspend) Change the software state information. Low power handling as
necessary.

Reset Received Change the software state information. Abort pending transfers.

Table 24-92. Error Interrupt Events

Interrupt Action

USB Error Interrupt This error is redundant because it combines USB Interrupt and an error status in the dTD. The DCD will
more aptly handle packet-level errors by checking dTD status field upon receipt of USB Interrupt
(w/ ENDPTCOMPLETE).

System Error Unrecoverable error. Immediate Reset of core; free transfers buffers in progress and restart the DCD.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-148 Freescale Semiconductor

24.12 Deviations from the EHCI Specifications
The host mode operation of the modules is nearly EHCI-compatible with few minor differences. For the
most part, the modules conform to the data structures and operations described in Section 3, “Data
Structures,” and Section 4, “Operational Model,” in the EHCI specification. The particulars of the
deviations occur in the following areas:

• Embedded Transaction Translator —Allows direct attachment of FS and LS devices in host mode
without the need for a companion controller.

• Device operation —In host mode, the device operational registers are generally disabled and thus
device mode is mostly transparent. However, there are a couple exceptions and they are
documented in the following sections.

• Embedded design interface—The USB module does not have a PCI Interface and therefore the PCI
configuration registers described in the EHCI specification are not applicable.

For the purposes of the USB OTG implementing dual-role host/device controller with support for OTG
applications, it is necessary to deviate from the EHCI specification. Device operation and OTG operation
are not specified in the EHCI and thus the implementation supported in the USB OTG module is
proprietary.

24.12.1 Embedded Transaction Translator Function

In Host mode, the USB module supports directly connected full and low speed devices without requiring
a companion controller, by including the capabilities of a USB 2.0 high speed hub transaction translator.
Although there is no separate Transaction Translator block in the system, the transaction translator
function normally associated with a high speed hub has been implemented within the DMA and Protocol
engine blocks. The embedded transaction translator function is an extension to EHCI interface, but makes
use of the standard data structures and operational models that exist in the EHCI specification to support
full and low speed devices.

24.12.1.1 Capability Registers

The following additions have been added to the capability registers to support the embedded Transaction
Translator Function:

• N_TT added to HCSPARAMS—Host Controller Structural Parameters

• N_PTT added to HSCPARAMS—Host Controller Structural Parameters

See Section 24.6.2.3, “Host Controller Structural Parameters (HCSPARAMS)” for usage information.

24.12.1.2 Operational Registers

The addition of two-bit Port Speed (PSPD) to the PORTSCn register is added to the operational registers
to support the embedded TT:

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-149

24.12.1.3 Discovery

In a standard EHCI controller design, the EHCI host controller driver detects a Full speed (FS) or Low
speed (LS) device by noting if the port enable bit is set after the port reset operation. The port enable will
only be set in a standard EHCI controller implementation after the port reset operation and when the host
and device negotiate a High-Speed connection (that is, Chirp completes successfully).

The module will always set the port enable after the port reset operation regardless of the result of the host
device chirp result and the resulting port speed will be indicated by the PSPD field in PORTSCn.
Therefore, the standard EHCI host controller driver requires an alteration to handle directly connected Full
and Low speed devices or hubs. The change is a fundamental one in that is summarized in Table 24-93.

24.12.1.4 Data Structures

The same data structures used for FS/LS transactions though a HS hub are also used for transactions
through the Root Hub. Here it is demonstrated how the Hub Address and Endpoint Speed fields should be
set for directly attached FS/LS devices and hubs:

1. QH (for direct attach FS/LS) – Async. (Bulk/Control Endpoints) Periodic (Interrupt)

• Hub Address = 0

• Transactions to direct attached device/hub.

— QH.EPS = Port Speed

• Transactions to a device downstream from direct attached FS hub.

— QH.EPS = Downstream Device Speed

NOTE
When QH.EPS = 01 (LS) and PORTSCn[PSPD] = 00 (FS), a LS-pre-pid
will be sent before the transmitting LS traffic.

Maximum Packet Size must be less than or equal 64 or undefined behavior may result.

2. siTD (for direct attach FS) – Periodic (ISO Endpoint)

Table 24-93. Functional Differences Between EHCI and EHCI with Embedded TT

Standard EHCI EHCI with Embedded Transaction Translator

After port enable bit is set following a connection
and reset sequence, the device/hub is assumed to
be HS.

After port enable bit is set following a connection and reset sequence, the
device/hub speed is noted from PORTSCn.

FS and LS devices are assumed to be
downstream from a HS hub thus, all port-level
control is performed through the Hub Class to the
nearest Hub.

FS and LS device can be either downstream from a HS hub or directly
attached. When the FS/LS device is downstream from a HS hub, then
port-level control is done using the Hub Class through the nearest Hub.
When a FS/LS device is directly attached, then port-level control is
accomplished using PORTSCn.

FS and LS devices are assumed to be
downstream from a HS hub with HubAddr=X.
[where HubAddr > 0 and HubAddr is the address
of the Hub where the bus transitions from HS to
FS/LS (that is, Split target hub)]

FS and LS device can be either downstream from a HS hub with HubAddr
= X [HubAddr > 0] or directly attached [where HubAddr = 0 and HubAddr
is the address of the Root Hub where the bus transitions from HS to FS/LS
(that is, Split target hub is the root hub)]

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-150 Freescale Semiconductor

• All FS ISO transactions:

— Hub Address = 0

— siTD.EPS = 00 (full speed)

Maximum Packet Size must less than or equal to 1023 or undefined behavior may result.

24.12.1.5 Operational Model

The operational models are well defined for the behavior of the Transaction Translator (see USB 2.0
specification) and for the EHCI controller moving packets between system memory and a USB-HS hub.
Since the embedded Transaction Translator exists within the USB module there is no physical bus between
EHCI host controller driver and the USB FS/LS bus. These sections will briefly discuss the operational
model for how the EHCI and Transaction Translator operational models are combined without the physical
bus between. The following sections assume the reader is familiar with both the EHCI and USB 2.0
Transaction Translator operational models.

24.12.1.5.1 Microframe Pipeline

The EHCI operational model uses the concept of H-frames and B-frames to describe the pipeline between
the Host (H) and the Bus (B). The embedded Transaction Translator shall use the same pipeline algorithms
specified in the USB 2.0 specification for a Hub-based Transaction Translator.

All periodic transfers always begin at B-frame 0 (after SOF) and continue until the stored periodic transfers
are complete. As an example of the microframe pipeline implemented in the embedded Transaction
Translator, all periodic transfers that are tagged in EHCI to execute in H-frame 0 will be ready to execute
on the bus in B-frame 0.

It is important to note that when programming the S-mask and C-masks in the EHCI data structures to
schedule periodic transfers for the embedded Transaction Translator, the EHCI host controller driver must
follow the same rules specified in EHCI for programming the S-mask and C-mask for downstream
Hub-based Transaction Translators.

Once periodic transfers are exhausted, any stored asynchronous transfer will be moved. Asynchronous
transfers are opportunistic in that they shall execute whenever possible and their operation is not tied to
H-frame and B-frame boundaries with the exception that an asynchronous transfer can not babble through
the SOF (start of B-frame 0).

24.12.1.5.2 Split State Machines

The start and complete split operational model differs from EHCI slightly because there is no bus medium
between the EHCI controller and the embedded Transaction Translator. Where a start or complete-split
operation would occur by requesting the split to the HS hub, the start/complete split operation is simple an
internal operation to the embedded Transaction Translator. Table 24-94 summarizes the conditions where
handshakes are emulated from internal state instead of actual handshakes to HS split bus traffic.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-151

24.12.1.5.3 Asynchronous Transaction Scheduling and Buffer Management

The following USB 2.0 specification items are implemented in the embedded Transaction Translator:

• USB 2.0 – 11.17.3

— Sequencing is provided and a packet length estimator ensures no full-speed/low-speed packet
babbles into SOF time.

• USB 2.0 – 11.17.4

— • Transaction tracking for 2 data pipes.

• USB 2.0 – 11.17.5

— • Clear_TT_Buffer capability provided though the use of the Error! Reference source not
found. register.

24.12.1.5.4 Periodic Transaction Scheduling and Buffer Management

The following USB 2.0 specification items are implemented in the embedded Transaction Translator:

• USB 2.0 – 11.18.6.[1-2]

— Abort of pending start-splits

– EOF (and not started in microframes 6)

– Idle for more than 4 microframes

— Abort of pending complete-splits

– EOF

– Idle for more than 4 microframes

• USB 2.0—11.18.[7-8]

— Transaction tracking for up to 16 data pipes.

– Some applications may not require transaction tracking up to a maximum of 16 periodic data
pipes. The option to limit the tracking to only 4 periodic data pipes exists in the by changing
the configuration constant VUSB_HS_TT_PERIODIC_CONTEXTS to 4. The result is a
significant gate count savings to the core given the limitations implied.

Table 24-94. Emulated Handshakes

Condition Emulate TT Response

Start-Split: All asynchronous buffers full. NAK

Start-Split: All periodic buffers full. ERR

Start-Split: Success for start of Async. Transaction. ACK

Start-Split: Start Periodic Transaction. No Handshake (Ok)

Complete-Split: Failed to find transaction in queue. Bus Time Out

Complete-Split: Transaction in Queue is Busy. NYET

Complete-Split: Transaction in Queue is Complete. [Actual Handshake from FS/LS device]

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-152 Freescale Semiconductor

CAUTION
Limiting the number of tracking pipes in the EMBedded—TT to four (4) will
impose the restriction that no more than 4 periodic transactions
(INTERRUPT/ISOCHRONOUS) can be scheduled through the
embedded-tt per frame. The number 16 was chosen in the USB specification
because it is sufficient to ensure that the high-speed to full-speed periodic
pipeline can remain full. Keeping the pipeline full puts no constraint on the
number of periodic transactions that can be scheduled in a frame and the
only limit becomes the flight time of the packets on the bus.

— Complete-split transaction searching.

NOTE
There is no data schedule mechanism for these transactions other than the
microframe pipeline. The embedded TT assumes the number of packets
scheduled in a frame does not exceed the frame duration (1 msec) or else
undefined behavior may result.

24.12.1.5.5 Multiple Transaction Translators

The maximum number of embedded Transaction Translators that is currently supported is one as indicated
by the N_TT field in the HCSPARAMS register. See Section 24.6.2.3, “Host Controller Structural
Parameters (HCSPARAMS),” for more information.

24.12.2 Device Operation

The co-existence of a device operational controller within the USB OTG module has little effect on EHCI
compatibility for host operation. However, given that the controller is initialized in neither host nor device
mode, the USBMODE register must be programmed for host operation before the EHCI host controller
driver can begin EHCI host operations.

24.12.3 Non-Zero Fields the Register File

Some of the reserved fields and reserved addresses in the capability registers and operational registers have
use in device mode, the following must be adhered to:

• Write operations to all EHCI reserved fields (some of which are device fields in the USB OTG
module) in the operation registers should always be written to zero. This is an EHCI requirement
of the device controller driver that must be adhered to.

• Read operations by the module must properly mask EHCI reserved fields (some of which are
device fields in the USB OTG module registers).

24.12.4 SOF Interrupt

The SOF interrupt is a free running 125 µsec interrupt for host mode. EHCI does not specify this interrupt,
but it has been added for convenience and as a potential software time base. Note that the free running
interrupt is shared with the device-mode start-of-frame interrupt. See Section 24.6.3.2, “USB Status

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 24-153

Register (USBSTS),” and Section 24.6.3.3, “USB Interrupt Enable Register (USBINTR),” for more
information.

24.12.5 Embedded Design

This is an Embedded USB Host Controller as defined by the EHCI specification and thus does not
implement the PCI configuration registers.

24.12.5.1 Frame Adjust Register

Given that the optional PCI configuration registers are not included in this implementation, there is no
corresponding bit level timing adjustments like those provided by the Frame Adjust register in the PCI
configuration registers. Starts of microframes are timed precisely to 125 µsec using the transceiver clock
as a reference clock. That is, 60 MHz transceiver clock for 8-bit physical interfaces and full-speed serial
interfaces or 30 MHz transceiver clock for 16-bit physical interfaces.

24.12.6 Miscellaneous Variations from EHCI

24.12.6.1 Programmable Physical Interface Behavior

The modules support multiple physical interfaces which can operate in different modes when the module
is configured with the software programmable Physical Interface Modes. The control bits for selecting the
PHY operating mode have been added to the PORTSCn register providing a capability that is not defined
by the EHCI specification.

24.12.6.2 Discovery

24.12.6.2.1 Port Reset

The port connect methods specified by EHCI require setting the port reset bit in the register for a duration
of 10 msec. Due to the complexity required to support the attachment of devices that are not high speed
there are counter already present in the design that can count the 10 msec reset pulse to alleviate the
requirement of the software to measure this duration. Therefore, the basic connection is then summarized
as the following:

• [Port Change Interrupt] Port connect change occurs to notify the host controller driver that a device
has attached.

• The software shall write a ‘1’ to the reset the device.

• The software shall write a ‘0’ to the reset the device after 10 msec.

— This step, which is necessary in a standard EHCI design, may be omitted with this
implementation. Should the EHCI host controller driver attempt to write a ‘0’ to the reset bit
while a reset is in progress the write will simple be ignored and the reset will continue until
completion.

• [Port Change Interrupt] Port enable change occurs to notify the host controller that the device in
now operational and at this point the port speed has been determined.

Universal Serial Bus Interface

MCF5251 Reference Manual, Rev. 1

24-154 Freescale Semiconductor

24.12.6.2.2 Port Speed Detection

After the port change interrupt indicates that a port is enabled, the EHCI stack should determine the port
speed. Unlike the EHCI implementation which will re-assign the port owner for any device that does not
connect at High-Speed, this host controller supports direct attach of non-HS devices. Therefore, the
following differences are important regarding port speed detection:

• Port Owner is read-only and always reads 0.

• A 2-bit Port Speed indicator in PORTSC register provides the current operating speed of the port
to the host controller driver.

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-1

Chapter 25
FlexCAN Module
This chapter discusses the modes of operation, signals, memory map, register descriptions, and the
functional and initialization sequence of the FlexCAN controller of the MCF5251.

25.1 Features
Following are the main features of the FlexCAN module:

• Full implementation of the CAN protocol specification version 2.0B

— Standard data and remote frames (up to 109 bits long)

— Extended data and remote frames (up to 127 bits long)

— 0–8 bytes data length

— Programmable bit rate up to 1 Mbps

— Content-related addressing

• Up to 32 flexible message buffers of zero to eight bytes data length, each configurable as Rx or Tx,
all supporting standard and extended messages

• Listen-only mode capability

• Three programmable mask registers: global (for MBs 0–13 and 16–31), special for MB14, and
special for MB15

• Programmable transmission priority scheme: lowest ID or lowest buffer number

• Time stamp based on 16-bit, free-running timer

• Global network time, synchronized by a specific message

• Programmable I/O modes

• Maskable interrupts

• Independent of the transmission medium (an external transceiver is assumed)

• Open network architecture

• Multimaster bus

• High immunity to EMI

• Short latency time due to an arbitration scheme for high-priority messages

25.2 Block Diagram
A block diagram describing the various submodules of the FlexCAN module is shown in Figure 25-1. Each
submodule is described in detail in subsequent sections. The message buffer architecture is shown in
Figure 25-2.

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-2 Freescale Semiconductor

Figure 25-1. FlexCAN Block Diagram and Pinout

Figure 25-2. FlexCAN Message Buffer Architecture

25.3 Overview
The FlexCAN is a communication controller implementing the controller area network (CAN) protocol,
an asynchronous communications protocol used in automotive and industrial control systems. It is a high
speed (1 Mbps), short distance, priority-based protocol that can communicate using a variety of mediums
(such as fiber optic cable or an unshielded twisted pair of wires). The FlexCAN supports both the standard
and extended identifier (ID) message formats specified in the CAN protocol specification, revision 2.0,
part B.

••

MB3
MB2
MB1
MB0

Clocks, Address and Data Buses,

CAN
Protocol
Interface

Message
Buffer

Management
CANTX

CANRX

Bus Interface Unit

Max MB #

Internal Bus Interface
Interrupt and Test Signals

FlexCAN

••

•••• ••••

••••

••••

MB31

MB30

[0:31]

Data
Buffer 0

Buffer 14

ID

Time Stamp

Data Length

Data
Buffer 15

••••

••••
Mask 15

Mask 14

Transparent to User

Rx Shifter

Tx Shifter
Serial Buffers

Tx

Rx

Control

Global Mask

Interrupt Request

Data

•••

•••

32 Transmit/Receive
Message Buffers

Buffer 31

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-3

The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting
the specific requirements of this field: real-time processing, reliable operation in the EMI environment of
a vehicle, cost-effectiveness, and required bandwidth. A general working knowledge of the CAN protocol
revision 2.0 is assumed in this document. For details, refer to the CAN protocol revision 2.0 specification.

25.3.1 The CAN System

A typical CAN system is shown in Figure 25-3.

Figure 25-3. Typical CAN System

Each CAN station is connected physically to the CAN bus through a transceiver. The transceiver provides
the transmit drive, waveshaping, and receive/compare functions required for communicating on the CAN
bus. It can also provide protection against damage to the FlexCAN caused by a defective CAN bus or
defective stations.

25.3.2 Modes of Operation

25.3.2.1 Normal Mode

In normal mode, the module operates receiving and/or transmitting message frames, errors are handled
normally, and all the CAN protocol functions are enabled. User and supervisor modes differ in the access
to some restricted control registers.

25.3.2.2 Freeze Mode

Freeze mode is entered by setting:

• CANMCRn[FRZ], and

• CANMCRn[HALT], or by asserting the BKPT signal.

CAN Bus

FlexCAN

CANRX

Transceiver

CAN Station 1 CAN Station 2

CANTX

ColdFire Processor

CAN Station n

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-4 Freescale Semiconductor

Once entry into freeze mode is requested, the FlexCAN waits until an intermission or idle condition exists
on the CAN bus, or until the FlexCAN enters the error passive or bus off state. Once one of these conditions
exists, the FlexCAN waits for the completion of all internal activity such as arbitration, matching, move-in,
and move-out. When this happens, the following events occur:

• The FlexCAN stops transmitting/receiving frames.

• The prescaler is disabled, thus halting all CAN bus communication.

• The FlexCAN ignores its Rx pins and drives its Tx pins as recessive.

• The FlexCAN loses synchronization with the CAN bus and the NOTRDY and FRZACK bits in
CANMCRn are set.

• The CPU is allowed to read and write the error counter registers (in other modes they are
read-only).

After engaging one of the mechanisms to place the FlexCAN in freeze mode, the user must wait for the
FRZACK bit to be set before accessing any other registers in the FlexCAN; otherwise, unpredictable
operation may occur. In freeze mode, all memory mapped registers are accessible.

To exit freeze mode, the BKPT line must be negated or the HALT bit in CANMCRn must be cleared. Once
freeze mode is exited, the FlexCAN will resynchronize with the CAN bus by waiting for 11 consecutive
recessive bits before beginning to participate in CAN bus communication.

25.3.2.3 Module Disabled Mode

This mode disables the FlexCAN module; it is entered by setting CANMCRn[MDIS]. If the module is
disabled during freeze mode, it shuts down the system clocks, sets the LPMACK bit, and clears the
FRZACK bit.

If the module is disabled during transmission or reception, FlexCAN does the following:

• Waits to be in either idle or bus-off state, or else waits for the third bit of intermission and then
checks it to be recessive

• Waits for all internal activities such as arbitration, matching, move-in, and move-out to finish

• Ignores its Rx input pin and drives its Tx pin as recessive

• Shuts down the system clocks

The bus interface unit continues to operate, enabling the CPU to access memory-mapped registers, except
the free-running timer, the error counter register, and the message buffers, which cannot be accessed when
the module is disabled. Exiting from this mode is done by negating the MDIS bit, which will resume the
clocks and negate the LPMACK bit.

25.3.2.4 Loop-back Mode

The module enters this mode when the LPB bit in the control register is set. In this mode, FlexCAN
performs an internal loop back that can be used for self test operation. The bit stream output of the
transmitter is internally fed back to the receiver input. The Rx CAN input pin is ignored and the Tx CAN
output goes to the recessive state (logic 1). FlexCAN behaves as it normally does when transmitting and
treats its own transmitted message as a message received from a remote node. In this mode, FlexCAN

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-5

ignores the bit sent during the ACK slot in the CAN frame acknowledge field to ensure proper reception
of its own message. Both transmit and receive interrupts are generated.

25.3.2.5 Listen-only Mode

In listen-only mode, transmission is disabled, all error counters are frozen and the module operates in a
CAN error passive mode. Only messages acknowledged by another CAN station will be received. If
FlexCAN detects a message that has not been acknowledged, it will flag a BIT0 error (without changing
the REC), as if it was trying to acknowledge the message. Because the module does not influence the CAN
bus in this mode, the device is capable of functioning like a monitor or for automatic bit-rate detection.

25.4 External Signal Description
Each FlexCAN module has two I/O signals connected to the external MPU pins: CAN0TX, CAN0RX,
CAN1TX, and CAN1RX. CANnTX transmits serial data to the CAN bus transceiver, while CANnRX
receives serial data from the CAN bus transceiver.

25.5 Memory Map and Register Definitions
The FlexCAN module address space is split into 128 bytes starting at the base address, and then an extra
512 bytes starting at the base address +128. The upper 512 are fully used for the message buffer structures,
as described in Section 25.5.9, “Message Buffer Structure.” Out of the lower 128 bytes, only part is
occupied by various registers.

Table 25-1. FlexCAN Memory Map

MBAR2
Offset

Register
Width
(Bits)

Affected
by Hard
Reset

Affected
by Soft
Reset

Access Reset Value Section/Page
FlexCAN0
FlexCAN1

Supervisor-only Access Registers

0x1000
0x2000

FlexCAN Module Configuration
Register (CANMCRn)

32 Y Y R/W 0xD890_000F 25.5.1/25-6

Supervisor/User Access Registers

0x1004
0x2004

FlexCAN Control Register
(CANCTRLn)

32 Y N R/W 0x0000_0000 25.5.2/25-8

0x1008
0x2008

Free Running Timer (TIMERn) 32 Y Y R/W 0x0000_0000 25.5.3/25-11

0x1010
0x2010

Rx Global Mask (RXGMASKn) 32 Y N R/W 0x1FFF_FFFF 25.5.4/25-11

0x1014
0x2014

Rx Buffer 14 Mask (RX14MASkn) 32 Y N R/W 0x1FFF_FFFF 25.5.4/25-11

0x1018
0x2018

Rx Buffer 15 Mask (RX15MASKn) 32 Y N R/W 0x1FFF_FFFF 25.5.4/25-11

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-6 Freescale Semiconductor

NOTE
The FlexCAN has no hard-wired protection against invalid bit/field
programming within its registers. Specifically, no protection is provided if
the programming does not meet CAN protocol requirements.

Programming the FlexCAN control registers is typically done during system initialization, prior to the
FlexCAN becoming synchronized with the CAN bus. The configuration registers can be changed after
synchronization by halting the FlexCAN module. This is done when the user sets the CANMCRn[HALT]
bit. The FlexCAN responds by setting the CANMCRn[NOTRDY] bit.

25.5.1 FlexCAN Configuration Register (CANMCRn)

CANMCRn defines global system configurations, such as the module operation mode and maximum
message buffer configuration. Most of the fields in this register can be accessed at any time, except the
MAXMB field, which should only be changed while the module is in freeze mode.

0x101C
0x201C

Error Counter Register (ERRCNTn) 32 Y Y R/W 0x0000_0000 25.5.6/25-14

0x1020
0x2020

Error and Status Register
(ERRSTATn)

32 Y Y R/W 0x0000_0000 25.5.6/25-14

0x1028
0x2028

Interrupt Mask Register (IMASKn) 32 Y Y R/W 0x0000_0000 25.5.7/25-16

0x1030
0x2030

Interrupt Flag Register (IFLAGn) 32 Y Y R/W 0x0000_0000 25.5.8/25-16

0x1080
0x2080

Message Buffers 0–31 (MB0–31) 4096 N N R/W – 25.5.9/25-17

0x1180
0x2180

Message Buffers 16–31 (MB16–31) 2048 N N R/W — 25.5.9/25-17

Table 25-1. FlexCAN Memory Map (continued)

MBAR2
Offset

Register
Width
(Bits)

Affected
by Hard
Reset

Affected
by Soft
Reset

Access Reset Value Section/Page
FlexCAN0
FlexCAN1

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-7

Offset MBAR2 0x1000 (CANMCR0)
MBAR2 0x2000 (CANMCR1)

Access: Supervisor read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MDIS FRZ

0
HALT

NOT
RDY

0 SOFT
RST

FRZ
ACK SUPV

0 0
LPM
ACK

0 0 0 0

W

Reset 1 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0
MAXMB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Figure 25-4. FlexCAN Configuration Register (CANMCRn)

Table 25-2. FlexCAN Configuration Register (CANMCRn) Field Descriptions

Field Description

31
MDIS

Module disable. This bit controls whether FlexCAN is enabled or not. When disabled, FlexCAN shuts down the
FlexCAN clocks that drive the CAN interface and Message Buffer sub-module. This is the only bit in CANMCRn not
affected by soft reset. See Section 25.3.2.3, “Module Disabled Mode,” for more information.
0 Enable the FlexCAN module, clocks enabled
1 Disable the FlexCAN module, clocks disabled

30
FRZ

Freeze mode enable. When set, the FlexCAN can enter freeze mode when the BKPT line is asserted or the HALT
bit is set. Clearing this bit causes the FlexCAN to exit freeze mode. Refer to Section 25.3.2.2, “Freeze Mode,” for
more information.
0 FlexCAN ignores the BKPT signal and the CANMCRn[HALT] bit.
1 FlexCAN module enabled to enter debug mode.

29 Reserved, should be cleared.

28
HALT

Halt FlexCAN. Setting this bit puts the FlexCAN module into freeze mode. It has the same effect as assertion of the
BKPT signal. This bit is set after reset and should be cleared after initializing the message buffers and control
registers. FlexCAN message buffer receive and transmit functions are inactive until this bit is cleared. While in
freeze mode, the CPU has write access to the error counter register (ERRCNTn), that is otherwise read-only.
0 The FlexCAN operates normally
1 FlexCAN enters freeze mode if FRZ = 1

27
NOTRDY

FlexCAN not ready. This bit indicates that the FlexCAN is either in disable or freeze mode. This bit is read-only and
it is cleared once the FlexCAN exits these modes.
0 FlexCAN is either in normal mode, listen-only mode, or loop-back mode.
h1FlexCAN is in disable or freeze mode.

26 Reserved, should be cleared.

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-8 Freescale Semiconductor

25.5.2 FlexCAN Control Register (CANCTRLn)

CANCTRLn is defined for specific FlexCAN control features related to the CAN bus, such as bit-rate,
programmable sampling point within an Rx bit, loop back mode, listen-only mode, bus off recovery
behavior, and interrupt enabling. It also determines the division factor for the clock prescaler. Most of the
fields in this register should only be changed while the module is disabled or in freeze mode. Exceptions
are the BOFFMSK, ERRMSK, and BOFFREC bits, which can be accessed at any time.

25
SOFTRST

Soft reset. When set, the FlexCAN resets its internal state machines (sequencer, error counters, error flags, and
timer) and the host interface registers (CANMCRn [except the MDIS bit], TIMER, ERRCNT, ERRSTAT, IMASK, and
IFLAG).
The configuration registers that control the interface with the CAN bus are not changed (CANCTRLn, RXGMASKn,
RX14MASKn, RX15MASKn). Message buffers are also not changed. This allows SOFTRST to be used as a debug
feature while the system is running.
Since soft reset is synchronous and has to follow a request/acknowledge procedure across clock domains, it may
take some time to fully propagate its effect. The SOFTRST bit remains set while reset is pending and is
automatically cleared when reset completes. The user should poll this bit to know when the soft reset has
completed.
0 Soft reset cycle completed
1 Soft reset cycle initiated

24
FRZACK

Freeze acknowledge. Indicates that the FlexCAN module has entered freeze mode. The user should poll this bit
after freeze mode has been requested, to know when the module has actually entered freeze mode. When freeze
mode is exited, this bit is cleared once the FlexCAN prescaler is enabled. This is a read-only bit.
0 The FlexCAN has exited freeze mode and the prescaler is enabled.
1 The FlexCAN has entered freeze mode, and the prescaler is disabled.

23
SUPV

Supervisor/user data space. Places the FlexCAN registers in either supervisor or user data space.
0 Registers with access controlled by the SUPV bit are accessible in either user or supervisor privilege mode.
1 Registers with access controlled by the SUPV bit are restricted to supervisor mode.

22–21 Reserved, should be cleared.

20
LPMACK

Low power mode acknowledge. Indicates that FlexCAN is disabled. Disabled mode cannot be entered until all
current transmission or reception processes have finished, so the CPU can poll the LPMACK bit to know when the
FlexCAN has actually entered low power mode. See Section 25.3.2.3, “Module Disabled Mode” for more
information. This bit is read-only.
0 FlexCAN not disabled.
1 FlexCAN is in disabled mode.

19–5 Reserved, should be cleared.

5–0
MAXMB

Maximum number of message buffers. Defines the maximum number of message buffers that will take part in the
matching and arbitration process. The reset value (0x1F) is equivalent to 32 message buffer (MB) configuration.
This field should be changed only while the module is in freeze mode.
Note:

Table 25-2. FlexCAN Configuration Register (CANMCRn) Field Descriptions (continued)

Field Description

Maximum MBs in Use = MAXMB + 1

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-9

Offset MBAR2 0x1004 (CANCTRL0)
MBAR2 0x2004 (CANCTRL1)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PRESDIV RJW PSEG1 PSEG2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BOFF
MSK

ERR
MSK

CLK_
SRC

LPB SMP
BOFF
REC

TSYN LBUF LOM PROPSEG
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-5. FlexCAN Control (CANCTRLn) Register

Table 25-3. FlexCAN Control (CANCTRLn) Register Field Descriptions

Field Description

31–24
PRESDIV

Prescaler division factor. Defines the ratio between the clock source frequency (set by CLK_SRC bit) and the serial
clock (S clock) frequency. The S clock period defines the time quantum of the CAN protocol. For the reset value,
the S clock frequency is equal to the clock source frequency. The maximum value of this register is 0xFF, that gives
a minimum S clock frequency equal to the clock source frequency divided by 256. For more information refer to
Section 25.6.8, “Bit Timing.”

Eqn. 25-1

23–22
RJW

Resynchronization jump width. Defines the maximum number of time quanta (one time quantum is equal to the S
clock period) that a bit time can be changed by one resynchronization. The valid programmable values are 0–3.

Eqn. 25-2

21–19
PSEG1

Phase buffer segment 1. Defines the length of phase buffer segment 1 in the bit time. The valid programmable
values are 0–7.

Eqn. 25-3

18–16
PSEG2

Phase buffer segment 2. Defines the length of phase buffer segment 2 in the bit time. The valid programmable
values are 1–7.

Eqn. 25-4

15
BOFFMSK

Bus off interrupt mask.
0 Bus off interrupt disabled
1 Bus off interrupt enabled

14
ERRMSK

Error interrupt mask.
0 Error interrupt disabled
1 Error interrupt enabled

13
CLK_SRC

Clock source. Selects the clock source for the CAN interface to be fed to the prescalar. This bit should only be
changed while the module is disabled.
0 Clock source is CRIN
1 Clock source is the internal bus clock, SYSCLK

S clock frequency
SYSCLK CRIN
PRESDIV + 1

---=

Resync jump width = (RJW + 1) time quanta

Phase buffer segment 1 (PSEG1 + 1) time quanta=

Phase buffer segment 2 (PSEG2 + 1) time quanta =

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-10 Freescale Semiconductor

12
LPB

Loop back. Configures FlexCAN to operate in loop-back mode. In this mode, FlexCAN performs an internal loop
back that can be used for self test operation. The bit stream output of the transmitter is fed back internally to the
receiver input. The Rx CAN input pin is ignored and the Tx CAN output goes to the recessive state (logic 1).
FlexCAN behaves as it normally does when transmitting, and treats its own transmitted message as a message
received from a remote node. In this mode, FlexCAN ignores the bit sent during the ACK slot in the CAN frame
acknowledge field, generating an internal acknowledge bit to ensure proper reception of its own message. Both
transmit and receive interrupts are generated.
0 Loop back disabled
1 Loop back enabled

11–8 Reserved, should be cleared.

7
SMP

Sampling mode. Determines whether the FlexCAN module will sample each received bit one time or three times to
determine its value.
0 One sample, taken at the end of phase buffer segment 1, is used to determine the value of the received bit.
1 Three samples are used to determine the value of the received bit. The samples are taken at the normal sample

point and at the two preceding periods of the S-clock; a majority rule is used.

6
BOFFREC

Bus off recovery mode. Defines how FlexCAN recovers from bus off state. If this bit is cleared, automatic recovering
from bus off state occurs according to the CAN Specification 2.0B. If the bit is set, automatic recovering from bus
off is disabled and the module remains in bus off state until the bit is cleared by the user. If the bit is cleared before
128 sequences of 11 recessive bits are detected on the CAN bus, then bus off recovery happens as if the
BOFFREC bit had never been set. If the bit is cleared after 128 sequences of 11 recessive bits occurred, then
FlexCAN will re-synchronize to the bus by waiting for 11 recessive bits before joining the bus. After clearing, the
BOFFREC bit can be set again during bus off, but it will only be effective the next time the module enters bus off.
If BOFFREC was cleared when the module entered bus off, setting it during bus off will not be effective for the
current bus off recovery.
0 Automatic recovering from bus off state enabled, according to CAN Spec 2.0B
1 Automatic recovering from bus off state disabled

5
TSYN

Timer synchronize mode. Enables the mechanism that resets the free-running timer each time a message is
received in Message Buffer 0. This feature provides the means to synchronize multiple FlexCAN stations with a
special “SYNC” message (global network time).
0 Timer synchronization disabled.
1 Timer synchronization enabled.
Note: There can be a bit clock skew of four to five counts between different FlexCAN modules that are using this
feature on the same network.

4
LBUF

Lowest buffer transmitted first. Defines the ordering mechanism for message buffer transmission.
0 Message buffer with lowest ID is transmitted first
1 Lowest numbered buffer is transmitted first

3
LOM

Listen-only mode. Configures FlexCAN to operate in listen-only mode. In this mode transmission is disabled, all
error counters are frozen, and the module operates in a CAN error passive mode. Only messages acknowledged
by another CAN station will be received. If FlexCAN detects a message that has not been acknowledged, it will flag
a BIT0 error (without changing the REC), as if it was trying to acknowledge the message.
0 FlexCAN module is in normal active operation; listen-only mode is deactivated
1 FlexCAN module is in listen-only mode operation

2–0
PROPSEG

Propagation segment. Defines the length of the propagation segment in the bit time. The valid programmable
values are 0–7.

Note: A time-quantum = 1 S clock period.

Table 25-3. FlexCAN Control (CANCTRLn) Register Field Descriptions (continued)

Field Description

Propagation segment time (PROPSEG + 1) time-quanta=

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-11

25.5.3 FlexCAN Free Running Timer Register (TIMERn)

This register represents a 16-bit free running counter that can be read and written to by the CPU. The timer
starts from 0x0000 after reset, counts linearly to 0xFFFF, and wraps around.

The timer is clocked by the FlexCAN bit-clock (which defines the baud rate on the CAN bus). During a
message transmission/reception, it increments by one for each bit that is received or transmitted. When
there is no message on the bus, it counts using the previously programmed baud rate. During freeze mode,
the timer is not incremented.

The timer value is captured at the beginning of the identifier (ID) field of any frame on the CAN bus. This
captured value is written into the TIMESTAMP entry in a message buffer after a successful reception or
transmission of a message.

Writing to the timer is an indirect operation. The data is first written to an auxiliary register, then an internal
request/acknowledge procedure across clock domains is executed. All this is transparent to the user, except
for the fact that the data will take some time to be actually written to the register. If desired, software can
poll the register to discover when the data was actually written.

25.5.4 Rx Mask Registers (RXGMASKn, RX14MASKn, RX15MASKn)

These registers are used as acceptance masks for received frame IDs. Three masks are defined: a global
mask (RXGMASKn) used for Rx buffers 0–13, 16–31 and two separate masks for buffers 14
(RX14MASKn) and 15 (RX15MASKn). The meaning of each mask bit is the following:

MIn bit = 0: The corresponding incoming ID bit is “don’t care”.

MIn bit = 1: The corresponding ID bit is checked against the incoming ID bit, to see if a match exists.

Note that these masks are used both for standard and extended ID formats. The value of the mask registers
should not be changed while in normal operation (only while in freeze mode), as locked frames that
matched a message buffer (MB) through a mask may be transferred into the MB (upon release) but may
no longer match.

Offset MBAR2 0x1008 (TIMER0)
MBAR2 0x2008 (TIMER1)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIMER

W

Reset 0

Figure 25-6. FlexCAN Timer (TIMERn) Register

Table 25-4. FlexCAN Timer (TIMERn) Register Field Descriptions

Field Description

31–16 Reserved, should be cleared.

15–0
TIMER

Free running timer. Captured at the beginning of the identifier (ID) field of any frame on the CAN bus. This captured
value is written into the TIMESTAMP entry in a message buffer after a successful reception or transmission of a
message.

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-12 Freescale Semiconductor

Table 25-5. Mask Examples for Normal/Extended Messages

Base ID
ID28.................ID18

IDE
Extended ID

ID17......................................ID0
Match

MB2-ID 1 1 1 1 1 1 1 1 0 0 0 0 –

MB3-ID 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 –

MB4-ID 0 0 0 0 0 0 1 1 1 1 1 0 – –

MB5-ID 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 –

MB14-ID 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 –

Rx_Global_Mask 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

Rx_Msg in1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 MB31

1 Match for Extended Format (MB3).

Rx_Msg in2 1 1 1 1 1 1 1 1 0 0 1 0 – MB22

2 Match for Normal Format. (MB2).

Rx_Msg in3 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 3

3 Mismatch for MB3 because of ID0.

Rx_Msg in4 0 1 1 1 1 1 1 1 0 0 0 0 – 4

4 Mismatch for MB2 because of ID28.

Rx_Msg in5 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 MB145

5 Mismatch for MB3 because of ID28, Match for MB14 (Uses RX14MASKn).

RX14MASK 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Rx_Msg in6 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 6

6 Mismatch for MB14 because of ID27 (Uses RX14MASKn).

Rx_Msg in7 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 MB147

7 Match for MB14 (Uses RX14MASKn).

Offset MBAR2 0x1010 (RXGMASK0)
MBAR2 0x1014 (RX14MASK0)
MBAR2 0x1018 (RX15MASK0)
MBAR2 0x2010 (RXGMASK1)
MBAR2 0x2014 (RX14MASK1)
MBAR2 0x1018 (RX15MASK1)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 MI
Standard ID

MI
Extended IDW

Reset 0 0 0 1

Figure 25-7. FlexCAN Rx Mask (RXGMASKn, RX14MASKn, RX15MASKn) Registers

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-13

25.5.5 FlexCAN Error Counter Register (ERRCNTn)

This register has two 8-bit fields reflecting the value of two FlexCAN error counters: transmit error counter
(TXECTR) and receive error counter (RXECTR). The rules for increasing and decreasing these counters
are described in the CAN protocol and are completely implemented in the FlexCAN module. Both
counters are read-only, except in freeze mode, where they can be written by the CPU.

Writing to the ERRCNTn register while in freeze mode is an indirect operation. The data is first written to
an auxiliary register, then an internal request/acknowledge procedure across clock domains is executed.
All this is transparent to the user, except for the fact that the data will take some time to be actually written
to the register. If desired, software can poll the register to discover when the data was actually written.

FlexCAN responds to any bus state as described in the protocol, e.g. transmit error-active or error-passive
flag, delay its transmission start time (error-passive), and avoid any influence on the bus when in bus off
state. The following are the basic rules for FlexCAN bus state transitions:

• If the value of TXECTR or RXECTR increases to be greater than or equal to 128, the FLTCONF
field in the error and status register (ERRSTATn) is updated to reflect error-passive state.

• If the FlexCAN state is error-passive, and either TXECTR or RXECTR decrements to a value less
than or equal to 127 while the other already satisfies this condition, the ERRSTATn[FLTCONF]
field is updated to reflect error-active state.

• If the value of TXECTR increases to be greater than 255, the ERRSTATn[FLTCONF] field is
updated to reflect bus off state, and an interrupt may be issued. The value of TXECTR is then reset
to zero.

• If FlexCAN is in bus off state, then TXECTR is cascaded together with another internal counter to
count the 128th occurrences of 11 consecutive recessive bits on the bus. Hence, TXECTR is reset
to zero and counts in a manner where the internal counter counts 11 such bits and then wraps
around while incrementing the TXECTR. When TXECTR reaches the value of 128, the
ERRSTATn[FLTCONF] field is updated to be error-active, and both error counters are reset to zero.
At any instance of a dominant bit following a stream of less than 11 consecutive recessive bits, the
internal counter resets itself to zero without affecting the TXECTR value.

• If during system start-up, only one node is operating, then its TXECTR increases in each message
it is trying to transmit, as a result of acknowledge errors (indicated by the ERRSTATn[ACKERR]
bit). After the transition to error-passive state, the TXECTR does not increment anymore by
acknowledge errors. Therefore, the device never goes to the bus off state.

Table 25-6. FlexCAN Rx Mask (RXGMASKn, RX14MASKn, RX15MASKn) Registers Field Descriptions

Field Description

31–29 Reserved, should be cleared.

28–18
MI28–18

Standard ID mask bits. These bits are the same mask bits for the Standard and Extended Formats.

17–0
MI17–0

Extended ID mask bits. These bits are used to mask comparison only in Extended Format.

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-14 Freescale Semiconductor

• If the RXECTR increases to a value greater than 127, it is not incremented further, even if more
errors are detected while being a receiver. At the next successful message reception, the counter is
set to a value between 119 and 127 to resume to error-active state.

25.5.6 FlexCAN Error and Status Register (ERRSTATn)

ERRSTATn reflects various error conditions, some general status of the device, and is the source of three
interrupts to the CPU. The reported error conditions (bits 15:10) are those occurred since the last time the
CPU read this register. The read action clears bits 15-10. Bits 9–3 are status bits.

Most bits in this register are read only, except for BOFFINT, WAKINT, and ERRINT, which are interrupt
flags that can be cleared by writing 1 to them. Writing 0 has no effect. Refer to Section 25.7.1, “Interrupts.”

Offset MBAR2 0x101C (ERRCNT0)
MBAR2 0x201C (ERRCNT1)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RXECTR TXECTR

W

Reset 0

Figure 25-8. FlexCAN Error Counter (ERRCNTn) Register

Table 25-7. FlexCAN Error Counter (ERRCNTn) Register Field Descriptions

Field Description

31–16 Reserved, should be cleared.

15–8
RXECTR

Receive error counter. Indicates current number of receive errors.

7–0
TXECTR

Transmit error counter. Indicates current number of transmit errors.

Offset MBAR2 0x1020 (CANCTRL0)
MBAR2 0x2020 (CANCTRL1)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BIT1
ERR

BIT0
ERR

ACK
ERR

CRC
ERR

FRM
ERR

STF
ERR

TX
WRN

RX
WRN

IDLE TXRX
FLT

CONF
0 BOFF

INT
ERR
INT

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-9. FlexCAN Error and Status (ERRSTATn) Register

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-15

Table 25-8. FlexCAN Error and Status (ERRSTATn) Register Field Descriptions

Field Description

31–16 Reserved, should be cleared.

15
BIT1ERR

Bit1 error. Indicates inconsistency between the transmitted and received bit in a message.
0 No transmit bit error
1 At least one bit sent as recessive was received as dominant
Note: The transmit bit error field is not modified during the arbitration field or the ACK slot bit time of a message,

or by a transmitter that detects dominant bits while sending a passive error frame.

14
BIT0ERR

Bit0 error. Indicates inconsistency between the transmitted and received bit in a message.
0 No transmit bit error
1 At least one bit sent as dominant was received as recessive

13
ACKERR

Acknowledge error. Indicates whether an acknowledgment has been correctly received for a transmitted message.
0 No ACK error was detected since the last read of this register.
1 An ACK error was detected since the last read of this register.

12
CRCERR

Cyclic redundancy check error. Indicates whether or not a CRC error has been detected by the receiver.
0 No CRC error was detected since the last read of this register.
1 A CRC error was detected since the last read of this register.

11
FRMERR

Message form error. Indicates that a form error has been detected by the receiver node, i.e., a fixed-form bit field
contains at least one illegal bit.
0 No form error was detected since the last read of this register.
1 A form error was detected since the last read of this register.

10
STFERR

Bit stuff error.
0 No bit stuffing error was detected since the last read of this register.
1 A bit stuffing error was detected since the last read of this register.

9
TXWRN

Transmit error status flag. Reflects the status of the FlexCAN transmit error counter.
0 Transmit error counter < 96
1 TXErrCounter ≥ 96

8
RXWRN

Receiver error status flag. Reflects the status of the FlexCAN receive error counter.
0 Receive error counter < 96
1 RxErrCounter ≥ 96

7
IDLE

Idle status. Indicates when there is activity on the CAN bus.
0 The CAN bus is not idle.
1 The CAN bus is idle.

6
TXRX

Transmit/receive status. Indicates when the FlexCAN module is transmitting or receiving a message. TXRX has no
meaning when IDLE = 1.
0 The FlexCAN is receiving a message if IDLE = 0.
1 The FlexCAN is transmitting a message if IDLE = 0.

5–4
FLTCONF

Fault confinement state. Indicates the confinement state of the FlexCAN module, as shown below. If the
CANCTRLn[LOM] bit is set, FLTCONF will indicate error-passive. Since the CANCTRLn register is not affected by
soft reset, the FLTCONF field will not be affected by soft reset if the LOM bit is set.
00 Error active
01 Error passive
1x Bus off

3 Reserved, should be cleared.

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-16 Freescale Semiconductor

25.5.7 Interrupt Mask Register (IMASKn)

IMASKn contains one interrupt mask bit per buffer. It enables the CPU to determine which buffer will
generate an interrupt after a successful transmission/reception (that is, when the corresponding IFLAGn
bit is set).

25.5.8 Interrupt Flag Register (IFLAGn)

IFLAGn contains one interrupt flag bit per buffer. Each successful transmission/reception sets the
corresponding IFLAGn bit and, if the corresponding IMASKn bit is set, will generate an interrupt.

The interrupt flag is cleared by writing a 1, while writing 0 has no effect.

2
BOFFINT

Bus off interrupt. Used to request an interrupt when the FlexCAN enters the bus off state. The user must write a 1
to clear this bit. Writing 0 has no effect.
0 No bus off interrupt requested.
1 This bit is set when the FlexCAN state changes to bus off. If the CANCTRLn[BOFFMSK] bit is set an interrupt

request is generated. This interrupt is not requested after reset.

1
ERRINT

Error interrupt. Indicates that at least one of the ERRSTATn[15:10] bits is set. The user must write a 1 to clear this
bit. Writing 0 has no effect.
0 No error interrupt request.
1 At least one of the error bits is set. If the CANCTRLn[ERRMSK] bit is set, an interrupt request is generated.

0 Reserved, should be cleared.

Offset MBAR2 0x102A (IMASK0) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BUFnM, n=31–0

W

Reset 0

Figure 25-10. FlexCAN Interrupt Mask (IMASKn) Register

Table 25-9. FlexCAN Interrupt Mask (IMASKn) Register Field Descriptions

Field Description

31–0
BUFnM

Buffer interrupt mask. Enables the respective FlexCAN message buffer (MB0 to MB31) interrupt. These bits allow
the CPU to designate which buffers will generate interrupts after successful transmission/reception.
0 The interrupt for the corresponding buffer is disabled.
1 The interrupt for the corresponding buffer is enabled.
Note: Setting or clearing an IMASKn bit can assert or negate an interrupt request, if the corresponding IFLAGn bit

it is set.

Table 25-8. FlexCAN Error and Status (ERRSTATn) Register Field Descriptions (continued)

Field Description

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-17

25.5.9 Message Buffer Structure

The message buffer memory map starts at an offset of 0x80 from the FlexCAN’s base address 1 or CAN1:
0x2000). The 512-byte message buffer space is fully used by the 32 message buffer structures.

Each message buffer consists of a control and status field that configures the message buffer, an identifier
field for frame identification, and up to 8 bytes of data.

Address MBAR2 0x1030 (IFLAG0) Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BUFnI, n=31–0

W w1c

Reset 0

Figure 25-11. FlexCAN Interrupt Flags (IFLAGn) Register

Table 25-10. FlexCAN Interrupt Flags (IFLAGn) Register Field Descriptions

Field Description

31–0
BUFnI

Buffer interrupt flag. Indicates a successful transmission/reception for the corresponding message buffer. If the
corresponding IMASKn bit is set, an interrupt request will be generated. The user must write a 1 to clear an interrupt
flag; writing 0 has no effect.
0 No such occurrence.
1 The corresponding buffer has successfully completed transmission or reception.

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-18 Freescale Semiconductor

Figure 25-12. FlexCAN Message Buffer Memory Map

The message buffer structure used by the FlexCAN module is shown in Figure 25-13. Both standard and
extended frames used in the CAN Specification Version 2.0, Part B are represented. A standard frame is
represented by the 11-bit standard identifier, and an extended frame is represented by the combined 29-bits
of the standard identifier (11 bits) and the extended identifier (18 bits).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 CODE SRR IDE RTR LENGTH TIME STAMP

0x4 Standard ID[28:18] Extended ID[17:0]

0x8 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0xC Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

Figure 25-13. Message Buffer Structure Register for Both Extended and Standard Frames

Control/Status

8 byte Data fields

0x80

0x84

0x88
Message Buffer 0

Message Buffer 1

Message Buffer 2

0x8F

0x90

0xA0

0x9F

0xAF

0xB0

FlexCAN Base
Address Offset

Message Buffer 3

Identifier

Message Buffer 30

Message Buffer 31

0x27F

0x270

0x26F

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-19

Table 25-11. Message Buffer Structure Register Field Descriptions

Field Description

31–28 Reserved, should be cleared.

27–24
CODE

Message buffer code. Can be accessed (read or write) by the CPU and by the FlexCAN module itself, as part of
the message buffer matching and arbitration process. The encoding is shown in Table 25-12 and Table 25-13. See
Section 25.6, “Functional Overview,” for additional information.

23 Reserved, should be cleared.

22
SRR

Substitute remote request. Fixed recessive bit, used only in extended format. It must be set by the user for
transmission (Tx Buffers) and will be stored with the value received on the CAN bus for Rx receiving buffers. It can
be received as either recessive or dominant. If FlexCAN receives this bit as dominant, then it is interpreted as
arbitration loss.
0 Dominant is not a valid value for transmission in Extended Format frames
1 Recessive value is compulsory for transmission in Extended Format frames

21
IDE

ID extended bit. Identifies whether the frame format is standard or extended.
0 Standard frame format
1 Extended frame format

20
RTR

Remote transmission request. Used for requesting transmissions of a data frame. If FlexCAN transmits this bit as
1 (recessive) and receives it as 0 (dominant), it is interpreted as arbitration loss. If this bit is transmitted as 0
(dominant), then if it is received as 1 (recessive), the FlexCAN module treats it as bit error. If the value received
matches the value transmitted, it is considered as a successful bit transmission.
0 Indicates the current MB has a data frame to be transmitted
1 Indicates the current MB has a remote frame to be transmitted

19–16
LENGTH

Length of data in bytes. Indicates the length (in bytes) of the Rx or Tx data; data is located in offset 0x8 through
0xF of the MB space (see Figure 25-13). In reception, this field is written by the FlexCAN module, copied from the
DLC (data length code) field of the received frame. DLC is defined by the CAN Specification and refers to the data
length of the actual frame before it is copied into the message buffer. In transmission, this field is written by the CPU
and is used as the DLC field value of the frame to be transmitted.
When RTR is set, the frame to be transmitted is a remote frame and will be transmitted without the DATA field,
regardless of the LENGTH field.

15–-0
TIME

STAMP

Free-running counter time stamp. Stores the value of the free-running timer which is captured when the beginning
of the identifier (ID) field appears on the CAN bus.

31–29 Reserved, should be cleared.

28–0
ID

Standard frame identifier: In standard frame format, only the 11 most significant bits (28 to 18) are used for frame
identification in both receive and transmit cases. The 18 least significant bits are ignored.

Extended frame identifier: In extended frame format, all bits (both the 11 bits of the standard frame identifier and
the 18 bits of the extended frame identifier) are used for frame identification in both receive and transmit cases.

31–24,
23–16,

15–8, 7–0
DATA

Data field. Up to eight bytes can be used for a data frame. For Rx frames, the data is stored as it is received from
the CAN bus. For Tx frames, the CPU provides the data to be transmitted within the frame.

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-20 Freescale Semiconductor

Table 25-12. Message Buffer Code for Rx Buffers

Rx Code
BEFORE

Rx New Frame
Description

Rx Code
AFTER

Rx New Frame
Comment

0000 INACTIVE:
MB is not active

– MB does not participate in the matching process.

0100 EMPTY:
MB is active and empty

0010 MB participates in the matching process. When a frame is received
successfully, the code is automatically updated to FULL.

0010 FULL:
MB is full

0010 The act of reading the control & status (C/S) word followed by
unlocking the MB does not make the code return to EMPTY. It remains
FULL. If a new frame is written to the MB after the C/S word was read
and the MB was unlocked, the code still remains FULL.

0110 If the MB is FULL and a new frame should be written into this MB
before the CPU had time to read it, the MB is overwritten, and the code
is automatically updated to OVERRUN.

0110 OVERRUN:
A frame was overwritten

into a full buffer

0010 If the code indicates OVERRUN but the CPU reads the C/S word and
then unlocks the MB, when a new frame is written to the MB, the code
returns to FULL.

0110 If the code already indicates OVERRUN, and yet another new frame
must be written, the MB will be overwritten again, and the code will
remain OVERRUN.

0XY11

1 Note that for transmit message buffers (see Table 25-13), the BUSY bit should be ignored upon read.

BUSY:
Flexcan is updating the
contents of the MB with

a new receive frame.
The CPU should not try

to access the MB.

0010 An EMPTY buffer was written with a new frame (XY was 01).

0110 A FULL/OVERRUN buffer was overwritten (XY was 11).

Table 25-13. Message Buffer Code for Tx Buffers

MBn[RTR]
Initial

Tx Code

Code After
Successful

Transmission
Description

X 1000 – INACTIVE: Message buffer not ready for transmit and will participate in the arbitration
process.

0 1100 1000 Data frame to be transmitted once, unconditionally. After transmission, the MB
automatically returns to the INACTIVE state.

1 1100 0100 Remote frame to be transmitted unconditionally once, and message buffer becomes an
Rx message buffer with the same ID for data frames.

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-21

25.6 Functional Overview
The FlexCAN module is flexible in that each one of its 32 message buffers (MBs) can be assigned either
as a transmit buffer or a receive buffer. Each MB, which is up to 8 bytes long, is also assigned an interrupt
flag bit that indicates successful completion of either transmission or reception.

An arbitration algorithm decides the prioritization of MBs to be transmitted based on either the message
ID or the MB ordering. A matching algorithm makes it possible to store received frames only into MBs
that have the same ID programmed on its ID field. A masking scheme makes it possible to match the ID
programmed on the MB with a range of IDs on received CAN frames. Data coherency mechanisms are
implemented to guarantee data integrity during MB manipulation by the CPU.

Before proceeding with the functional description, an important concept must be explained. A message
buffer is said to be active at a given time if it can participate in the matching and arbitration algorithms that
are happening at that time. An Rx MB with a 0000 code is inactive (refer to Table 25-12). Similarly, a Tx
MB with a 1000 code is inactive (refer to Table 25-13). An MB not programmed with either 0000 or 1000
will be temporarily deactivated (will not participate in the current arbitration/matching run) when the CPU
writes to the C/S field of that MB.

25.6.1 Transmit Process

The CPU prepares or changes an MB for transmission by writing the following:

1. Control/status word to hold Tx MB inactive (CODE = 1000)

2. ID word

3. Data bytes

4. Control/status word (active CODE, LENGTH)

NOTE
The first and last steps are mandatory.

0 1010 1010 Transmit a data frame whenever a remote request frame with the same ID is received.
This message buffer participates simultaneously in both the matching and arbitration
processes. The matching process compares the ID of the incoming remote request
frame with the ID of the MB. If a match occurs, this message buffer is allowed to
participate in the current arbitration process and the CODE field is automatically
updated to 1110 to allow the MB to participate in future arbitration runs. When the frame
is eventually transmitted successfully, the code automatically returns to 1010 to restart
the process again.

0 1110 1010 This is an intermediate code that is automatically written to the message buffer as a
result of match to a remote request frame. The data frame will be transmitted
unconditionally once, and then the code will automatically return to 1010. The CPU can
also write this code with the same effect.

Table 25-13. Message Buffer Code for Tx Buffers (continued)

MBn[RTR]
Initial

Tx Code

Code After
Successful

Transmission
Description

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-22 Freescale Semiconductor

The first write to the control/status word is important in case there was pending reception or transmission.
The write operation immediately deactivates the MB, removing it from any currently ongoing arbitration
or ID matching processes, giving time for the CPU to program the rest of the MB (see Section 25.6.5.2,
“Message Buffer Deactivation”). Once the MB is activated in the fourth step, it will participate in the
arbitration process and eventually be transmitted according to its priority. At the end of the successful
transmission, the value of the free running timer (TIMERn) is written into the message buffer’s time stamp
field, the code field in the control and status word is updated, a status flag is set in the IFLAGn register,
and an interrupt is generated if allowed by the corresponding IMASKn register bit. The new code field after
transmission depends on the code that was used to activate the MB in step four (see Table 25-13).

25.6.2 Arbitration Process

The arbitration process is an algorithm executed by the message buffer management (MBM) that scans the
entire MB memory looking for the highest priority message to be transmitted. All MBs programmed as
transmit buffers will be scanned to find the lowest ID or the lowest MB number, depending on the
CANCTRLn[LBUF] bit.

NOTE
If CANCTRLn[LBUF] is cleared, the arbitration considers not only the ID,
but also the RTR and IDE bits placed inside the ID at the same positions they
are transmitted in the CAN frame.

The arbitration process is triggered in the following events:

• During the CRC field of the CAN frame

• During the error delimiter field of the CAN frame

• During intermission, if the winner MB defined in a previous arbitration was deactivated, or if there
was no MB to transmit, but the CPU wrote to the C/S word of any MB after the previous arbitration
finished

• When MBM is in idle or bus off state and the CPU writes to the C/S word of any MB

• Upon leaving freeze mode

Once the highest priority MB is selected, it is transferred to a temporary storage space called serial
message buffer (SMB), which has the same structure as a normal MB but is not user accessible. This
operation is called ‘move-out.’ At the first opportunity window on the CAN bus, the message on the SMB
is transmitted according to the CAN protocol rules. FlexCAN transmits up to 8 data bytes, even if the data
length code (DLC) value is bigger. Refer to Section 25.6.5.1, “Serial Message Buffers (SMBs),” for more
information on serial message buffers.

25.6.3 Receive Process

The CPU prepares or changes an MB for frame reception by writing the following:

1. Control/status word to hold Rx MB inactive (CODE = 0000)

2. ID word

3. Control/status word to mark the Rx MB as active and empty (CODE = 1000)

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-23

NOTE
The first and last steps are mandatory.

The first write to the control/status word is important in case there was a pending reception or transmission.
The write operation immediately deactivates the MB, removing it from any currently ongoing arbitration
or matching process, giving time for the CPU to program the rest of the MB. Once the MB is activated in
the third step, it will be able to receive CAN frames that match the programmed ID. At the end of a
successful reception, the value of the free running timer (TIMERn) is written into the time stamp field, the
received ID, data (8 bytes at most) and length fields are stored, the CODE field in the control and status
word is updated (see Table 25-12), and a status flag is set in the IFLAGn register and an interrupt is
generated if allowed by the corresponding IMASKn bit.

The CPU should read a receive frame from its MB by reading the following:

1. Control/status word (mandatory—activates internal lock for this buffer)

2. ID (optional—needed only if a mask was used)

3. Data field words

4. Free-running timer (Releases internal lock—optional)

Upon reading the control and status word, if the BUSY bit is set in the CODE field, then the CPU should
defer the access to the MB until this bit is negated. Reading the free running timer is not mandatory. If not
executed the MB remains locked, unless the CPU reads the C/S word of another MB. Note that only a
single MB is locked at a time. The only mandatory CPU read operation is the one on the control and status
word to assure data coherency.

The CPU should synchronize to frame reception by an IFLAGn bit for the specific MB (see Section 25.5.8,
“Interrupt Flag Register (IFLAGn)”), and not by the control/status word CODE field for that MB. Polling
the CODE field does not work because once a frame was received and the CPU services the MB (by
reading the C/S word followed by unlocking the MB), the CODE field will not return to EMPTY. It will
remain FULL, as explained in Table 25-12. If the CPU tries to workaround this behavior by writing to the
C/S word to force an EMPTY code after reading the MB, the MB is actually deactivated from any currently
ongoing matching process. As a result, a newly received frame matching the ID of that MB may be lost.
In summary, never do polling by directly reading the C/S word of the MBs. Instead, read the IFLAGn
register.

Note that the received identifier field is always stored in the matching MB, thus the contents of the ID field
in an MB may change if the match was due to masking.

25.6.3.1 Self-Received Frames

Self-received frames are frames that are sent by the FlexCAN and received by itself. The FlexCAN sends
a frame externally through the physical layer onto the CAN bus, and if the ID of the frame matches the ID
of the FlexCAN MB, then the frame will be received by the FlexCAN. Such a frame is a self-received
frame. Note that FlexCAN does not receive frames transmitted by itself if another device on the CAN bus
has an ID that matches the FlexCAN Rx MB ID.

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-24 Freescale Semiconductor

25.6.4 Matching Process

The matching process is an algorithm that scans the entire MB memory looking for Rx MBs programmed
with the same ID as the one received from the CAN bus. Only MBs programmed to receive will participate
in the matching process for received frames.

While the ID, DLC and data fields are retrieved from the CAN bus, they are stored temporarily in the serial
message buffer (Section 25.6.5.1, “Serial Message Buffers (SMBs)”). The matching process takes place
during the CRC field. If a matching ID is found in one of the MBs, the contents of the SMB will be
transferred to the matched MB during the sixth bit of the end-of-frame field of the CAN protocol. This
operation is called ‘move-in.’ If any protocol error (CRC, ACK, etc.) is detected, than the move-in
operation does not happen.

An MB with a matching ID is free to receive a new frame if the MB is not locked (see Section 25.6.5.3,
“Locking and Releasing Message Buffers”). The CODE field is either EMPTY, FULL, or OVERRUN but
the CPU has already serviced the MB (read the C/S word and then unlocked the MB).

Matching to a range of IDs is possible by using ID acceptance masks (RXGMASKn, RX14MASKn, and
RX15MASKn). During the matching algorithm, if a mask bit is asserted, then the corresponding ID bit is
compared. If the mask bit is negated, the corresponding ID bit is ‘don’t care.’

25.6.5 Message Buffer Handling

In order to maintain data coherency and FlexCAN proper operation, the CPU must obey the rules described
in Section 25.6.1, “Transmit Process” and Section 25.6.3, “Receive Process.” Any form of CPU accessing
a MB structure within FlexCAN other than those specified may cause FlexCAN to behave in an
unpredictable way.

25.6.5.1 Serial Message Buffers (SMBs)

To allow double buffering of messages, the FlexCAN has two shadow buffers called serial message buffers.
These two buffers are used by the FlexCAN for buffering both received messages and messages to be
transmitted. Only one SMB is active at a time, and its function depends upon the operation of the FlexCAN
at that time. At no time does the user have access to or visibility of these two buffers.

25.6.5.2 Message Buffer Deactivation

If the CPU wants to change the function of an active MB, the recommended procedure is to put the module
into freeze mode and then change the CODE field of that MB. This is a safe procedure because the
FlexCAN waits for pending CAN bus and MB moving activities to finish before entering freeze mode.
Nevertheless, a mechanism is provided to maintain data coherence when the CPU writes to the control and
status word of active MBs out of freeze mode.

Any CPU write access to the C/S word of an MB causes that MB to be excluded from the transmit or
receive processes during the current matching or arbitration round. This mechanism is called MB
deactivation. It is temporary, affecting only for the current match/arbitration round.

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-25

The purpose of deactivation is data coherency. The match/arbitration process scans the MBs to decide
which MB to transmit or receive. If the CPU updates the MB in the middle of a match or arbitration
process, the data of that MB may no longer be coherent; therefore, that MB is deactivated.

Even with the coherence mechanism described above, writing to the C/S word of active MBs when not in
freeze mode may produce undesirable results. Examples are:

• Matching and arbitration are one-pass processes. If MBs are deactivated after they are scanned, no
re-evaluation is done to determine a new match/winner. If an Rx MB with a matching ID is
deactivated during the matching process after it was scanned, then this MB is marked as invalid to
receive the frame, and FlexCAN will keep looking for another matching MB within the ones it has
not scanned yet. If it can not find one, then the message will be lost. Suppose, for example, that two
MBs have a matching ID to a received frame, and the user deactivated the first matching MB after
FlexCAN has scanned the second. The received frame will be lost even if the second matching MB
was free to receive.

• If a Tx MB containing the lowest ID is deactivated after the FlexCAN has scanned it, then the
FlexCAN will look for another winner within the MBs that it has not yet scanned. Therefore, it may
transmit an MB that may not have the lowest ID at the time because a lower ID might be present
that it had already scanned before the deactivation.

• There is a point in time until which the deactivation of a Tx MB causes it not to be transmitted (end
of move-out). After this point, it is transmitted, but no interrupt is issued and the CODE field is not
updated.

25.6.5.3 Locking and Releasing Message Buffers

Besides message buffer deactivation, the lock/release/busy mechanism is designed to guarantee data
coherency during the receive process. The following examples demonstrate how the lock/release/busy
mechanism will affect FlexCAN operation:

1. Reading a control/status word of a message buffer triggers a lock for that message buffer. A new
received message frame that matches the message buffer cannot be written into this message buffer
while it is locked.

2. To release a locked message buffer, the CPU either locks another message buffer (by reading its
control/status word) or globally releases any locked message buffer (by reading the free-running
timer).

3. If a receive frame with a matching ID is received during the time the message buffer is locked, the
receive frame will not be immediately transferred into that message buffer, but will remain in the
SMB. There is no indication when this occurs.

4. When a locked message buffer is released, if a frame with a matching identifier exists within the
SMB, then this frame will be transferred to the matching message buffer.

5. If two or more receive frames with matching IDs are received while a message buffer with a
matching ID is locked, the last received frame with that ID is kept within the serial message buffer,
while all preceding ones are lost. There is no indication of lost messages when this occurs.

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-26 Freescale Semiconductor

6. If the user reads the control/status word of a receive message buffer while a frame is being
transferred from a serial message buffer, the BUSY code will be indicated. The user should wait
until this code is cleared before continuing to read from the message buffer to ensure data
coherency. In this situation, the read of the control/status word will not lock the message buffer.

Polling the control/status word of a receive message buffer can lock it, preventing a message from being
transferred into that buffer. If the control/status word of a receive message buffer is read, it should then be
followed by a read of the control/status word of another buffer, or by reading the free-running timer, to
ensure that the locked buffer is unlocked.

NOTE
Deactivation takes precedence over locking. If the CPU deactivates a locked
Rx MB, then its lock status is negated, and the MB is marked as invalid for
the current matching round. Any pending message on the SMB will not be
transferred to the MB anymore.

25.6.6 CAN Protocol Related Frames

25.6.6.1 Remote Frames

The remote frame is a message frame that is transmitted to request a data frame. The FlexCAN can be
configured to transmit a data frame automatically in response to a remote frame, or to transmit a remote
frame and then wait for the responding data frame to be received.

When transmitting a remote frame, the user initializes a message buffer as a transmit message buffer with
the RTR bit set. Once this remote frame is transmitted successfully, the transmit message buffer
automatically becomes a receive message buffer, with the same ID as the remote frame that was
transmitted.

When a remote frame is received by the FlexCAN, the remote frame ID is compared to the IDs of all
transmit message buffers programmed with a CODE of 1010. If there is an exact matching ID, the data
frame in that message buffer is transmitted. If the RTR bit in the matching transmit message buffer is set,
the FlexCAN will transmit a remote frame as a response.

A received remote frame is not stored in a receive message buffer. It is only used to trigger the automatic
transmission of a frame in response. The mask registers are not used in remote frame ID matching. All ID
bits (except RTR) of the incoming received frame must match for the remote frame to trigger a response
transmission. The matching message buffer immediately enters the internal arbitration process, but is
considered as a normal Tx MB, with no higher priority. The data length of this frame is independent of the
data length code (DLC) field in the remote frame that initiated its transmission.

25.6.6.2 Overload Frames

Overload frame transmissions are not initiated by the FlexCAN unless certain conditions are detected on
the CAN bus. These conditions include detection of a dominant bit in the following:

• First or second bit of intermission

• Seventh (last) bit of the end-of-frame (EOF) field in receive frames

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-27

• Eighth (last) bit of the error frame delimiter or overload frame delimiter

25.6.7 Time Stamp

The value of TIMERn is sampled at the beginning of the identifier field on the CAN bus. For a message
being received, the time stamp will be stored in the TIMESTAMP entry of the receive message buffer at
the time the message is written into that buffer. For a message being transmitted, the TIMESTAMP entry
will be written into the transmit message buffer once the transmission has completed successfully.

The free-running timer can optionally be reset upon the reception of a frame into message buffer 0. This
feature allows network time synchronization to be performed. See the CANCTRLn[TSYN] bit.

25.6.8 Bit Timing

The FlexCAN module CANCTRLn register configures the bit timing parameters required by the CAN
protocol. The CLK_SRC, PRESDIV, RJW, PSEG1, PSEG2, and the PROPSEG fields allow the user to
configure the bit timing parameters.

The CANCTRLn[CLK_SRC] bit defines whether the module uses the internal bus clock or the output of
the crystal oscillator via the CRIN pin. The crystal oscillator clock should be selected whenever a tight
tolerance (up to 0.1%) is required for the CAN bus timing. The crystal oscillator clock has better jitter
performance than PLL generated clocks. The value of this bit should not be changed, unless the module is
in disable mode (CANMCRn[MDIS] bit is set)

Careful consideration should be given when selecting the external clocking scheme, the audio sections
may require specific input frequencies—for example, 11.2896MHz, that are not suited to meeting the CAN
timing requirements, particularly at high speed communication, therefore it may required to use the
external audio clock pin when using the CAN modules.

The PRESDIV field controls a prescaler that generates the serial clock (S-clock), whose period defines the
time quantum used to compose the CAN waveform. A time quantum is the atomic unit of time handled by
the CAN engine.

Figure 25-14. CAN Engine Clocking Scheme

Eqn. 25-5

A bit time is subdivided into three segments1 (reference Figure 25-15 and Table 25-14):

• SYNC_SEG: Has a fixed length of one time quantum. Signal edges are expected to happen within
this section.

1. For further explanation of the underlying concepts please refer to ISO/DIS 11519–1, Section 10.3. Reference also the Bosch
CAN 2.0A/B protocol specification dated September 1991 for bit timing.

Oscillator Clock (CRIN)

CANCTRLn[CLK_SRC]

Prescaler
(1 .. 256)

S clock1

0

(SYSCLK)
Internal Bus Clock

fTq
SYCLK or EXTAL

PRESDIV + 1()
---=

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-28 Freescale Semiconductor

• Time Segment 1: Includes the propagation segment and the phase segment 1 of the CAN standard.
It can be programmed by setting the PROPSEG and the PSEG1 fields of the CANCTRLn register
so that their sum (plus 2) is in the range of 4 to 16 time quanta.

• Time Segment 2: Represents the phase segment 2 of the CAN standard. It can be programmed by
setting the PSEG2 field of the CANCTRLn register (plus 1) to be 2 to 8 time quanta long.

Eqn. 25-6

Figure 25-15. Segments within the Bit Time

Table 25-15 gives an overview of the CAN compliant segment settings and the related parameter values.

NOTE
It is the user’s responsibility to ensure the bit time settings are in compliance
with the CAN standard. For bit time calculations, use an IPT (Information
Processing Time) of 2, which is the value implemented in the FlexCAN
module

Table 25-14. Time Segment Syntax

Syntax Description

SYNC_SEG System expects transitions to occur on the bus during this period.

Transmit Point A node in transmit mode transfers a new value to the CAN bus at this point.

Sample Point A node samples the bus at this point. If the three samples per bit option is selected, then this point
marks the position of the third sample.

Bit Rate
fTq

(number of Time Quanta)
---=

SYNC_SEG Time Segment 1 Time Segment 2

1 4 ... 16 2 ... 8

8 ... 25 Time Quanta
= 1 Bit Time

NRZ Signal

Sample Point
(single or triple sampling)

 (PROP_SEG + PSEG1 + 2) (PSEG2 + 1)

Transmit Point

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 25-29

25.7 FlexCAN Initialization Sequence
Initialization of the FlexCAN includes the initial configuration of the message buffers and configuration
of the CAN communication parameters following a reset, as well as any reconfiguration that may be
required during operation. The FlexCAN module may be reset in three ways:

• Device level hard reset—resets all memory mapped registers asynchronously

• Device level soft reset—resets some of the memory mapped registers synchronously (refer to
Table 25-1 to see which registers are affected by soft reset)

• CANMCRn[SOFT_RST] bit—has the same effect as the device level soft reset

Soft reset is synchronous and has to follow an internal request/acknowledge procedure across clock
domains. Therefore, it may take some time to fully propagate its effects. The CANMCRn[SOFT_RST] bit
remains asserted while soft reset is pending, so software can poll this bit to know when the reset has
completed. Also, soft reset can not be applied while clocks are shut down in any of the low power modes.
The low power mode should be exited and the clocks resumed before applying soft reset.

The clock source, CANCTRLn[CLK_SRC], should be selected while the module is in disable mode. After
the clock source is selected and the module is enabled (CANMCRn[MDIS] bit cleared), the FlexCAN
automatically enters freeze mode. In freeze mode, the FlexCAN is un-synchronized to the CAN bus, the
CANMCRn register’s HALT and FRZ bits are set, the internal state machines are disabled, and the
CANMCRn register’s FRZ_ACK and NOT_RDY bits are set. The CANnTX pin is in recessive state and
the FlexCAN does not initiate any transmission or reception of CAN frames. Note that the message buffers
are not affected by reset, so they are not automatically initialized.

For any configuration change/initialization, the FlexCAN must be in freeze mode (see Section 25.3.2.2,
“Freeze Mode”). The following is a generic initialization sequence applicable to the FlexCAN module:

1. Initialize all operation modes in the CANCTRLn register.

a) Initialize the bit timing parameters PROPSEG, PSEGS1, PSEG2, and RJW.

b) Select the S-clock rate by programming the PRESDIV field.

c) Select the internal arbitration mode via the LBUF bit.

Table 25-15. CAN Standard Compliant Bit Time Segment Settings

Time Segment 1 Time Segment 2
 Re-synchronization

Jump Width

5 .. 10 2 1 .. 2

4 .. 11 3 1 .. 3

5 .. 12 4 1 .. 4

6 .. 13 5 1 .. 4

7 .. 14 6 1 .. 4

8 .. 15 7 1 .. 4

9 .. 16 8 1 .. 4

FlexCAN Module

MCF5251 Reference Manual, Rev. 1

25-30 Freescale Semiconductor

2. Initialize message buffers.

a) The control/status word of all message buffers must be written as either an active or inactive
message buffer.

b) All other entries in each message buffer should be initialized as required.

3. Initialize RXGMASKn, RX14MASKn, and RX15MASKn registers for acceptance mask as
needed.

4. Initialize FlexCAN interrupt handler.

a) Initialize the interrupt controller registers for any needed interrupts. See Chapter 9, “System
Integration Module (SIM),” for more information.

b) Set the required mask bits in the IMASKn register (for all message buffer interrupts) and the
CANCTRLn (for bus off and error interrupts).

5. Clear the CANMCRn[HALT] bit. At this point, the FlexCAN will attempt to synchronize with the
CAN bus.

25.7.1 Interrupts

There are two interrupt sources for the FlexCAN module. A combined interrupt for all 32 MBs is generated
by combining all the interrupt sources from MBs. This interrupt gets generated when any of the 32 MB
interrupt sources generates a interrupt. In this case, the CPU must read the IFLAGn register to determine
which MB caused the interrupt. The other interrupt source (wired OR of bus off and error) acts in the same
way, located in the ERRSTATn register. The bus off and error interrupt mask bits are located in the
CANCTRLn register.

MCF5251 Reference Manual, Rev. 1

Freescale Semiconductor 26-1

Chapter 26
Real-Time Clock
This chapter provides the external signal descriptions, memory map, register descriptions, and functional
descriptions of the Real-Time Clock module of the MCF5251.

The real time clock (RTC) is a mixed-signal circuit which provides an indicator of time (in seconds) for
various purposes in the system. The RTC does not stop running, even when the rest of the system is
powered down, so long as battery voltage (RTC_VDDA) remains above a certain threshold.

26.1 Block Diagram
Figure 26-1 is a block diagram of the functional organization of the RTC block.

Figure 26-1. Real Time Clock Block Diagram

26.2 External Signal Description
Table 26-1 describes the RTC external signals.

26.3 Memory Map and Register Definitions
The RTC module’s register is accessible via the USB, ATA DMA, and clock integration module memory
space. An RTC control and an RTC status bit are also included in the miscellaneous configuration register.

Table 26-1. RTC Signals

Signal Name Abbreviation Function I/O

RTC Crystal In RTC_CRIN 32.768 kHz crystal input clock. I

RTC Crystal Out RTCCROUT 32.768 kHz crystal output. O

RTC Supply Voltage RTC_VDDA Battery supply to RTC –

RTC Ground RTCVSSA Ground for RTC supply –

RTC Logic

RTC_TIME
1pps

32.768 kHzRTC_CRIN

RTCCROUT

RTC_VDDA

RTCVSSA

RTC Power Loss Status

RTC Power Loss Clear

To/From ATA-DMA
Config Register

Oscillator

in ATA-DMA

Real-Time Clock

MCF5251 Reference Manual, Rev. 1

26-2 Freescale Semiconductor

26.3.1 Miscellaneous Configuration Register (MISCCR)

See Chapter 22, “USB, ATA DMA, and Clock Integration Module” for a detailed description of this
register.

26.3.2 RTC Time Register (RTC_TIME)

The RTC_TIME register is used to read the amount of seconds that have passed since battery voltage has
been applied to the device. This register cannot be reset.

26.4 Functional Description
The real-time clock requires an external 32.768 kHz crystal to operate. From this crystal (via the
RTCCRIN and RTCCROUT pins), it will produce a free-running 32-bit counter, that increments with a
1-second tick.

26.4.1 Battery Removal Detection

When the real-time clock battery (RTC_VDD) goes low, the real-time clock may stop, and the RTC_TIME
value may become corrupt. To indicate the real-time clock has been in low battery state, it will set the
RTC_POWER_LOSS status bit in the ATA-DMA configuration register. This bit will remain set, until the
user sets the RTC_CLEAR bit in the ATA-DMA configuration register.

Table 26-2. Real Time Clock Memory Map

MBAR2 Offset Register Access Reset Value Section/Page

0x500 Miscellaneous Configuration Register R/W Undefined 26.3.1/26-2

0x50C RTC Time Register (RTC_TIME) R Undefined 26.3.2/26-2

 Offset MBAR2 0x50C (RTC_TIME) Access: User read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RTC_TIME

W

Reset –

Figure 26-2. RTC Time (RTC_TIME) Register

Table 26-3. RTC Time (RTC_TIME) Register Field Descriptions

Field Description

31–0
RTC_TIME

Indicates the time in seconds since battery voltage was first applied to RTC_VDDA. This register can represent up
to 232 seconds (~136 years). It is not possible to reset this value. The user must keep a real-time clock offset in
non-volatile memory and apply the offset to this value to convert RTC_TIME into a readable format.

	MCF5251 Reference Manual
	Contact Information
	Contents
	About This Book
	Audience
	Organization
	Revision History
	Suggested Reading
	Conventions
	Definitions, Acronyms, and Abbreviations
	References
	Register Summary

	Chapter 1 MCF5251 Introduction
	1.1 MCF5251 Overview
	1.2 MCF5251 Feature Introduction
	1.3 MCF5251 Block Diagram
	1.4 MCF5251 Feature Details
	1.5 MCF5251 Functional Overview
	1.5.1 ColdFire CF2 Core
	1.5.2 DMA Controller
	1.5.3 Enhanced Multiply and Accumulate Module (eMAC)
	1.5.4 Instruction Cache
	1.5.5 Internal 128-Kbyte SRAM
	1.5.6 DRAM Controller
	1.5.7 System Interface
	1.5.8 External Bus Interface
	1.5.9 USB 2.0 High-Speed On-The-Go
	1.5.10 ATA Controller
	1.5.11 Two Controller Area Network (CAN) 2.0B Communication Unit
	1.5.12 Real-Time Clock
	1.5.13 Serial Audio Interfaces
	1.5.14 IEC958 Digital Audio Interfaces
	1.5.15 Audio Bus
	1.5.16 CD-ROM Encoder/Decoder
	1.5.17 Three UART Modules
	1.5.18 Queued Serial Peripheral Interface QSPI
	1.5.19 Timer Module
	1.5.20 IDE Interface
	1.5.21 Analog/Digital Converter (ADC)
	1.5.22 Flash Memory Card Interface
	1.5.23 I2C Module
	1.5.24 Chip-Selects
	1.5.25 GPIO Interface
	1.5.26 Interrupt Controller
	1.5.27 JTAG
	1.5.28 System Debug Interface
	1.5.29 System Oscillator and PLL
	1.5.30 Sleep and Wake-Up Modes
	1.5.31 Bootloader
	1.5.32 Internal Voltage Regulator

	Chapter 2 Signal Description
	2.1 Overview
	2.2 GPIO
	2.3 MCF5251 Bus Signals
	2.3.1 Address Bus
	2.3.2 Read-Write Control
	2.3.3 Output Enable
	2.3.4 Data Bus
	2.3.5 Transfer Acknowledge

	2.4 SDRAM Controller Signals
	2.5 Chip Selects
	2.6 ISA Bus
	2.7 Bus Buffer Signals
	2.8 I2C Module Signals
	2.9 Serial Module Signals
	2.10 Timer Module Signals
	2.11 Serial Audio Interface Signals
	2.12 Digital Audio Interface Signals
	2.13 Subcode Interface
	2.14 Analog to Digital Converter (ADC)
	2.15 Secure Digital / Memory Stick Card Interface
	2.16 Queued Serial Peripheral Interface (QSPI)
	2.17 ATA Interface
	2.18 Two Controller Area Network (CAN) Communication Modules
	2.19 USB Controller
	2.19.1 USB PHY Interface Including Oscillator

	2.20 Real-Time Clock
	2.21 Crystal Trim
	2.22 Clock Out
	2.23 Debug and Test Signals
	2.23.1 Test Mode
	2.23.2 High Impedance
	2.23.3 Processor Clock Output
	2.23.4 Debug Data
	2.23.5 Processor Status

	2.24 BDM/JTAG Signals
	2.25 Clock and Reset Signals
	2.25.1 Reset In
	2.25.2 System Bus Input

	2.26 Wake-Up Signal
	2.27 On-Chip Linear Regulator

	Chapter 3 ColdFire Core
	3.1 Processor Pipelines
	3.2 ColdFire Processor Memory Map and Register Definitions
	3.2.1 User Memory Map and Register Description
	3.2.1.1 Data Registers (D0-D7)
	3.2.1.2 Address Registers (A0-A6)
	3.2.1.3 Stack Pointer (A7, SP)
	3.2.1.4 Program Counter (PC)
	3.2.1.5 Condition Code Register (CCR)

	3.2.2 Enhanced Multiply Accumulate Module (eMAC) User Memory Map and Register Description
	3.2.2.1 eMAC Instruction Set Summary

	3.2.3 Supervisor Memory Map and Register Description
	3.2.3.1 Status Register (SR)
	3.2.3.2 Vector Base Register (VBR)

	3.3 Exception Processing Overview
	3.4 Exception Stack Frame Definition
	3.5 Processor Exceptions
	3.5.1 Access Error Exception
	3.5.2 Address Error Exception
	3.5.3 Illegal Instruction Exception
	3.5.4 Divide By Zero
	3.5.5 Privilege Violation
	3.5.6 Trace Exception
	3.5.7 Debug Interrupt
	3.5.8 RTE and Format Error Exceptions
	3.5.9 TRAP Instruction Exceptions
	3.5.10 Interrupt Exception
	3.5.11 Fault-on-Fault Halt
	3.5.12 Reset Exception

	3.6 Instruction Execution Timing
	3.6.1 Timing Assumptions
	3.6.2 MOVE Instruction Execution Times

	3.7 Standard One Operand Instruction Execution Times
	3.8 Standard Two Operand Instruction Execution Times
	3.9 Miscellaneous Instruction Execution Times
	3.10 Branch Instruction Execution Times

	Chapter 4 Phase-Locked Loop and Clock Dividers
	4.1 PLL Features
	4.2 PLL Memory Map and Register Definitions
	4.2.1 PLL Operation
	4.2.2 PLL Lock-In Time
	4.2.3 PLL Electrical Limits

	4.3 Dynamic Clock Switching
	4.4 Audio Clock Generation
	4.5 Reduced Power Mode
	4.6 Sleep / Wake-up Mode
	4.6.1 Enter Sleep Mode
	4.6.2 Exit Sleep Mode

	4.7 Selecting Audio_clock Input
	4.8 Recommended Settings

	Chapter 5 Instruction Cache
	5.1 Instruction Cache Features
	5.2 Block Diagram
	5.3 Instruction Cache Physical Organization
	5.4 Instruction Cache Operation
	5.4.1 Interaction with Other Modules
	5.4.2 Memory Reference Attributes
	5.4.3 Cache Coherency and Invalidation
	5.4.4 Reset
	5.4.5 Cache Miss Fetch Algorithm/Line Fills

	5.5 Instruction Cache Memory Map and Register Definitions
	5.5.1 Instruction Cache Registers Memory Map
	5.5.2 Instruction Cache Register
	5.5.2.1 Cache Control Register
	5.5.2.2 Access Control Registers

	Chapter 6 Static RAM (SRAM)
	6.1 SRAM Features
	6.2 SRAM Operation
	6.3 SRAM Memory Map and Register Definitions
	6.3.1 SRAM Base Address Register
	6.3.2 SRAM Initialization
	6.3.3 SRAM Initialization Code
	6.3.4 Power Management

	Chapter 7 Synchronous DRAM Controller Module
	7.1 SDRAM Features
	7.1.1 Block Diagram

	7.2 Synchronous Operation
	7.2.1 DRAM Controller Signals in Synchronous Mode

	7.3 SDRAM Memory Map and Register Definitions
	7.3.1 DRAM Controller Registers
	7.3.1.1 DRAM Control Register (DCR) (Synchronous Mode)
	7.3.1.2 DRAM Address and Control (DACR0) (Synchronous Mode)
	7.3.1.3 DRAM Controller Mask Registers (DMR0)

	7.4 General Synchronous Operation Guidelines
	7.4.1 Address Multiplexing
	7.4.2 Interfacing Example
	7.4.3 Burst Page Mode
	7.4.4 Continuous Page Mode
	7.4.5 Auto-Refresh Operation
	7.4.6 Self-Refresh Operation

	7.5 Initialization Sequence
	7.5.1 Mode Register Settings

	7.6 SDRAM Example
	7.6.1 SDRAM Interface Configuration
	7.6.2 DCR Initialization
	7.6.3 DACR Initialization
	7.6.4 DMR Initialization
	7.6.5 Mode Register Initialization
	7.6.6 Initialization Code

	Chapter 8 Bus Operation
	8.1 Bus Features
	8.2 Bus and Control Signals
	8.2.1 Address Bus
	8.2.2 Read/Write Control
	8.2.3 Transfer Acknowledge (TA)
	8.2.4 Data Bus
	8.2.5 Chip Selects
	8.2.6 Output Enable

	8.3 Clock and Reset Signals
	8.3.1 Reset In
	8.3.2 System Bus Clock Output

	8.4 Bus Characteristics
	8.5 Data Transfer Operation
	8.5.1 Bus Cycle Execution
	8.5.2 Read Cycle
	8.5.3 Write Cycle
	8.5.4 Back-to-Back Bus Cycles
	8.5.5 Burst Cycles
	8.5.5.1 Line Transfers
	8.5.5.2 Line Read Bus Cycles

	8.6 Misaligned Operands
	8.7 Reset Operation
	8.7.1 Software Watchdog Reset

	Chapter 9 System Integration Module (SIM)
	9.1 SIM Overview
	9.1.1 SIM Features

	9.2 SIM Memory Map and Register Definitions
	9.2.1 SIM Register Memory Map

	9.3 SIM Module Programming Registers
	9.3.1 Module Base Address Registers
	9.3.2 Device ID Register

	9.4 Interrupt Interface Registers
	9.4.1 Primary Interrupt Controller Registers
	9.4.1.1 Interrupt Mask Register
	9.4.1.2 Interrupt Pending Register

	9.4.2 Secondary Interrupt Controller Registers
	9.4.2.1 Interrupt Level Selection
	9.4.2.2 Interrupt Vector Generation Register
	9.4.2.3 Spurious Vector Register
	9.4.2.4 Secondary Interrupt Sources

	9.4.3 Software Interrupts
	9.4.4 Interrupt Monitor

	9.5 System Protection and Reset Status Registers
	9.5.1 Reset Status Register
	9.5.2 Software Watchdog Timer
	9.5.2.1 System Protection Control Register
	9.5.2.2 Software Watchdog Interrupt Vector Register
	9.5.2.3 Software Watchdog Service Register

	9.6 CPU HALT Instruction
	9.7 MCF5251 Bus Arbitration Control Registers
	9.7.1 Default Bus Master Park Register
	9.7.1.1 Internal Arbitration Operation
	9.7.1.2 PARK Register Bit Configuration

	9.8 General Purpose I/Os
	9.8.1 General Purpose Inputs
	9.8.1.1 General Purpose Input Interrupts

	9.8.2 General Purpose Outputs

	9.9 Multiplexed Pin Configuration

	Chapter 10 Chip Select Module
	10.1 Chip Select Features
	10.2 Chip Select Signals
	10.2.1 CS0/CS4
	10.2.2 CS1/QSPI_CS3/GPIO28
	10.2.3 CS2 - IDE_DIOR/GPIO31 and IDE_DIOW/GPIO32
	10.2.4 CS3
	10.2.5 Output Enable Signal OE
	10.2.6 Buffer Enable - BUFENB1 and BUFENB2 Signals
	10.2.7 Bus Termination Signal - IDE_IORDY

	10.3 Chip Select Operation
	10.3.1 General-Purpose Chip Select Operation
	10.3.2 Port Sizing
	10.3.3 Global Chip-Select Operation

	10.4 Chip Select Memory Map and Register Definitions
	10.4.1 Chip Select Register Memory Map
	10.4.2 Chip Select Module Registers
	10.4.2.1 Chip Select Address Register
	10.4.2.2 Chip Select Mask Register
	10.4.2.3 Chip Select Control Register
	10.4.2.4 Code Example

	Chapter 11 General Purpose Timer Modules
	11.1 Timer Module Overview
	11.2 Timer Features
	11.3 Block Diagram
	11.4 Timer Signal Output
	11.5 Timer Operation
	11.5.1 Selecting the Prescaler
	11.5.2 Configuring the Timer for Reference Compare
	11.5.3 Configuring the Timer for Output Mode (TIMER0)

	11.6 General-Purpose Timer Memory Map and Register Definitions
	11.6.1 Timer Mode Registers (TMR0, TMR1)
	11.6.2 Timer Reference Registers (TRR0, TRR1)
	11.6.3 Timer Counters (TCN0, TCN1)
	11.6.4 Timer Event Registers (TER0, TER1)
	11.6.5 Timer Initialization Example Code
	11.6.5.1 Timer0 (Timer Mode Register)
	11.6.5.2 Timer0 (Timer Reference Register0)

	Chapter 12 Analog to Digital Converter (ADC)
	12.1 Overview
	12.1.1 Block Diagram

	12.2 External Signal Description
	12.3 ADC Memory Map and Register Definitions
	12.3.1 AD Configuration Register (ADconfig)
	12.3.2 AD Value Register (ADvalue)

	12.4 Functional Description
	12.4.1 Recommendations to Set-up of ADC and External Components

	Chapter 13 IDE and Flash Media Interface
	13.1 IDE and SmartMedia Overview
	13.1.1 Buffer Enables BUFENB1, BUFENB2, and Associated Logic
	13.1.2 Generation of IDE_DIOR and IDE_DIOW
	13.1.3 Cycle Termination on CS2 (IDE_DIOR, IDE_DIOW)

	13.2 SmartMedia Interface Setup
	13.2.1 SmartMedia Timing

	13.3 Setting Up The IDE Interface
	13.3.1 IDE Timing Diagram

	13.4 Flash Media Interface
	13.5 Flash Media Interface Memory Map and Register Definitions
	13.5.1 Flash Media Clock Generation and Configuration
	13.5.2 Flash Media Interface Operation
	13.5.2.1 Flash Media Command Registers in Memory Stick Mode
	13.5.2.2 Flash Media Command Register 1 in Secure Digital Mode
	13.5.2.3 Flash Media Command Register 2 in Secure Digital Mode

	13.5.3 Flash Media Data Registers
	13.5.3.1 Flash Media Status Register

	13.5.4 Flash Media Interrupt Register
	13.5.5 Flash Media Interface Operation in Memory Stick Mode
	13.5.5.1 Reading Data from the Memory Stick
	13.5.5.2 Writing Data to the Memory Stick
	13.5.5.3 Interrupt from Memory Stick

	13.5.6 Flash Media Interface Operation in Secure Digital (SD) Mode
	13.5.6.1 Send Command to Card
	13.5.6.2 Write Data to Card

	13.5.7 Commonly Used Commands in SD Mode
	13.5.7.1 Send Command to Card (No Data)
	13.5.7.2 Send Command to Card (Receive Multiple Data Blocks and Status)
	13.5.7.3 Send Command to Card (Write Multiple Data Blocks)

	Chapter 14 DMA Controller
	14.1 DMA Features
	14.2 DMA Signal Description
	14.2.1 DMA Request

	14.3 DMA Module Overview
	14.4 DMA Memory Map and Register Definitions
	14.4.1 REQUEST Source Selection
	14.4.2 Source Address Register
	14.4.3 Destination Address Register
	14.4.4 Byte Count Register
	14.4.5 DMA Control Register
	14.4.6 DMA Status Register
	14.4.7 DMA Interrupt Vector Register

	14.5 Transfer Request Generation
	14.5.1 Cycle-Steal Mode
	14.5.2 Continuous Mode

	14.6 Data Transfer Modes
	14.6.1 Dual-Address Transaction
	14.6.1.1 Dual-Address Read
	14.6.1.2 Dual-Address Write

	14.7 DMA Transfer Functional Description
	14.7.1 Channel Initialization and Startup
	14.7.1.1 Channel Prioritization
	14.7.1.2 Programming the DMA

	14.7.2 Data Transfer
	14.7.2.1 Periphery Request Operation
	14.7.2.2 Auto Alignment
	14.7.2.3 Bandwidth Control

	14.7.3 Channel Termination
	14.7.3.1 Error Conditions
	14.7.3.2 Interrupts

	Chapter 15 UART Modules
	15.1 UART Module Features
	15.1.1 Serial Communication Channel
	15.1.2 Baud-Rate Generator/Timer
	15.1.3 Interrupt Control Logic

	15.2 UART Module Signal Definitions
	15.2.1 Transmitter Serial Data Output
	15.2.2 Receiver Serial Data Input
	15.2.3 Request-To-Send
	15.2.4 Clear-To-Send

	15.3 Operation
	15.3.1 Baud-Rate Generator/Timer
	15.3.1.1 Calculating Baud Rates

	15.3.2 Transmitter and Receiver Operating Modes
	15.3.2.1 Transmitter
	15.3.2.2 Receiver
	15.3.2.3 Receiver FIFO

	15.3.3 Looping Modes
	15.3.3.1 Automatic Echo Mode
	15.3.3.2 Local Loopback Mode
	15.3.3.3 Remote Loopback Mode

	15.3.4 Multidrop Mode
	15.3.5 Bus Operation
	15.3.5.1 Read Cycles
	15.3.5.2 Write Cycles
	15.3.5.3 Interrupt Acknowledge Cycles

	15.4 UART Memory Map and Register Definitions
	15.4.1 Mode Register 1 (UMR1n)
	15.4.2 Mode Register 2 (UMR2n)
	15.4.3 Status Registers (USRn)
	15.4.4 Clock-Select Registers (USCRn)
	15.4.5 Command Registers (UCRn)
	15.4.5.1 Miscellaneous Commands
	15.4.5.1.1 Reset Mode Register Pointer
	15.4.5.1.2 Reset Receiver
	15.4.5.1.3 Reset Transmitter
	15.4.5.1.4 Reset Error Status
	15.4.5.1.5 Reset Break-Change Interrupt
	15.4.5.1.6 Start Break
	15.4.5.1.7 Stop Break

	15.4.5.2 Transmitter Commands
	15.4.5.2.1 No Action Taken
	15.4.5.2.2 Transmitter Enable
	15.4.5.2.3 Transmitter Disable
	15.4.5.2.4 Do Not Use

	15.4.5.3 Receiver Commands
	15.4.5.3.1 No Action Taken
	15.4.5.3.2 Receiver Enable
	15.4.5.3.3 Receiver Disable
	15.4.5.3.4 Do Not Use

	15.4.6 Receiver Buffer Registers (UBRn)
	15.4.7 Transmitter Buffer Registers (UTBn)
	15.4.8 Input Port Change Registers (UIPCRn)
	15.4.9 Auxiliary Control Registers (UACRn)
	15.4.10 Interrupt Status Registers (UISRn)
	15.4.11 Interrupt Mask Registers (UIMRn)
	15.4.12 Baud Rate Generator (MSB) Register (UBG1n)
	15.4.13 Baud Rate Generator (LSB) Register (UBG2n)
	15.4.14 Interrupt Vector Registers (UIVRn)
	15.4.15 Input Port Registers (UIPn)
	15.4.16 Output Port Data Registers (UOP1n)
	15.4.17 Programming
	15.4.17.1 UART Module Initialization
	15.4.17.2 I/O Driver Example
	15.4.17.3 Interrupt Handling

	15.5 UART Module Initialization Sequence

	Chapter 16 Queued Serial Peripheral Interface (QSPI) Module
	16.1 Features
	16.2 QSPI Module Overview
	16.2.1 Interface and Pins
	16.2.2 Internal Bus Interface

	16.3 Operation
	16.3.1 QSPI RAM
	16.3.1.1 Transmit RAM
	16.3.1.2 Receive RAM
	16.3.1.3 Command RAM

	16.3.2 Baud Rate Selection
	16.3.3 Transfer Delays
	16.3.4 Transfer Length
	16.3.5 Data Transfer

	16.4 QSPI Memory Map and Register Definitions
	16.4.1 QSPI Mode Register (QMR)
	16.4.2 QSPI Delay Register (QDLYR)
	16.4.3 QSPI Wrap Register (QWR)
	16.4.4 QSPI Interrupt Register (QIR)
	16.4.5 QSPI Address Register (QAR)
	16.4.6 QSPI Data Register (QDR)
	16.4.7 Command RAM Registers (QCR0-QCR15)
	16.4.8 Programming Example

	Chapter 17 Audio Interface Module (AIM)
	17.1 Audio Interface Overview
	17.1.1 Audio Interface Block Diagram
	17.1.2 Audio Interface Structure

	17.2 Audio Interface Memory Map and Register Definitions
	17.3 Audio Interface Memory Map
	17.4 Audio Interrupt Mask and Status Register Descriptions
	17.5 Serial Audio Interface (I2S/EIAJ) Register Descriptions
	17.5.1 IIS/EIAJ Transmitter Descriptions
	17.5.2 IIS/EIAJ Transmitter Interrupts
	17.5.3 IIS/EIAJ Receiver Descriptions

	17.6 Digital Audio Interface (EBU/SPDIF) Register Descriptions
	17.6.1 IEC958 Receive Interface
	17.6.1.1 Audio Data Reception
	17.6.1.2 Control Channel Reception Register Descriptions
	17.6.1.3 Control Channel Interrupt (IEC958 “C” Channel New Frame)
	17.6.1.4 Validity Flag Reception
	17.6.1.5 IEC958 Exception Definition
	17.6.1.6 EBU Extracted Clock
	17.6.1.7 Reception of User Channel and CD-Subcode Over IEC958 Receiver
	17.6.1.8 U Channel Receive and Q Channel Receive Register Descriptions
	17.6.1.9 U and Q Receive Register Interrupts
	17.6.1.10 Behavior of User Channel Receive Interface (CD Data)
	17.6.1.11 Behavior of User Channel Receive Interface (non-CD data)

	17.6.2 IEC958 (SPDIF) Transmit Interface
	17.6.2.1 Transmit “C” Channel
	17.6.2.2 IEC958 Transmitter Interrupt Conditions
	17.6.2.3 IEC958-3 Ed2 and Tech 3250-E Standards Compliance
	17.6.2.4 Transmission of U-Channel and CD Subcode Data

	17.6.3 CD Subcode Interrupts
	17.6.3.1 Free Running Counter Synchronization
	17.6.3.2 Controlling the SFSY Sync Position

	17.6.4 Inserting CD User Channel Data Into IEC958 Transmit Data

	17.7 Processor Interface Overview
	17.7.1 Data Exchange Register Descriptions
	17.7.2 Data Exchange Register Overview
	17.7.2.1 Data In Selection

	17.7.3 PDIR and PDOR Field Formatting
	17.7.4 Overrun and Underrun with PDIR and PDOR Registers
	17.7.5 Automatic Resynchronization of FIFOs
	17.7.6 audioGlob Register Descriptions
	17.7.7 Audio Interrupts
	17.7.7.1 AudioTick Interrupts
	17.7.7.2 PDIR1, PDIR2, and PDIR3, Interrupts
	17.7.7.3 PDOR1, PDOR2, and PDOR3 Interrupts
	17.7.7.4 Audio Interrupt Routines and Timing

	17.7.8 CD-ROM Block Encoder and Decoder Register Descriptions
	17.7.8.1 CD-ROM Decoder Interrupts
	17.7.8.2 CD-ROM Encoder Interrupts

	17.8 DMA Channel Interaction
	17.9 Phase/Frequency Determination and XTRIM Function
	17.9.1 Incoming Source Frequency Measurement
	17.9.1.1 Filtering for the Discrete Time Oscillator

	17.9.2 XTRIM Option - Locking Xtal Clock to Incoming Signal
	17.9.3 XTRIM Internal Logic

	Chapter 18 I2C Modules
	18.1 I2C Interface Features
	18.2 I2C Overview
	18.3 I2C System Configuration
	18.4 I2C Protocol
	18.4.1 START Signal
	18.4.2 Slave Address Transmission
	18.4.3 Data Transfer
	18.4.4 Repeated START Signal
	18.4.5 STOP Signal
	18.4.6 Arbitration Procedure
	18.4.7 Clock Synchronization
	18.4.8 Handshaking
	18.4.9 Clock Stretching

	18.5 I2C Memory Map and Register Descriptions
	18.5.1 I2C Address Registers (MADR)
	18.5.2 I2C Frequency Divider Registers (MFDR)
	18.5.3 I2C Control Registers (MBCR)
	18.5.4 I2C Status Registers (MBSR)
	18.5.5 I2C Data I/O Registers (MBDR)

	18.6 I2C Programming Examples
	18.6.1 Initialization Sequence
	18.6.2 Generation of START
	18.6.3 Post-Transfer Software Response
	18.6.4 Generation of STOP
	18.6.5 Generation of Repeated START
	18.6.6 Slave Mode
	18.6.7 Arbitration Lost

	Chapter 19 Boot ROM
	19.1 Overview
	19.1.1 Boot Modes

	19.2 Boot ROM Operation
	19.2.1 Initialization
	19.2.1.1 Boot ROM Memory map
	19.2.1.2 Internal SRAM usage

	19.2.2 Boot Type Detection
	19.2.3 Serial Boot Data Format
	19.2.3.1 Command Encoding/Size Encoding
	19.2.3.2 Supported Commands

	19.2.4 IDE Boot Data Format
	19.2.5 Boot Modes
	19.2.5.1 Boot From I2C / SPI - Master Mode
	19.2.5.2 Boot from I2C - Slave Mode
	19.2.5.3 Boot from UART
	19.2.5.3.1 UART Protocol

	19.2.5.4 Boot from IDE Device

	19.3 Creating Appropriate Boot Record Files

	Chapter 20 Background Debug Mode (BDM) Interface
	20.1 Debug Support Signals
	20.1.1 Breakpoint (BKPT)
	20.1.2 Debug Data (DDATA[3:0])
	20.1.3 Development Serial Clock (DSCLK)
	20.1.4 Development Serial Input (DSI)
	20.1.5 Development Serial Output (DSO)
	20.1.6 Processor Status (PST[3:0])
	20.1.7 Processor Status Clock (PSTCLK)

	20.2 Real-Time Trace Support
	20.2.1 Processor Status Signal Encoding
	20.2.1.1 Continue Execution (PST = $0)
	20.2.1.2 Begin Execution of an Instruction (PST = $1)
	20.2.1.3 Entry into User Mode (PST = $3)
	20.2.1.4 Begin Execution of PULSE or WDDATA instructions (PST = $4)
	20.2.1.5 Begin Execution of Taken Branch (PST = $5)
	20.2.1.6 Begin Execution of RTE Instruction (PST = $7)
	20.2.1.7 Begin Data Transfer (PST = $8-$B)
	20.2.1.8 Exception Processing (PST = $C)
	20.2.1.9 Emulator Mode Exception Processing (PST = $D)
	20.2.1.10 Processor Stopped (PST = $E)
	20.2.1.11 Processor Halted (PST = $F)

	20.3 Background-Debug Mode (BDM)
	20.3.1 CPU Halt
	20.3.2 BDM Serial Interface
	20.3.2.1 Receive Packet Format
	20.3.2.2 Transmit Packet Format

	20.3.3 BDM Command Set
	20.3.3.1 BDM Command Set Summary

	20.3.4 Command Sequence Diagram
	20.3.4.1 Command Set Descriptions
	20.3.4.1.1 Read Address/Data Register (RAREG/RDREG)
	20.3.4.1.2 Write Address/Data Register (WAREG and WDREG)
	20.3.4.1.3 Read Memory Location (READ)
	20.3.4.1.4 Write Memory Location (WRITE)
	20.3.4.1.5 Dump Memory Block (DUMP)
	20.3.4.1.6 Fill Memory Block (FILL)
	20.3.4.1.7 Resume Execution (GO)
	20.3.4.1.8 No Operation (NOP)
	20.3.4.1.9 Read Control Register (RCREG)
	20.3.4.1.10 Write Control Register (WCREG)
	20.3.4.1.11 Read Debug Module Register (RDMREG)
	20.3.4.1.12 Write Debug Module Register (WDMREG)
	20.3.4.1.13 Unassigned Opcodes

	20.3.4.2 BDM Accesses of the eMAC Registers

	20.4 Real-Time Debug Support
	20.4.1 Theory of Operation
	20.4.1.1 Emulator Mode
	20.4.1.2 Debug Module Hardware
	20.4.1.2.1 Reuse of Debug Module Hardware (Rev. A)

	20.5 Debug Module Memory Map and Register Definitions
	20.5.1 Address Breakpoint Registers
	20.5.2 Address Attribute Trigger Register
	20.5.3 Program Counter Breakpoint Register (PBR, PBMR)
	20.5.4 Data Breakpoint Registers (DBR, DBMR)
	20.5.5 Trigger Definition Register (TDR)
	20.5.6 Configuration/Status Register (CSR)
	20.5.7 BDM Address Attribute Register (BAAR)
	20.5.8 Concurrent BDM and Processor Operation
	20.5.9 Freescale-Recommended BDM Pinout

	Chapter 21 IEEE 1149.1 Test Access Port (JTAG)
	21.1 Features
	21.2 Block Diagram
	21.3 JTAG Signal Descriptions
	21.3.1 Test Clock (TCK)
	21.3.2 Test Reset/Development Serial Clock (TRST/DSCLK)
	21.3.3 Test Mode Select/ Breakpoint (TMS/BKPT)
	21.3.4 Test Data Input/Development Serial Input (TDI/DSI)
	21.3.5 Test Data Output/Development Serial Output (TDO/DSO)

	21.4 TAP Controller
	21.5 JTAG Register Definitions
	21.5.1 JTAG Instruction Shift Register
	21.5.1.1 EXTEST Instruction
	21.5.1.2 IDCODE
	21.5.1.3 SAMPLE/PRELOAD Instruction
	21.5.1.4 CLAMP Instruction
	21.5.1.5 HIGHZ Instruction
	21.5.1.6 BYPASS Instruction

	21.5.2 ID Code Register
	21.5.3 JTAG Boundary Scan Register
	21.5.4 JTAG Bypass Register

	21.6 Restrictions
	21.7 Disabling IEEE 1149.1A Standard Operation
	21.8 Obtaining the IEEE 1149.1A Standard

	Chapter 22 USB, ATA DMA, and Clock Integration Module
	22.1 Introduction
	22.2 Memory Map and Register Definitions
	22.2.1 Miscellaneous Configuration Register (MISCCR)
	22.2.2 ATA DMA Address Register (ATA_DADDR)
	22.2.3 ATA DMA Count Register (ATA_DCOUNT)
	22.2.4 RTC Time Register (RTC_TIME)
	22.2.5 USB/FlexCAN Clock Register (USBCANCLK)

	22.3 Functional Description
	22.3.1 ATA/USB Cache Memory
	22.3.1.1 Endianness Issues
	22.3.1.2 DMA Transfer between ATA and Cache RAM

	Chapter 23 Advanced Technology Attachment Controller (ATA)
	23.1 Features
	23.2 Block Diagram
	23.3 Overview
	23.3.1 Modes of Operation

	23.4 External Signal Description
	23.4.1 Detailed Signal Descriptions
	23.4.1.1 ATA_RST (Out)
	23.4.1.2 ATA_DIOR (Out)
	23.4.1.3 ATA_DIOW (Out)
	23.4.1.4 ATA_CS0, ATA_CS1, ATA_A0, ATA_A1, ATA_A2 (Out)
	23.4.1.5 ATA_DMARQ (In)
	23.4.1.6 ATA_DMACK (Out)
	23.4.1.7 ATA_INTRQ (In)
	23.4.1.8 ATA_IORDY (In)
	23.4.1.9 ATA_D[15:0] (In/Out/Tri-state)

	23.4.2 Electrical Spec on the ATA Bus, Bus Buffers
	23.4.3 Timing on ATA Bus
	23.4.3.1 Timing Parameters
	23.4.3.2 PIO Mode Timing
	23.4.3.3 Timing in Multiword DMA Mode
	23.4.3.4 UDMA In Timing Diagrams
	23.4.3.5 UDMA Out Timing Diagrams

	23.5 Memory Map and Register Definitions
	23.5.1 Memory Map
	23.5.2 Register Descriptions
	23.5.2.1 Endianness
	23.5.2.2 Timing Registers
	23.5.2.2.1 TIME_OFF Register
	23.5.2.2.2 TIME_ON Register
	23.5.2.2.3 TIME_1 Register
	23.5.2.2.4 TIME_2W Register
	23.5.2.2.5 TIME_2R Register
	23.5.2.2.6 TIME_AX Register
	23.5.2.2.7 TIME_PIO_RDX Register
	23.5.2.2.8 TIME_4 Register
	23.5.2.2.9 TIME_9 Register
	23.5.2.2.10 TIME_M Register
	23.5.2.2.11 TIME_JN Register
	23.5.2.2.12 TIME_D Register
	23.5.2.2.13 TIME_K Register
	23.5.2.2.14 TIME_ACK Register
	23.5.2.2.15 TIME_ENV Register
	23.5.2.2.16 TIME_RPX Register
	23.5.2.2.17 TIME_ZAH Register
	23.5.2.2.18 TIME_MLIX Register
	23.5.2.2.19 TIME_DVH Register
	23.5.2.2.20 TIME_DZFS Register
	23.5.2.2.21 TIME_DVS Register
	23.5.2.2.22 Time_CVH Register
	23.5.2.2.23 TIME_SS Register
	23.5.2.2.24 TIME_CYC Register

	23.5.2.3 FIFO Data Registers
	23.5.2.3.1 FIFO_Data Register in 16-Bit Mode
	23.5.2.3.2 FIFO_Data Register in 32-Bit Mode
	23.5.2.3.3 FIFO_FILL Register

	23.5.2.4 ATA_CONTROL Register
	23.5.2.5 Interrupt Registers
	23.5.2.5.1 Interrupt_Pending Register
	23.5.2.5.2 Interrupt_Enable Register
	23.5.2.5.3 Interrupt_Clear Register

	23.5.2.6 FIFO Alarm Register
	23.5.2.7 Drive Registers Connected to ATA Bus

	23.6 Functional Description
	23.6.1 Resetting ATA Bus
	23.6.2 Programming ATA Bus Timing and iordy_en
	23.6.3 Access to ATA Bus in PIO Mode
	23.6.4 Using DMA Mode to Receive Data from ATA Bus
	23.6.5 Using DMA Mode to Transmit Data to ATA Bus

	Chapter 24 Universal Serial Bus Interface
	24.1 Features
	24.2 Block Diagram
	24.3 Overview
	24.4 Modes of Operation
	24.5 External Signals
	24.5.1 On-Chip Transceiver
	24.5.2 PHY Clocks
	24.5.3 System Clock

	24.6 Memory Map and Register Definitions
	24.6.1 Module Identification Registers
	24.6.1.1 Identification (ID) Register
	24.6.1.2 General Hardware Parameters (HWGENERAL) Register
	24.6.1.3 Host Hardware Parameters (HWHOST) Register
	24.6.1.4 Device Hardware Parameters (HWDEVICE) Register-Non-EHCI
	24.6.1.5 Transmit Buffer Hardware Parameters (HWTXBUF) Register
	24.6.1.6 Receive Buffer Hardware Parameters (HWRXBUF) Register

	24.6.2 Capability Registers
	24.6.2.1 Capability Registers Length (CAPLENGTH)
	24.6.2.2 Host Controller Interface Version (HCIVERSION)
	24.6.2.3 Host Controller Structural Parameters (HCSPARAMS)
	24.6.2.4 Host Controller Capability Parameters (HCCPARAMS)
	24.6.2.5 Device Controller Interface Version (DCIVERSION)
	24.6.2.6 Device Controller Capability Parameters (DCCPARAMS) Non-EHCI

	24.6.3 Operational Registers
	24.6.3.1 USB Command Register (USBCMD)
	24.6.3.2 USB Status Register (USBSTS)
	24.6.3.3 USB Interrupt Enable Register (USBINTR)
	24.6.3.4 Frame Index Register (FRINDEX)
	24.6.3.5 Control Data Structure Segment Register (CTRLDSSEGMENT)
	24.6.3.6 Periodic Frame List Base Address Register (PERIODICLISTBASE)
	24.6.3.7 Device Address Register (DEVICEADDR), Non-EHCI
	24.6.3.8 Current Asynchronous List Address Register (ASYNCLISTADDR)
	24.6.3.9 Endpoint List Address Register (ENDPOINTLISTADDR), Non-EHCI
	24.6.3.10 Master Interface Data Burst Size Register (BURSTSIZE)-Non-EHCI
	24.6.3.11 Transmit FIFO Tuning Controls Register (TXFILLTUNING)-Non-EHCI
	24.6.3.12 Configure Flag Register (CONFIGFLAG)
	24.6.3.13 Port Status and Control Registers (PORTSC)
	24.6.3.14 On-The-Go Status and Control (OTGSC), Non-EHCI
	24.6.3.15 USB Mode Register (USBMODE)-Non-EHCI
	24.6.3.16 Endpoint Setup Status Register (ENDPTSETUPSTAT)-Non-EHCI
	24.6.3.17 Endpoint Initialization Register (ENDPTPRIME)-Non-EHCI
	24.6.3.18 Endpoint Flush Register (ENDPTFLUSH), Non-EHCI
	24.6.3.19 Endpoint Status Register (ENDPTSTATUS), Non-EHCI
	24.6.3.20 Endpoint Complete Register (ENDPTCOMPLETE), Non-EHCI
	24.6.3.21 Endpoint Control Register 0 (ENDPTCTRL0), Non-EHCI
	24.6.3.22 Endpoint Control Register n (ENDPTCTRLn), Non-EHCI

	24.7 Functional Description
	24.7.1 DMA Engine
	24.7.2 FIFO RAM Controller
	24.7.3 PHY Interface

	24.8 Host Data Structures
	24.8.1 Periodic Frame List
	24.8.2 Asynchronous List Queue Head Pointer
	24.8.3 Isochronous (High-Speed) Transfer Descriptor (iTD)
	24.8.3.1 Next Link Pointer
	24.8.3.2 iTD Transaction Status and Control List
	24.8.3.3 iTD Buffer Page Pointer List (Plus)

	24.8.4 Split Transaction Isochronous Transfer Descriptor (siTD)
	24.8.4.1 Next Link Pointer
	24.8.4.2 siTD Endpoint Capabilities/Characteristics
	24.8.4.3 siTD Transfer State
	24.8.4.4 siTD Buffer Pointer List (Plus)
	24.8.4.5 siTD Back Link Pointer

	24.8.5 Queue Element Transfer Descriptor (qTD)
	24.8.5.1 Next qTD Pointer
	24.8.5.2 Alternate Next qTD Pointer
	24.8.5.3 qTD Token
	24.8.5.4 qTD Buffer Page Pointer List

	24.8.6 Queue Head
	24.8.6.1 Queue Head Horizontal Link Pointer
	24.8.6.2 Endpoint Capabilities/Characteristics
	24.8.6.3 Transfer Overlay

	24.8.7 Periodic Frame Span Traversal Node (FSTN)
	24.8.7.1 FTSN Normal Path Pointer
	24.8.7.2 FSTN Back Path Link Pointer

	24.9 Host Operations
	24.9.1 Host Controller Initialization
	24.9.2 Power Port
	24.9.3 Reporting Over-Current
	24.9.4 Suspend/Resume
	24.9.4.1 Port Suspend/Resume

	24.9.5 Schedule Traversal Rules
	24.9.6 Periodic Schedule Frame Boundaries vs. Bus Frame Boundaries
	24.9.7 Periodic Schedule
	24.9.8 Managing Isochronous Transfers Using iTDs
	24.9.8.1 Host Controller Operational Model for iTDs
	24.9.8.2 Software Operational Model for iTDs
	24.9.8.2.1 Periodic Scheduling Threshold

	24.9.9 Asynchronous Schedule
	24.9.9.1 Adding Queue Heads to Asynchronous Schedule
	24.9.9.2 Removing Queue Heads from Asynchronous Schedule
	24.9.9.3 Empty Asynchronous Schedule Detection
	24.9.9.4 Asynchronous Schedule Traversal: Start Event
	24.9.9.5 Reclamation Status Bit (USBSTS Register)

	24.9.10 Managing Control/Bulk/Interrupt Transfers via Queue Heads
	24.9.10.1 Buffer Pointer List Use for Data Streaming with qTDs
	24.9.10.2 Adding Interrupt Queue Heads to the Periodic Schedule
	24.9.10.3 Managing Transfer Complete Interrupts from Queue Heads

	24.9.11 Ping Control
	24.9.12 Split Transactions
	24.9.12.1 Split Transactions for Asynchronous Transfers
	24.9.12.1.1 Asynchronous-Do-Start-Split
	24.9.12.1.2 Asynchronous-Do-Complete-Split

	24.9.12.2 Split Transaction Interrupt
	24.9.12.2.1 Split Transaction Scheduling Mechanisms for Interrupt
	24.9.12.2.2 Host Controller Operational Model for FSTNs
	24.9.12.2.3 Software Operational Model for FSTNs
	24.9.12.2.4 Tracking Split Transaction Progress for Interrupt Transfers
	24.9.12.2.5 Split Transaction Execution State Machine for Interrupt
	24.9.12.2.6 Periodic Interrupt-Do-Start-Split
	24.9.12.2.7 Periodic Interrupt-Do-Complete-Split
	24.9.12.2.8 Managing the QH[FrameTag] Field
	24.9.12.2.9 Rebalancing the Periodic Schedule

	24.9.12.3 Split Transaction Isochronous
	24.9.12.3.1 Split Transaction Scheduling Mechanisms for Isochronous
	24.9.12.3.2 Tracking Split Transaction Progress for Isochronous Transfers
	24.9.12.3.3 Split Transaction Execution State Machine for Isochronous
	24.9.12.3.4 Periodic Isochronous-Do-Start-Split
	24.9.12.3.5 Periodic Isochronous-Do Complete Split
	24.9.12.3.6 Complete-Split for Scheduling Boundary Cases 2a, 2b
	24.9.12.3.7 Split Transaction for Isochronous-Processing Examples

	24.9.13 Port Test Modes
	24.9.14 Interrupts
	24.9.14.1 Transfer/Transaction Based Interrupts
	24.9.14.1.1 Transaction Error
	24.9.14.1.2 Serial Bus Babble
	24.9.14.1.3 Data Buffer Error
	24.9.14.1.4 USB Interrupt (Interrupt on Completion (IOC))
	24.9.14.1.5 Short Packet

	24.9.14.2 Host Controller Event Interrupts
	24.9.14.2.1 Port Change Events
	24.9.14.2.2 Frame List Rollover
	24.9.14.2.3 Interrupt on Async Advance
	24.9.14.2.4 Host System Error

	24.10 Device Data Structures
	24.10.1 Endpoint Queue Head
	24.10.1.1 Endpoint Capabilities/Characteristics
	24.10.1.2 Transfer Overlay
	24.10.1.3 Current dTD Pointer
	24.10.1.4 Set-Up Buffer

	24.10.2 Endpoint Transfer Descriptor (dTD)

	24.11 Device Operational Model
	24.11.1 Device Controller Initialization
	24.11.2 Port State and Control
	24.11.2.1 Bus Reset
	24.11.2.2 Suspend/Resume
	24.11.2.2.1 Suspend Description
	24.11.2.2.2 Suspend Operational Model
	24.11.2.2.3 Resume

	24.11.3 Managing Endpoints
	24.11.3.1 Endpoint Initialization
	24.11.3.1.1 Stalling

	24.11.3.2 Data Toggle
	24.11.3.2.1 Data Toggle Reset
	24.11.3.2.2 Data Toggle Inhibit

	24.11.3.3 Device Operational Model For Packet Transfers
	24.11.3.3.1 Priming Transmit Endpoints
	24.11.3.3.2 Priming Receive Endpoints

	24.11.3.4 Interrupt/Bulk Endpoint Operational Model
	24.11.3.4.1 Interrupt/Bulk Endpoint Bus Response Matrix

	24.11.3.5 Control Endpoint Operation Model
	24.11.3.5.1 Setup Phase
	24.11.3.5.2 Data Phase
	24.11.3.5.3 Status Phase
	24.11.3.5.4 Control Endpoint Bus Response Matrix

	24.11.3.6 Isochronous Endpoint Operational Model
	24.11.3.6.1 Isochronous Pipe Synchronization
	24.11.3.6.2 Isochronous Endpoint Bus Response Matrix

	24.11.4 Managing Queue Heads
	24.11.4.1 Queue Head Initialization
	24.11.4.2 Operational Model For Setup Transfers

	24.11.5 Managing Transfers with Transfer Descriptors
	24.11.5.1 Software Link Pointers
	24.11.5.2 Building a Transfer Descriptor
	24.11.5.3 Executing A Transfer Descriptor
	24.11.5.4 Transfer Completion
	24.11.5.5 Flushing/De-Priming an Endpoint
	24.11.5.6 Device Error Matrix

	24.11.6 Servicing Interrupts
	24.11.6.1 High-Frequency Interrupts
	24.11.6.2 Low-Frequency Interrupts
	24.11.6.3 Error Interrupts

	24.12 Deviations from the EHCI Specifications
	24.12.1 Embedded Transaction Translator Function
	24.12.1.1 Capability Registers
	24.12.1.2 Operational Registers
	24.12.1.3 Discovery
	24.12.1.4 Data Structures
	24.12.1.5 Operational Model
	24.12.1.5.1 Microframe Pipeline
	24.12.1.5.2 Split State Machines
	24.12.1.5.3 Asynchronous Transaction Scheduling and Buffer Management
	24.12.1.5.4 Periodic Transaction Scheduling and Buffer Management
	24.12.1.5.5 Multiple Transaction Translators

	24.12.2 Device Operation
	24.12.3 Non-Zero Fields the Register File
	24.12.4 SOF Interrupt
	24.12.5 Embedded Design
	24.12.5.1 Frame Adjust Register

	24.12.6 Miscellaneous Variations from EHCI
	24.12.6.1 Programmable Physical Interface Behavior
	24.12.6.2 Discovery
	24.12.6.2.1 Port Reset
	24.12.6.2.2 Port Speed Detection

	Chapter 25 FlexCAN Module
	25.1 Features
	25.2 Block Diagram
	25.3 Overview
	25.3.1 The CAN System
	25.3.2 Modes of Operation
	25.3.2.1 Normal Mode
	25.3.2.2 Freeze Mode
	25.3.2.3 Module Disabled Mode
	25.3.2.4 Loop-back Mode
	25.3.2.5 Listen-only Mode

	25.4 External Signal Description
	25.5 Memory Map and Register Definitions
	25.5.1 FlexCAN Configuration Register (CANMCRn)
	25.5.2 FlexCAN Control Register (CANCTRLn)
	25.5.3 FlexCAN Free Running Timer Register (TIMERn)
	25.5.4 Rx Mask Registers (RXGMASKn, RX14MASKn, RX15MASKn)
	25.5.5 FlexCAN Error Counter Register (ERRCNTn)
	25.5.6 FlexCAN Error and Status Register (ERRSTATn)
	25.5.7 Interrupt Mask Register (IMASKn)
	25.5.8 Interrupt Flag Register (IFLAGn)
	25.5.9 Message Buffer Structure

	25.6 Functional Overview
	25.6.1 Transmit Process
	25.6.2 Arbitration Process
	25.6.3 Receive Process
	25.6.3.1 Self-Received Frames

	25.6.4 Matching Process
	25.6.5 Message Buffer Handling
	25.6.5.1 Serial Message Buffers (SMBs)
	25.6.5.2 Message Buffer Deactivation
	25.6.5.3 Locking and Releasing Message Buffers

	25.6.6 CAN Protocol Related Frames
	25.6.6.1 Remote Frames
	25.6.6.2 Overload Frames

	25.6.7 Time Stamp
	25.6.8 Bit Timing

	25.7 FlexCAN Initialization Sequence
	25.7.1 Interrupts

	Chapter 26 Real-Time Clock
	26.1 Block Diagram
	26.2 External Signal Description
	26.3 Memory Map and Register Definitions
	26.3.1 Miscellaneous Configuration Register (MISCCR)
	26.3.2 RTC Time Register (RTC_TIME)

	26.4 Functional Description
	26.4.1 Battery Removal Detection

